
Design and Application of Batch Verification Scheme
on Internet E-Voting Systems

Wen-Shen Lai 1 Chu-Hsing Lin 2,* Jen-Chieh Chang 3 Ruei-Hau Hsu 4 Mei-Chun Chou 5

1 Department of Information Management

Chienkuo Technology University

Changhua, Taiwan
WenShenLai@gmail.com

2,3,4,5 Department of Computer Science and Information Engineering

 Tunghai University

Taichung City, Taiwan

{2chlin, 3g942817, 5g96350011}@thu.edu.tw, 4xyz.hsu@msa.hinet.net

Received 1 September 2007; Revised 15 November2007; Accepted 3 January 2008

Abstract. The digital signature has been applied extensively for message authentication and verification in e-
cash, e-bank, e-voting, and e-document. The signing processes of the digital signature scheme and the tradi-
tional signature scheme are the same. But the verification processes of them are different. The traditional sig-
nature scheme verifies signatures one by one, whereas digital signatures can be verified altogether in a batch
signature verification scheme. In general, signing a message does not spend too much time, which is contrary
to the time of the verifying process addressed in this paper. Many batch signature papers have been proposed
in the past. In this paper, we will adopt the architecture of Lin’s method to implement an e-voting system.

Keywords: e-voting, batch verification, digital signature, authentication and verification.

1 Introduction

The digital signature has a wide range of applications in authentication and verification of e-cash, e-bank, e-
document, and e-voting. The signing processes of the traditional and digital signature schemes are similar and
the time cost of them is alike, too. But the verification processes of them can be quite different. One way of
digital signature verification is to process the signature in a batch to accelerate the verification process, which
normally cost much more time than the signing process.

Many signature verification schemes have been published in the literature. In this paper, we will investigate
experimentally the effectiveness of a traditional signature verification scheme and a modified batch signature
verification scheme. The costs of time measured from implementation of both signature verification schemes
corroborate the theoretical conclusion that the batch signature verification process is faster when signatures are
verified in suitable sized batch blocks.

The rest of this paper is organized as follows. In Section 2, we introduce the related background, and in Sec-
tion 3, we implemented an e-voting system with Lin’s method. In Section 4, we analyze experimentally efficien-
cies of traditional and batch signature verifications. Section 5 concludes this paper.

2 Relative background

In this paper, we will focus on comparisons related to traditional and batch signature verifications. In the follow-
ing subsections, we will introduce the method of traditional signature verification, DSA [1] and the method of
batch signature verification based on the DSA – Naccache, which is proposed by Naccache et al [2].

* Correspondence author

Journal of Computers, Vol.19, No.1, April 2008

50

2.1 Digital Signature Algorithm, DSA

DSA is a variant integrated Schnorr [3,4] and ElGamal [5,6] signature algorithm. Parameters in DSA are defined
as follows.

p: a large prime with bit length between 512 to1024 of the multiple of 64.
q: a large prime divisor of p – 1, and the bit length equal to 160.
g: an element in Zp of order q.
x: a secret key belongs to Zq.
y: a public key y=gx mod p.
H(•): a secure hash algorithm,.
m: a message.

DSA’s signing and verifying processes are as follows.

Signing process

Step 1: The signer chooses a random number k belongs to Zq.
Step 2: The signer creates signature according to the following formulas:

qpgr k mod)mod(= . (1)

qxrmHks mod)))(((1 += − . (2)

The signature pair (r, s) of message m will be sent to the verifier.

Verifying process
To verify the received signature pair (r, s), the verifier computes the following formulas:

qsw mod1−= . (3)

qwmHu mod)*)((1 = . (4)

qrwu mod)(2 = . (5)

qpygv uu mod)mod)((21= . (6)

If the equality v = r establishes, then the signature is correct.

2.2 Naccache’s batch signature verification method

Naccache et al. proposed a batch signature verification method based on the DSA algorithm. Parameters of this
method are defined as follows.

p: a large prime.
q: a prime divisor of p – 1
g: an element of a order q in GF(p).
x: a secret key of signer.
y: a public key of signer, where y = gx mod p.
ki: a group of random value less than q, i = 1, 2, …, t.

Its signing and verifying processes are as follows.

Signing process
A signer is ready to sign t messages: m1, m2, …, mt after respectively creating t signature pairs: (r1, s1), (r2,
s2), …, (rt, st). For each message mi, the signature pair (ri, si) is created according to the following formulas:

Lai et al: Design and Application of Batch Verification Scheme on Internet E-Voting Systems

51

pgr ik
i mod= . (7)

qxrmks iiii mod)(1 += − . (8)

Verifying process
 After receiving all signature pairs from the signer, the verifier uses the following formulas to verify them in a
batch.

)(mod1
1

1
1 modmod?

