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Abstract-This paper develops an intelligent 
ecological biomass management method called 
supervisory recurrent fuzzy neural network 
control (SRFNNC) to deal with the long-term 
management of ecological system, which is an 
uncertain nonlinear system subject to 
unpredictable but bounded disturbances. This 
SRFNNC system is composed of a recurrent 
fuzzy neural network (RFNN) controller and a 
supervisory controller. The RFNN controller is 
investigated to mimic an ideal controller and 
the supervisory controller is designed to 
compensate for the approximation error 
between the RFNN controller and the ideal 
controller. This SRFNNC is employed to keep 
the biomasses of an ecological system within a 
small neighborhood of the unique nontrivial 
optimal equilibrium state of the undisturbed 
ecosystem. By applying this controller, the 
accumulative yield of harvest is better than 
that obtained with state feedback control and 
no control.  
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1. Introduction 

    For the analysis of ecosystems, which can 
include nonlinear phenomena such as predator 
switching, food limitations, and saturation of 
predator attack capacities, interaction in 
multi-species communities is a highly nonlinear 
affair [3]. The ecomodels also have to include 
explicitly possible effects of environmental 
disturbances. A great amount of effort has been 
devoted to the study of vulnerability and 
non-vulnerability of ecosystems subject to 
continual, unpredictable, but bounded 
disturbances due to changes in climatic conditions, 
diseases, and migrating species. [3,4,7]. The state 
feedback control method has been proposed by 
Lee and Leitmann [7] for controlling the 
disturbed ecological system.  
    In recent years, the neural network-based 
control technique has been proposed as an 
alternative design method for control of dynamic 
systems [5,11]. The most useful property of 
neural networks is their ability to approximate 

linear or nonlinear mapping through learning. 
With this property, the neural network-based 
controllers have been developed to compensate 
the effects of nonlinearities and system 
uncertainties, so that the stability, convergence 
and robustness of the control system can be 
improved. The concept of incorporating fuzzy 
logic into a neural network has recently grown 
into a popular research topic [1,8]. The fuzzy 
neural network possesses advantages both of 
fuzzy systems and neural networks since it 
combines the fuzzy reasoning capability and the 
neural network on-line learning capability. 
However, the neural networks presented in 
[1,5,8,11] are static mapping networks of the 
feed-forward type. The recurrent neural network 
has been extensively presented since it has 
capabilities superior to the feedforward neural 
network, such as the dynamic response and the 
information storing ability [6,9,10]. Since a 
recurrent neural network has an internal feedback 
loop, it captures the dynamic response of a system 
with external feedback through delays. Thus, the 
recurrent neural network is a dynamic mapping 
network. 
    Few studies on management or control of 
ecological systems have employed intelligent 
methods such as fuzzy or neural network 
technologies. In the literature, only the biomass 
clustering design methodology has been used [2]. 
In this paper, an intelligent method called 
supervisory recurrent fuzzy neural network 
control (SRFNNC) is developed for the design of 
the ecological system management model. This 
SRFNNC system comprises a recurrent fuzzy 
neural network (RFNN) controller and a 
supervisory controller. The RFNN controller is 
used to mimic an ideal controller, and the 
supervisory controller is designed to compensate 
for the approximation error between the RFNN 
controller and the ideal controller. The RFNN is 
inherently a recurrent multilayered neural 
network for realizing fuzzy inference using 
dynamic fuzzy rules. Temporal relations are 
embedded in the network by adding feedback 
connections in the second layer of the fuzzy 
neural network. Moreover, an on-line parameter 
training methodology, using the gradient descent 
method and the Lyapunov stability theorem, is 
proposed to increase the learning capability. In 



addition, to relax the requirement for the 
uncertain bound in the supervisory controller, an 
estimation mechanism is employed to observe the 
uncertain bound. Thus, the chattering phenomena 
of the control efforts can be relaxed. Finally, a 
comparison of ecological system design between 
the state feedback control and the proposed 
SRFNNC is presented to illustrate the 
effectiveness of the proposed design method. By 
applying this controller, the accumulative yield of 
harvest is also better than that obtained with state 
feedback control and no control. 

