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Abstract. Geometric measure is much more effective than others for melody matching, but is not fast enough 
to be practically used for on-line systems. In this paper, we propose an improved version of geometric music 
matching, in which the similarity measure for two melodies is defined as the area of the minimal region be-
tween them with the allowance of shifting one of the melodies in the horizontal and/or vertical directions. 
The matching efficiency is improved in two aspects. First, instead of absolute pitch, the pitch interval is used 
for matching to avoid the vertical shifting required in the search of the best matching. Second, the search time 
is further speeded up by using a branch-and-prune mechanism. The experimental results show that the time 
efficiency of the proposed geometric pattern matching is much more satisfactory than the other existing geo-
metric matching methods for on-line music retrieval systems. 

Keywords: content-based music retrieval, geometric matching, musical similarity, pitch interval, melody 
matching. 

1   Introduction 

With the rapid growth of digital audio data, content-based music retrieval has become a popular research topic 
in the past few years. Traditional music searching techniques done by text require some information such as the 
name of the song or the name of the composer. In many cases, the user might not remember such information, 
even though they might be able to hum or sing a fragment of the song. Thus, query by humming or singing 
would be more reasonable. Many different music retrieval systems have been created for academic research or 
business in recent years. Some of these systems allow users to search for music by inputting a fragment of the 
query music by singing or humming.  

The algorithm for measuring music similarity in music matching is all important. Some critical factors must 
be considered including the quality of the query, feature selection, and the music data format. The first factor to 
be considered is that the input query might have various errors caused by user’s imperfect memory, user’s sing-
ing skill, or the quality of the pitch-tracking program [1]. A music information retrieval system should be able to 
tolerate such errors introduced by the users. To deal with this issue, an appropriate metric for musical similarity 
measure must be developed.  

The second factor is feature selection. Music is made up of musical notes, each of which has many attributes 
such as pitch, duration, loudness, timbre, and so on. Byrd and Crawford [2] indicated that pitch alone is not 
sufficient for searching in a large database. L. A. Smith et al. [3] concluded that pitch and pitch duration are the 
most important attributes, and their findings will be followed in this research. 

The third factor is the data format of the music. Symbolic music representation and audio wave format [4] are 
most commonly used in practice. Symbolic music representation specifies many musical attributes of music 
notes including pitch, duration, and loudness. The most commonly used symbolic music representation is the 
MIDI file. The audio wave format specifies the amplitude of sound over a time series. In this research, we adopt 
the symbolic music representation, which clearly specifies the information regarding pitch and duration. 
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Techniques based on string matching have been extensively explored in the literature, including edit distance 
[5] and n-gram [6,7,8]. These techniques can provide approximate matching. However, the features utilized in 
these techniques are all pitch sequences which have the drawback of retrieving too many irrelevant music docu-
ments with similar pitch but with a wide range of rhythm information.  

Roger Jang et al. [9] proposed a “Dynamic Time-Warping” technique to search similar music documents in 
their collection of popular Chinese songs for a given query. In this technique, pitch-duration information is used 
as feature and dynamic programming is employed to search for the songs best matching the query. Their system 
tolerates different keys and variant speed between the query and matching songs. The main drawback of the 
time-warping method is its low efficiency due to the sampling of the audio query in a small time period. In order 
to reduce the search time, their system performed the search in multiple servers in parallel, or allows the users to 
choose a simpler search mechanism that matches the query against only the beginning of the reference song. 
However, this method might miss some possible matches.  

Wiering et al. [10] proposed the representation of music notation as a weighted dot pattern, defined the Earth 
Mover’s Distance for distance measure, and then used linear programming to compute the best match. The main 
drawback of this system is its high time-consumption. 

Clifford et al. [11] considered the music notes in a melody as a set of points in a two-dimensional Euclidean 
space, and found the maximal partial subset match of two point sets by hashing two point sets into a table of size 
O(n) and then applying binary wildcard matching to find the offset of the best match. However, this approach is 
an approximate geometric matching for possible collisions and its discrete point representation has the drawback 
of low tolerance to slight displacement of points.  

Zhu et al. [12] considered each music note as a horizontal line segment. The slope of each line joining the 
starting point of a local minimum and the starting point of its nearest local maximum was evaluated. The 
hummed melody was matched against the reference melody in the horizontal direction according to the slope 
similarity. In each horizontal alignment, the hummed melody was moved in the vertical direction to a position so 
that the two compared melodies have the same mean pitch, and then the area between two melody contours were 
computed and defined as their dissimilarity. This approach has two drawbacks: it is very sensitive to noise and it 
tends to cause errors due to the alignment of two melodies in vertical direction according to their mean pitch.  