1
pygr

t

i ii
t

i ii qsrqsmt

i i
∑∑≡ =

−
=

−

∏ =
. (9)

3 System implementation

In this section, we will introduce the batch signature verification method proposed by Lin et al. [7,8]. The main
idea of Lin’s method is to design a framework that one can apply any batch signature verification method on it
according to one’s specific need. If necessary, it can replace the existing batch signature verification method by
other methods. In the following subsection, we will present the Lin’s method and implementation of the e-voting
system.

3.1 Testing method of Batch signature entities

Suppose the batch signature x is composed of n batch signature entities (x1,y1), (x2,y2), ..., (xn,yn), where n = 2k–1
and k is a positive integer. Then, we define H as a 2-dimensional verifying k-by-n array as follows:

}1,0{, ,

,1,

,12,11,1

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ji

nkk

n

h
hh

hhh
H

L

MOM

L

. (10)

Where hi,j is a binary value for all indices i and j. Each column in this verifying array is different and its ele-
ments can not be all zero.

In addition, we define GT(x, n) as a normal batch signature verification method that is applied based on any
known batch signature verifying method. Let x be a batch signature and n, the greatest number of this batch
signature, then GT(x, n) is defined as follows:

∏ =
∑≡ =

n

i

qx
i pgy

n

i i

1

mod mod1 . (11)

When the equality is established, GT(x, n) = 1, or GT(x, n) = 0.

Next, we introduce the main idea of Lin’s batch signature verification method.
The batch verifying steps are as follows.

Step 1
Create k entities from the batch signature x.
For example,

}1|),{(, == jijji hsmx . (12)

The entity xi are from some part of batch signature x. Let xi be subset of the batch signature x. According to
the hi,j value, one decides whether to take the entity xi from batch signature x or not, where i = 1, 2, …, k and j =
1, 2, …, n. When hi,j = 1 is established, the j-th signature is taken from x as one of elements in the entity. Oth-
erwise, the j-th signature is not taken. Thus, we finish building of k batch signature entities by above rule.

Step 2
We use the formula, GT(xi, 2k–1) = σi, to do the verifying process in each batch signature entities. If the verifica-
tion is correct, then σi equals to zero or one. When σi=1 occurs, it means that the batch signature has some wrong

Journal of Computers, Vol.19, No.1, April 2008

52

signature. We stop the verifying steps immediately. When all the batch signature entities passed the verifying
process and all σi are zero, no wrong batch signature entities are detected. We conclude that there is no errors
found in the batch signature verifying process.

Example of Batch Signature Verification:
Suppose there are 7 batch signature entities needed to be verified: (x1, y1), (x2, y2), …, and (x7, y7). We define a
verifying array as follows.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1010101
1100110
1111000

.

Then we do the batch signature verifying process of the three batch signature entities as follows:

x1 = {(x4, y4), (x5, y5), (x6, y6), (x7, y7)} .

x2 = {(x2, y2), (x3, y3), (x6, y6), (x7, y7)} .

x3 = {(x1, y1), (x3, y3), (x5, y5), (x7, y7)} .

In the process of verifying the three batch signature entities: GT(x1, 4), GT(x2, 4), GT(x3, 4), it stops when
one of them does not pass the verifying. According to the proposed verifying array, it can be considered as a
deterministic batch signature verification method.

3.2 E-voting system

Our e-voting system applies the essential methods mentioned in the last subsection. We send the voting mes-
sages of users to the e-voting certification authority system. Then, the e-voting certification authority system
starts the batch signature verification process to verify the signed voting messages. Once the e-voting certifica-
tion authority system receives the signed voting messages and detects any invalid signatures, it decides that the
batch signature is faked and the batch signature will be abandoned.

3.3 The e-voting system environment

Fig. 1 shows an e-voting system built on a client-server model. An e-voting CA server can accept messages from
multiple connecting clients at the same time, and can process batch signature verifications in parallel.

Fig. 1. Components of the e-voting system

Lai et al: Design and Application of Batch Verification Scheme on Internet E-Voting Systems

53

2.4 The e-voting system elements

The main framework of the e-voting system is based on a client-server model, including the client and server
system. Users vote by using the client system. After the client system collect the related voting messages, it will
begin signing process on the messages to create the signature and send it to the server system immediately. In
the server system, it always waits to receive any possible batch signature sent from client systems. When the
batch signatures received, the server system will verify them and make sure that they are valid or not. Besides,
because the server system implemented with a multithread mode, it can receive many batch signatures to verify
in parallel. The diagram of the framework of the e-voting system in Fig. 2 shows the relationship of the link,
communications and operations.