2. Model of ecological system 

Taking into consideration the complexity of 
the realistic ecological system, we obtain the 
exploited ecosystem model as a constant harvest 
matrix, which is a simplified model to represent 
the complex ecological behavior in reality [7]. 
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where ( )nhhdiag ,,H 1 L= is a constant harvest 
matrix, 
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where is an n-dimensional biomass vector, and its 
ith component represents the biomass of the ith 
species at time t  and ( )⋅g  is continuous. A 

constant harvest effort vector T
nhh ],[ 1 L=h  is 

assumed to be unique of the corresponding 
non-trivial solution of 

( ) .0)( =− Hxx tg       (2) 

Let ∗h  be the admissible constant harvest effort 
that maximizes the quantity HxβT  subject to 

(2), and let ∗x  be the corresponding equilibrium 

state of (1), where T
nβ ],,[ 1 ββ L

∆
=  is a 

prescribed constant price vector, which is 
normalized as Tβ ]1,,1[ L=  in this paper. Thus, 
under optimal steady state harvesting, the 
exploited ecosystem (1) becomes 
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If the exploited system (3) is not subjected to 
disturbances, then the harvest rate ∗∗xH  is 
optimal for the long-term management of the 
ecosystem, that is, in the steady state. However, 
real ecosystem in nature is continually disturbed 
by unpredictable forces such as diseases, 
migrating species and changes in climatic 
conditions. To include these important effects in 
the model, the model is modified to be 

( ) ( )( ) ( ) ( ) ( )( )ttgttgt vxxHxx ,∆+−= ∗& (4) 

where ( ) T
n tvtvt )]()..([ 1=v  is the uncertainty. It 

is assumed that only the possible sizes of the 
uncertain elements are known at time t and the 
function ( )⋅∆g  is continuous. In view of the 
presence of the continually acting unpredictable 
disturbances, the optimally exploited ecosystem 
may deviate from its equilibrium state and the 
constant harvest effort ∗h  may no longer be 
optimal. To assure that the ecosystem with 
uncertainty is practically stabilizable, a control 
term is also included in the model. Thus, (4) 
becomes 

( ) ( )( ) ( ) ( ) ( )( ) ( )tttgttgt uvxxHxx +∆+−= ∗ ,& (5) 
where ( ) ( ) ( ) T

n tutut ],,[ 1 L=u  is the control 
input (this input may be negative which can be 
thought as to free captive fish). Besides the 
harvest rate xH ∗ , the control input )(tu  may 
be interpreted as the additional harvest rate of the 
exploited ecosystem. Only nixi ,,1,0 L=>   are 
concerned, since they represent the biomasses. 
    Consider a species of animals whose 
population dynamics can be described as 
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where )(tx  denotes the biomass of the species at 
time t , r  is the intrinsic growth rate and K is 
the environmental carrying capacity; both r and K 
are positive constants. Suppose system (6) is 
subjected to harvesting; let h denote a constant 
harvest effort and assume that the corresponding 
harvest rate at time t is given by )(thx . Thus, the 
exploited system becomes  
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Using elementary calculus, we find that the value 
of h, which maximizes the harvest at equilibrium 
population )(tx∗ , can be derived from 
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From (8) and (9), the biomass is 
2
Kx =∗  and 

the corresponding value of ∗h  is given by 

2
rh =∗ . Thus, under optimal (steady state) 

constant harvesting, (7) becomes  
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Assume that the contribution to the growth rate of 
the species from the unpredictable disturbances at 
time t is given by )()( txtv , where            

Ψ→⋅ Rv :)(  and 
}0,|{ >=≤≤−≡Ψ constantvv ααα . 

In the system in (10), assume that the 
disturbances are given as 

 )cos(1.0)( ttv −= .          (11) 
To assure that the exploited ecosystem is 
practically stabilizable, we also include a control 
term )(tu  in (10), where RRu →⋅ :)( . The 
control )(tu  corresponds to decreasing the 
harvest rate at time t if its value is positive (if 

)()( txhtu ∗> , harvesting is replaced by 
replenishing) and increasing the harvest rate if its 
value is negative. Thus the uncertain system 
becomes 
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K
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An accumulative yield can be defined as 
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Our goal is to find an optimal control )(tu∗  such 
that at time τ , )()( 21 ττ xx =  and the 
accumulative yield ( )(τacY ) is maximized. 
    The biomasses of the ecosystem (12) with 
initial conditions 039.2)( 0 =x  and without 
disturbances and controls are shown in Fig. 1. 
When the disturbances in (11) are included in the 
system in (12), the biomasses without the controls 
are shown in Fig. 2. 

3. State feedback control [7]  

    Defining the transformation 
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then if 0)( →tz  the state ∗→ xtx )(  
exponentially. Consider the single biomass 
ecological system (12), it becomes 
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From (8) and (9), (15) becomes 
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The uncontrolled nominal system is 
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Consider the Lyapunov function given by 
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so that 
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The stability of system (17) is guaranteed. From 

the Theorem of [7], we have zveKvzm
2

),( =  so 

that zeKvzm α
2

),( ≤ . Furthermore, in view of 

(18), the following equation can be found  
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Finally, the state feedback control law is achieved 
as 
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(21) 
Thus, if 0→ε , the 1fbu  approaches a 

switching (discontinuous) control. 
     