D. Ó. Maidín [13] first used the geometric matching technique for music retrieval by considering both the 
pitch and rhythm information and representing music notes in a two-dimensional pitch-time space. Each note is 
represented as a horizontal line segment so that a sequence of notes can be described as a rectangular contour. 
This technique has two drawbacks. First, its representation of a note as a multiple of eighth notes causes some 
computational error. The second drawback is its assumption that two compared songs have the same tempo, 
which disables matching invariant to tempo. 

Francu and Nevill-Manning [1] followed the geometric matching technique for computing the distance be-
tween a query and a reference. They transposed the key and rescaled the tempo of the query to search for the 
minimal average difference of the pitches of two melodies. In order to achieve this task, the contour is sampled 
and quantized into a sequence of notes of equal duration (20 milliseconds). Fixing the query in the horizontal 
direction, the median of the differences in pitch between the two melodies is determined, and the query is then 
transposed by this median difference so that the area is minimized in the horizontal direction. The query is then 
shifted note by note in the horizontal direction to align with the reference, and the minimal area in each direction 
can then be evaluated in O(n) time. The distance between the two melodies is then defined as the minimal of 
these minimal areas and needs O(mn) time to evaluate, where m and n are the numbers of the (sampled) notes in 
the query and the reference, respectively. In order to allow different tempos between query and reference, they 
suggested rescaling the query in different tempos with factors varying between 0.5 and 2 in coarse steps of 0.1 
to find the best match. Generally speaking, most notes last hundreds of milliseconds, and thus quantization of a 
contour into a sequence of durations of 20 milliseconds increases the time cost for matching.  

Aloupis et al. [14] generalized the geometric matching problem by releasing the limit of the note duration and 
by providing proof for the time-complexity. Given a fixed reference melody, the query melody is shifted verti-
cally and horizontally in order to find the minimal area between them. They indicated that the minimal area must 
occur when two vertical edges coincide, and they proposed a binary tree search for the best vertical shifting step 
to further reduce the search time in the vertical direction. The overall search time then becomes O(mn log n).  

Lubiw and Tanur [15] also used geometric matching to deal with the music retrieval problem on polyphonic 
music. The time complexity of their method is the same as that of Aloupis et al. with an additional large hidden 
constant coefficient. This coefficient necessary for tackling polyphonic music geometric matching is much 
greater than the size of a query. However, their method showed how to detect all occurrences of a query only in 
a single polyphonic reference melody rather than in a large music collection. Although their search result is 
satisfactory, the time efficiency is not satisfactory due to the large hidden coefficient.  

Geometric matching based on search of minimal area between two melodies originally proposed by D. Ó. 
Maidín [13] and improved by Aloupis et al. [14] seems to be attractive due to its effectiveness. However, D. Ó. 
Maidín only juxtaposed two melodies of equal duration and transposed one melody in the vertical direction to 
evaluate the minimum area between them. Aloupis et al. generalized this approach and theoretically analyzed its 



Lin et al: Geometric Measures of Distance between Two Pitch Contour Sequences 
 

57 

time complexity. Although its time complexity looks admissible due to the usage of a binary tree that supports 
the search in the vertical direction, the time cost in practice is not low due to the necessity of tree maintenance. 
This motivated us to improve the time efficiency of the naïve geometric matching method proposed by D. Ó. 
Maidín rather than proposed by Aloupis et al.. We improved the matching efficiency in two aspects: Using pitch 
interval instead of absolute pitch for matching to avoid the vertical shifting required in the search of the best 
matching, and employing a branch-and-prune mechanism to speed up the search in the horizontal direction. 

 The rest of this paper is organized as follows. Section 2 provides a detailed description of our proposed 
method. Section 3 shows the experimental results of the proposed method and compares them with some other 
methods. Finally, in Section 4 we draw our conclusions and provide suggestions for future work. 

2   Geometrical Matching 

The aim of a music retrieval system is to match a short query melody against a larger reference melody and 
establish and rank the relevant references according to the similarity measurement. In Section 2.1, we briefly 
introduce the geometric matching technique proposed by Aloupis et al. [14]. We then describe how to compute 
the pitch interval area between a query and a reference in Section 2.2, and in Section 2.3, we show how to em-
ploy a branch-and-prune mechanism to enhance the matching speed for both the naïve geometric matching and 
our pitch interval geometric matching. 