Fig. 2. The framework of the e–voting system

2.5 The batch signature signing and verifying procedures of e-voting system

The processes of the client and the server systems will be described in the following.
 In the beginning, the client system starts the voting function and makes sure of network connection with the

server, and then users do the voting action. After confirmation of voting action, the client will sign this voting
message and collect it in the signature vector form. The signature vector can collect any number of signatures
into batch signature and send it to the server system. Fig. 3 shows the main implementation process of the client
system.

Journal of Computers, Vol.19, No.1, April 2008

54

Start voting
function and

network connection

Do voting

 Make sure this
voting result

Collect the result of signing
message into signature

vector

Send to verifying
sever or not

Send batch signature
to the sever

False

True

False

True

Fig. 3. The client of e-voting system implementation process

Secondly, we will introduce the process of the server. At beginning, the server starts the network connection
and waits the client to connect. After a client connects to the server, the server will evoke corresponding thread
to deal with the sent batch signature from corresponding client, and create the verifying array. After passing the
batch signature and verifying array into the Batch Array Verify element, it will verify this batch signature ac-
cording to the verifying array. If one entity of this batch signature can not pass the verifying process, the verify-
ing thread will stop immediately and will not accept this batch signature message. The flow chart to implement
the server is shown in Fig. 4.

Lai et al: Design and Application of Batch Verification Scheme on Internet E-Voting Systems

55

Fig. 4. Implementation of the server of e-voting system

We will show that the e-voting system with user interfaces on the client and server terminals and give a brief

description of them in the following:

User interface on the terminal of the client
 As shown in Fig. 5, after starting the voting function on the client terminal, the voter makes his voting choice
and verifies it. Then the e-voting system verifies the voting message by creating a signature and adds it into
signature vector. Then the voting message can be sent to the server by the user. If the server is off-line, the ter-
minal of the client will show a message indicating that it can not connect the server, and hold this batch signa-
ture until connected; otherwise, if the server is on-line, the client will send batch signature to the server with a
message in the message bar indicating that the sending action is succeeded, and then clear the rest signatures in
the signature vector. Subsequently, the program will again wait for the user to restart voting function for the next
voting process.

Journal of Computers, Vol.19, No.1, April 2008

56

Fig. 5. User interface on the client terminal in e-voting system

User interface on the terminal of the server
The server must start network connection at first, and wait connection from the client. After receiving batch
signature from the client, the server pre-processes this batch signature first and then sends it to the correspond-
ing thread of the client. The thread will take over and do the verification of batch signature. Fig. 6 shows seven
records of batch signatures sent from clients, and verification results on the server’s message bar reported from
corresponding threads. Since the results of the seven verification processes are correct, the sent batch signature
has no errors and can be accepted.

Fig. 6. User operation interface of the server terminal in e-voting system

Lai et al: Design and Application of Batch Verification Scheme on Internet E-Voting Systems

57

4 Analysis and comparison of system performance

In this section, we will show results of the experiment to analyze the time cost of e-voting systems. In this ex-
periment, the traditional signature adopts DSA signature verification method and will be called as the traditional
signature. Lin’s method which applied in the kernel framework with Naccache’s batch signature verification
method will be called as the batch signature.

Frameworks of traditional signature and proposed batch signature are both based on same theories and similar
operations and both use the single signing process. The costs of time of their signing processes are similar as
shown in Fig. 7. Therefore, we will not do further analyses on the signing processes.

Signing time comparison

0

20

40

60

80

100

120

2^9 2^10 2^11 2^12 2^13

Numbers

T
im

e
(S

ec
)

Tradition siganature verificaiton DSA

Batch signature verification with Naccache's method

Fig. 7. The signing time of signatures

Because the traditional signature and the batch signature adopt different verification methods, the time cost

analysis of verification processes is done. According to the experimental results of verification time, it reveals
that when the amount of signature entities is smaller the verification time of the batch signature is less than that
of the traditional signature. When the amount of signatures is larger than some specific value, the cost of time to
verify the signature by using the batch signature method is higher than that by using the traditional signature
verification. Explanation for this conflicting phenomenon comes from the restrictions of system resources. To
verify the same amount of signatures, the traditional signature verification uses many single verifying threads,
whereas the batch signature verification uses a single batch verifying thread. The time-sharing multitasking
property of the system causes the batch signature verification to perform worse than the traditional signature
verification. However, theoretically, the batch signature verification would perform better than the traditional
signature verification with unlimited system resources. In reality, each of the single verifying process in tradi-
tional signature verification requires lesser system resource required by a single batch verifying process. In a
time-sharing multitasking system, the batch signature verification might need longer processing time to complete
the whole verification process of the signatures. Beside, the processing time grows exponentially with the
amount of signatures as shown in Fig. 8.