4. Supervisory recurrent fuzzy 
neural network design 

    In the following discussion, we focus on the 
single biomass ecological system model to 
illustrate the effectiveness of the SRFNNC. The 
SRFNNC system for single biomass ecological 
system is shown in Fig. 3. 
    From the ecological system model (16), an 
integrated sliding function is defined as  
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where 1k  and 2k  are positive constants.  
    If the system uncertainties are well known 
and measurable, an ideal controller can be 
obtained from (16) 
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Substituting (23) into (16) gives 
0)()()( 21 =++ tzktzktz &&& .    (24) 

If 1k  and 2k  are chosen to correspond to the 
coefficients of a Hurwitz polynomial, that is a 
polynomial whose roots lie strictly in the open 
left half of the complex plane, then 0)(lim =

∞→
tz

t
. 

Since the system parameters may be unknown or 
perturbed, the ideal controller idu  cannot be 
implemented. To overcome this, a recurrent fuzzy 
neural network (RFNN) controller will be 
designed to approximate this ideal controller. In 
addition, a supervisory controller is designed to 
compensate for the approximation error between 
the RFNN controller and the ideal controller in 



(23). Thus, the block diagram of the supervisory 
fuzzy neural network control (SRFNNC) system 
is shown in Fig. 4 where the inputs of the RFNN 
controller are )(ts  and its derivative. The 
SRFNNC is assumed to take the following form: 

   )()()()( tutututu sprnsrni +==   (25) 

where )(turn  is the RFNN controller and 
)(tusp  is the supervisory controller. 

4.1. Recurrent Fuzzy Neural Network 
Controller 
    Figure 4 shows a four-layer neural network 
comprising the input (the i layer), membership 
(the j layer), rule (the k layer), and output (the o 
layer) layers.  This network is adopted to 
implement the proposed RFNN. The recurrent 
feedback is embedded in the network by adding 
feedback connections in the second layer of the 
fuzzy neural network. Since the recurrent neuron 
has an internal feedback loop, it captures the 
dynamic mapping network. The signal 
propagation and the basic function in each layer 
are introduced as follows: 
Layer 1 - Input layer: For every node i in this 
layer, the net input and the net output are 
represented as 

11 )( ii xNnet =         (26) 
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where 1
ix  represents the ith input to the node of 

layer 1 and N denotes the number of iterations. 
Layer 2 - Membership layer: In this layer, each 
node performs a membership function. The 
Gaussian function is adopted as the membership 
function. For the jth node 
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where 2
ijm  is the mean, 2

ijσ  is the standard 

deviation and 2
ijθ  is the feedback gain of the 

Gaussian function in the jth term of the ith input 
linguistic variable 2

ix  to the node of layer 2, 
respectively, and m is the total number of 
linguistic variables with respect to the input 
nodes. 
Layer 3 - Rule layer: Each node k in this layer is 
denoted by ∏ , which multiplies the incoming 
signal and outputs the product. For the kth rule 
node 
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where 3

jx  represents the jth input to the node of 

layer 3, the weights 3
jkw  between the 

membership layer and the rule layer are assumed 
to be unity. 
Layer 4 - Output layer: The single node o in this 
layer is labeled as Σ , which computes the 
overall output as the summation of all incoming 
signals 
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where the link weight 4
kow  is the output action 

strength of the oth output associated with the kth 
rule, 4

kx  represents the kth input to the node of 

layer 4, and 4
oy  is the output of the recurrent 

fuzzy neural network controller. 
4.2. On-Line Learning Algorithm 

The on-line learning algorithm is a gradient 
descent algorithm in the space of network 
parameters and aims to minimize )()( tsts & . 
Therefore, )()( tsts &  is selected as the error 
function. Taking the first derivative of )(ts  and 
using (16) yields 
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According to the gradient descent method, the 
weights in the output layer are updated by the 
following: 
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where wη  is the learning rate with a positive 

constant and 
K
kw

w
1η

η ≡′ . Since the weights in 



the rule layer are unity, only the approximation 
error term needs to be calculated and propagated 
by the following: 
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The multiplication is done in the membership 
layer and the error term is computed as follows: 
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The update laws of 2
ijm , 2

ijσ  and 2
ijθ  can also 

be obtained by the gradient search algorithm, i.e., 
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where mη , ση  and θη  are the learning rates 
with positive constants.  