2.1   Pitch-Duration Geometric Matching 

Aloupis et al. represented a melody as a sequence of music notes. Each note was described by a horizontal line 
segment, of which the height and the width denote the pitch value and the duration of the note, respectively. 
Such a sequence is called a pitch-duration sequence. For any two adjacent notes in different pitches, we connect 
the end point of the former and the starting point of the latter by a vertical edge. In such a way, a melody can be 
expressed as an orthogonal chain. Fig. 1(a) and Fig. 1(b) show a fragment of Mozart’s Variations on 'Ah, vous 
dirai–je, maman', K. 265 and its corresponding orthogonal chain, respectively.  

 

(a) 

 

(b) 

Fig. 1. (a). A fragment of Mozart’s Variations on 'Ah, vous dirai–je, maman', K. 265, (b). Orthogonal chain representation of (a) 

For a query Q = (q1, q2, …, qm) and a reference R = (r1, r2, …, rn), represented by sequences of notes, where qi 
and rj are the ith note of the query and the jth note of the reference, respectively. Let P(q) denote the pitch value 
of a note q for later use. Aloupis et al. [14] shifted the query horizontally and vertically to find the minimal area 
between the query and the reference, and defined this minimal area as their distance. The region between the 
reference and a shifted version of the query is partitioned into rectangles Cα, α = 1, 2, …, k, by the extended 
vertical edges of both melodies, as shown in Fig. 2. Each rectangle is determined by two vertical lines and two 
horizontal edges. The height of each rectangle is the pitch difference of two notes in the two melodies. Therefore, 
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Considering the horizontal movement of the query, Aloupis et al. indicated that the minimal area must occur 
in a case when two vertical edges coincide, one from the query and the other from the reference. There are at 
most O(m n) (since there might be a case with more than one coincident pairs) such cases, and thus the query 
have to be shifted at most m n times and evaluate the area between the reference and each of the shifted versions 
of the query. Thus the minimal area between two melodies can be computed in O(m n2) time. They also proposed 
a binary tree to further speed up the search of the best vertical position and ease area reevaluation at each posi-
tion. The computational time is O(m n(m + log n)) rather than O(m n log n) as they claimed. To allow the efficient 
reevaluation of the area after a horizontal shift, the shift step must be the minimum of all possible steps that 
cause another pair of vertical lines coincide. Determination of such a step requires at least Θ(m) time, the search 
of the best vertical position requires O(log n) time, and tree modification (deletion and insertion) and reevalu-
ation together require O(log n) time. Thus the total time required is O(m n(m + log n)). The computational time is 
O(mn(m + log m)) = O(m2n), for k = O(m) on the average. 

 

Fig. 2. The region between two melodies is partitioned into 7 rectangles 

2.2   Pitch Interval-Duration Geometric Matching 

Due to the fact that two aurally similar melodies have similar outlines, which are key-invariant, we adopt a pitch 
interval-duration sequence (called PID sequence), instead of a pitch-duration sequence, to characterizes and 
represent a melody. The pitch interval of a note is the difference of the pitch of the note from that of the preced-
ing one. With the representation of PID sequence there is no need to shift the query in the vertical direction 
during the search of the minimal area, and so that the computational time can be dramatically reduced. Before 
transferring a given melody into a pitch interval sequence, adjacent notes of the same pitch in the melody are 
merged into one. In this paper, we measure similarity between two melodies based on their sequences of pitch 
intervals with duration, and call the matching mechanism based on this measurement the pitch interval geometric 
matching. 

Each note in a sequence of pitch intervals can be also described by a horizontal edge in a two-dimensional 
space, of which the vertical axis corresponds to pitch interval value and the horizontal axis corresponds to time. 
For a query Q and a reference R, let PI_Q[i] = P[qi]－P[qi–1] denote the ith pitch interval, i = 2, 3, …, m, and 
especially let PI_Q[1] = 0. If we represent the ith pitch interval of Q as < start_Q[i], PI_Q[i] >, where start_Q[i] 
is the beginning time of the ith note qi, then the PID sequence of Q can be represented as (< start_Q[i], PI_Q[i] 
>)i = 1, 2, …, m. With the assumption that the ending time of one note is the same as the beginning time of the next 
note, there is no need to record the ending time of any note, except the last note, for which we just add a dummy 
note in the end of the sequence to record the ending time of the last note. The pitch interval representation for 
the reference R is defined in the same fashion, and the jth pitch interval of R is represented by < start_R[j], 
PI_R[j] >, and the PID sequence of R is represented by (< start_R[j], PI_R[j] >)j = 1, 2, …, n. Note that the start time 
of the first note in each of the melodies is set to zero; that is, start_Q[1] = start_R[1] = 0.  