Journal of Computers, Vol.19, No.1, April 2008

58

Verifying time comparison

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2^9 2^10 2^11 2^12 2^13

Numbers

T
im

e
(S

ec
)

Tradition siganature verificaiton DSA

Batch signature verification with Naccache's method

Fig. 8. The verifying time of signatures

Because of restrictions of accessible system resources, batch signature verification process need longer proc-

essing time to complete the work. To solve this problem, we first find experimentally that when the number of
signatures is 27, the batch signature verification time is shorter than the traditional signature verification time. So
we divide the batch signatures into blocks of 27, and verify the divided blocks of signatures in batches. There-
fore, batch signature verification time would grow linearly with the total number of signatures. For instance,
suppose that batch signatures of 27 require t seconds verifying time, and there has a batch of 210 signatures. With
each sub-block of 27, we divide the batch signature into 23 (210 / 27 = 23) sections. Then, we do the verifying
process of 23 sections of signature blocks one by one. The verifying time is calculated to be 23‧t seconds.

It is worth mentioning that the optimal block value depends on the system resources. After our system is im-
plemented, we find experimentally that block of 27 is optimal for our system. Fig. 9 shows the results of experi-
ments to decide the optimal block value.

In Fig. 10, it shows the effect of the modified batch signature method by dividing signatures into blocks of 27
first. The time cost of modified batch signature method not only is better than that of the traditional signature,
but also grows linearly instead of exponentially. Since the verifying time is increased linearly with the amount of
signatures, its cost of time is less than that of the tradition signature verification.

Lai et al: Design and Application of Batch Verification Scheme on Internet E-Voting Systems

59

Batch signature verifying time of dividing process

0

50

100

150

200

250

2^9 2^10 2^11 2^12 2^13
Number

T
im

e
(S

ec
)

Bach verifying time of 2^5 value blocks
Bach verifying time of 2^6 value blocks
Bach verifying time of 2^7 value blocks
Bach verifying time of 2^8 value blocks
Bach verifying time of 2^9 value blocks

Fig. 9. The verifying time for signatures consists of blocks of different sizes

Verifying time comparison

0

50

100

150

200

250

2^9 2^10 2^11 2^12 2^13

Numbers

T
im

e
(S

ec
)

Tradition siganature verificaiton DSA

Batch signature verification with Naccache's method

Fig. 10. Verifying time by using the traditional DSA method and the modified Naccache’s batch method

Journal of Computers, Vol.19, No.1, April 2008

60

5 Conclusions

In views of the feasibility and efficiency of Lin’s method of batch signature verification, we choose to imple-
ment it in our framework of an e-voting on-line system. In this paper, we not only introduce the Lin’s method,
but also make a brief description and introduction of the system environment, entity function, and system proc-
ess in an on-line e-voting system. Then, we demonstrate experimental data, identify the problem to implement
the batch signature verification in our system, provide a modified batch signature scheme, and evaluate the ef-
fectiveness of the modified system. From the experimental results, we conclude that the modified batch signa-
ture verification scheme can be used to implement an effective on-line e-voting system.

Acknowledgement

This system implementation was supported in part by National Science Council under grants, Taiwan Informa-
tion Security Center NSC94-2213-E-270-009, NSC-95-2218-E-001-001, NSC-95-2218-E-011-015, iCAST
NSC96-3114-P -001-002-Y and NSC95-2221-E-029-020-MY3.

References

[1] Proposed Federal Information Processing Standard for Digital Signature Standard (DSS), Federal Register,
Vol.56, No.169, pp.42980-42982, 1991.

[2] D. Naccache, D. M’Raihi,, D. Rapheali,, S. Vandenay, “Can DSA be Improved: Complexity Trade-offs with
The Digital Signature Standard,” Proceedings of Advances in Cryptology – EUROCRYPT’94, pp. 77-85,
1995.

[3] C. P. Schnorr, “Efficient Signature Generation for Smart Cards,” Proceedings of Advances in Cryptology –
CRYPTO’89, Springer Verlag, pp. 239-252, 1990.

[4] C. P. Schnorr, “Efficient Signature Generation for Smart Cards,” Journal of Cryptology, Vol. 4, No. 3, pp.
161-174, 1991.

[5] T. ElGamal, “A Public-key Cryptosystem and a Signature Scheme based on Discrete Logarithms,” Proceed-
ings of Advances in Cryptology – CRYPTO’84, Springer Verlag, pp.10, 1985.

[6] T. ElGamal, “A Public-key Cryptosystem and a Signature Scheme based on Discrete Logarithms,” IEEE
Transactions on Information Theory, Vol.31, No. 4, pp. 469-472, 1985.

[7] C. H. Lin,, Y. I. Fung,, J. H. Hsu, “Batch Verification with Complete Detection of Bad Signatures,” Private
Communication.

[8] C. H. Lin, R. H. Hsu , L. Harn, “Improved DSA Variant for Batch Verification,” Applied Mathematics and
Computation, Vol. 169, No.1, pp. 75-81, 2005.