The most useful property of a neural network 
is its ability to approximate linear or nonlinear 
mapping through learning. According to the 
universal approximation theorem, there exists an 
optimal RFNN such that   

)(),()( * ttutu rnid ε+= w     (42) 

where T
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*2*2*2*4* θσ=w  is the ideal 
weight vector of the recurrent neural network 
controller, and )(tε  denotes the approximation 
error and is assumed to be bounded by 

Et ≤≤ )(0 ε  where E is a positive constant. The 
error bound is assumed to be a constant during 
the observation; however, it is difficult to 
measure in practical applications. Therefore, a 
bound estimation is developed to observe the 
bound of the approximation error. Define the 

estimation error of the bound 
 )(ˆ)(~ tEEtE −=        (43) 

where )(ˆ tE  is the estimated error bound. The 
supervisory controller is designed to compensate 
for the effect of approximation error and is 
chosen as 
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Substituting (25) into (16) reveals the following: 
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After some straightforward manipulation, the 
error equation governing the system can be 
obtained through (16), (23) and (25) as follows: 
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4.3. Stability analysis of algorithm 
Define a Lyapunov function as 

)(~
2

1)(
2
1))(~),(( 22

2 tEtstEtsV
Eη

+=  (47) 

where Eη  is the learning rate with a positive 
constant. Differentiating (47) with respect to time 
and using (42), (43), (44) and (46) yields 
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If the adaptive law for the supervisory controller 
is chosen as 

   )()(ˆ)(~ tstEtE Eη−=−=
&&     (49) 

then (48) can be rewritten as 
           

)())(ˆ()(ˆ)()())(~),((2 tstEEtsEtsttEtsV −−−= ε&   

 )()()( tsEtst −= ε )()()( tsEtst −≤ ε  

 0)())(( ≤−−= tstE ε .                (50) 

Since ))(~),((2 tEtsV&  is negative semi-definite, 

that is ))(~),((2 tEtsV ))0(~),0(( EsV≤ , it implies 

that )(ts  and )(~ tE  are bounded. Let function 
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integrate )(tΩ  with respect to time, we can then 
obtain 
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Because ))0(~),0((2 EsV  is bounded, and 

))(~),((2 tEtsV  is nonincreasing and bounded, the 
following result can be obtained: 
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Moreover, )(tΩ&  is bounded, so using Barbalat’s 
Lemma [8] yields 0)(lim =Ω

∞→
t

t
. That is, 

0)( →ts  as ∞→t . As a result, the 
supervisory recurrent fuzzy neural network 
control system is asymptotically stable. 
     

5. Simulation results 

 To compare between the proposed 
SRFNNC and the state feedback control [7] for 
the ecological system, the same parameters are 
used for these simulations. The simulation results 
of the single biomass case for these design 
methods are shown in Fig. 5 for the state 
trajectories and control inputs. These simulation 
results demonstrate that the state trajectories are 
controlled to achieve fast response and stable 
steady state using the proposed SRFNNC.  
    From (13), the comparison of accumulative 
yield of the single biomass case for SRFNNC, 
state feedback control and no control is shown in 
Fig. 6. As can be seen, the proposed SRFNNC 
can obtain the best accumulative yield. 
     Ecological systems are very different 
depending on the geographical area, climatic 
conditions, and type of biomass considered.  In 
this paper, a recurrent fuzzy neural network 
approach is proposed to cope with a specific case 
study (such as the relation between pollution and 
environment protection). The disturbance term 
has been taken into consideration, the proposed 
approach can highlight how to face these 
limitations. The control of more species 
ecosystem will be our future research. 
 

6. Conclusion 

This paper considers the control of 
ecological system subject to continual, 
unpredictable, but bounded disturbance due to 
changes in climatic conditions, diseases, and 
migrating species. A SRFNNC is developed and 
is then employed to control the biomasses within 
a small neighborhood of the unique nontrivial 
optimal equilibrium state of the undisturbed 
exploited ecosystem. This model is simplified and 
can be thought as a relation between pollution and 
environment protection, the control goal is to 
maintain the species equilibrium and maximize 
the accumulative yield. The positive harvest input 
stands for the gain in species (or for pollution) 
while the negative harvest input stands free 
captive species (or for environment protection). 
Under the disturbed system, the accumulative 
yield with SRFNNC is better than that obtained 

with the state feedback control and no control. 
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Fig. 1. Biomasses of single biomass ecological 
system (undisturbed and uncontrolled) 
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Fig. 2. Biomasses of single biomass ecological 
system (disturbed and uncontrolled) 
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Fig. 3. Supervisory-recurrent-fuzzy-neural 
network control for ecological system 
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Fig. 4. Network structure of a recurrent fuzzy 
neural network. 
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Fig. 5(a). Biomasses of single biomass ecological 
system  
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Fig. 5(b). Control inputs of single biomass 
ecological system  
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Fig. 6. Accumulative yields of single biomass 
ecological system  