With the use of the pitch interval instead of absolute pitch, it is no need to shift the query in the vertical direc-
tion. Without loss of generality, we assume the reference sequence is fixed. So we need only to shift the query 
sequence horizontally to find out the best alignment (minimal area). As depicted in Fig. 3, the query and the 
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reference are modeled as monotonic pitch interval rectilinear functions of time. Like the method proposed by 
Aloupis et al., the region between two melodies is partitioned into rectangles Cα, α = 1, 2, …, k, each defined by 
two vertical edges and two horizontal segments, where each vertical edge occurs at an end point of a note and 
each horizontal segment corresponds to a pitch interval. We evaluate the pitch interval area as A = ∑α=1

k |Cα| = 

∑α=1
k wα | PI_Q[iα]–PI_R[jα] | , where  and |αw  PI_Q[iα]–PI_R[jα] | are the width and the height of the αth rectan-

gle Cα formed by pitch intervals PI_Q[iα] and PI_R[jα]. For each shift of the query in the horizontal direction, 
we set |Cα| = 0 if iα = 1 or jα = 1, since the region formed by PI_Q[1] or PI_R[1] is invalid and its area should be 
ignored. Each pitch interval area is evaluated in Usually k = O(m+n), but again k = O(m) on the average. 

 

Fig. 3. The PID sequence of query Q is moved from left to right to search for the minimal pitch interval area 

Since the minimal area between two melodies must occur at one of the cases when two vertical edges of the 
two melodies coincide and there might be some duplication over such cases (i.e. more than two coinciding edge 
pairs occur at the same time), there are at most m n possible horizontal positions needed to be evaluated. There-
fore, there are at most O(m n) different regions to be evaluated for area, and thus it takes O(m2n) time to find the 
minimal area. Rigorously speaking, the running times for our algorithm and the naïve geometric matching algo-
rithm proposed by D. Ó. Maidín are 4m2n+O(mn) and 10.5m2n+O(mn), respectively. Both algorithms are in 
O(m2n) but with different leading constants, 4 and 10.5. D. Ó. Maidín’s algorithm requires a larger leading con-
stant due to the necessity for the query to shift in the vertical direction to find the best match. 

Due to the fact that the minimal area between two melodies must occur at a case when two vertical edges of 
the two melodies coincide, the minimal area can be determined in an efficient way described in the following. 
The query is shifted from left to right, starting from the beginning of the reference. Each shift is such that two 
vertical edges respectively from the two melodies coincide. As described in the following algorithm Pitch-
Interval-Area for evaluating the minimal area, to determine the step size of next shift we evaluate the distance 
from the start time of each note qi to the nearest of the following start times of the reference notes, denoted by 
step[i], for i = 1, 2, …, m, and store them into a priority queue (a min heap) H. The step size of next shift, shift-
step, is the minimal value in the heap H, i.e., the minimum of step[i]’s. Moreover, the index array after[i] = j  
represents the jth note of reference PID sequence nearest to the ith note of the query PID sequence. The three 
sub-steps in the while-loop respectively update the area, evaluate shifted-step, and update the starting points of 
all notes in the query PID. In such a way all cases that two vertical edges respectively from the two melodies 
coincide must be met, and thus the minimal area can be found. 

Algorithm Pitch-Interval-Area 

1. Input: a query PID sequence Q = <start_Q[i], PI_Q[i]>i = 1, 2, …, m and 
a reference PID sequence R = <start_R[j], PI_R[j]>j = 1, 2, …, n

   Output: MinArea 
2. //Initialize the shifted query Q’ = <start_Q’[i], PI_Q[i]>i = 1, 2, …, m 

and after[i] as the index of the reference note whose start time is 
behind and closest to the start time of the query note qi
MinArea  ∞ 
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istep
≤≤

 
For i  1 to m do 

     start_Q’[i]  start_Q[i]  
PI_Q’[i]  PI_Q[i] 

 after[i]  ]}[][|][{argmin
1

istart_Q'jstart_Rjstart_R >
≤≤ nj

 step[i]  start_R[after[i]] － start_Q’[i] 
3. While ( after[m] ≦ n ) do  

 A ∑
α=1
k wα | PI_Q'[iα]–PI_R[jα] | 

 If A < MinArea then MinArea  A 
 shift-step  ][min

mi1

For i  1 to m do 
      start_Q’[i]  start_Q’[i] + shift-step  

If step[i] = shift-step  
then after[i]  after[i] + 1 

step[i]  start_R[after[i]] － start_Q’[i] 
else step[i]  step[i] － shift-step 

As shown in Fig. 4(a), the PID sequences of a query and a reference:  (< start_Q[i], PI_Q[i] >)i = 1, 2, …, 5 = 
( <0, 0>, <1, +4>, <4, +1>, <6, –2>, <8, 0> ) and (< start_R[j], PI_ R[j] >)j = 1, 2, …, 6 = ( <0, 0>, <2, +5>, <5, +1>, 
<7, –1>, <9, 2>, <11, 0> ), respectively, with the reference (< start_R[j], PI_ R[j] >) fixed, the query (< 
start_Q[i], PI_Q[i] >) is shifted from left to right. For the first note of PID sequence of the query, the nearest 
note of reference is 2; that is, after[1] = 2, from which we obtain step[1] = start_R[2] – start_Q[1] = 2. In the 
same fashion, we can obtain the following: after[2] = 2, after[3] = 3, after[4] = 4, after[5]=5, and step[2] = 1, 
step[3] = 1, step[4] = 1, step[5] = 1.  

The while-loop evaluates the area and shift-step, and then shifts the query. The region between the two melo-
dies is partitioned into 7 rectangles. As depicted in Fig. 4(a), the area of first and second rectangles cannot be 
taken account since the region formed by PI_Q[1] or PI_R[1] is invalid and its area should be ignored. Thus the 
area of the region between the two melodies is equal to 10, and the shift-step is equal to 1. After a shift of step 
size 1, the shifted query becomes (< start_Q’[i], PI_Q’[i] >)i = 1, 2, …, 5 = ( <1, 0>, <2, +4>, <5, +1>, <7, –2>, <9, 
0> ), as depicted in Fig. 4(b). Since step[i] = shift-step for i = 2, 3, 4, and 5, the four corresponding rectangles 
are to be vanished, and value of each after[i] is incremented by 1 so that after[2] = 3, after[3] = 4, after[4] = 5, 
after[5] = 6. The value after[1] = 2 remains unchanged. The area between the two melodies then becomes 5 after 
this shift. The procedure is repeated until after[m] > n. Through the procedure the minimal area MiniArea can be 
found. 

 

(a) (b) 

Fig. 4. (a). The initial state of two PID sequences with step[1] = 2, step[2] = step[3] = step[4] = step[5] = 1, shift-step = 1, 
(b). The query in (a) is shifted by 1 unit 

2.3   Branch and Prune 

In the geometric matching process, the query is shifted and aligned against the fixed reference from left (begin-
ning) to right (end). The pitch interval area A(δ) is a continuous function of the shifting step δ. Fig. 5(c) shows 
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the sketch of A(δ) for the query melody given in Fig. 5(a) against the reference melody given in Fig. 5(b). The 
horizontal and the vertical axes respectively correspond to the shifting step δ and the pitch interval area A(δ). 
The small triangular points in Fig. 5(c) indicate the shifting step values causing the start time of the first note of 
the query and the start time of some note in the reference to be aligned; that is, start_Q’[1] = start_Q[1] + δ = 
start_R[j] for some j. We call the shifting steps indicated by these vertical lines the steps of coarse alignment. 
Observing from our preliminary experiments, around the global minimum there is at least a point of coarse 
alignment whose corresponding area is rather small. From the sketch of A(δ) shown in Fig. 5(c), it can be seen 
that the global minimum of A(δ) occurs at δ = δ* = 1930 MIDI ticks; while the coarse alignment at δ = δ0 = 
1920 MIDI ticks nearby has a small value of area A(δ0). This observation motivated us to further improve the 
matching by employing a branch-and-prune mechanism. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. (a). Query of a folk song, (b). A reference to be matched, (c). The sketch of A(δ) for the query against the reference 

First, we consider only the cases that the start time of the first note of the shifted version of the query, 
start_Q’[i], is aligned against the start time of a note, start_R[j], in the reference, and for each case causing a 
small area (in this paper we consider the cases causing top 5% smallest areas) we then shift the query within 
only the interval around the point of the alignment to search for a minimal area.  

Initially, the shifted version of the query, start_Q’[i], is set to the input query start_Q[i] in step 2, and then in 
each subsequent jth step of coarse alignment, start_Q’[i] is modified by adding the total shifting step start_R[j] – 
start_Q[1] for each i, and the area A[j] is reevaluated in step 3. There are at most n cases in which start_Q’[1] is 
aligned against start_R[j] and for each position the area can be evaluated in O(m) time, thus the time complexity 
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istep
≤

at this stage is at most O(m n). In the following stage, search for the approximate area around each of the posi-
tions causing top 5% of the smallest areas. For instance, for a selected position start_R[j] we align start_Q’[1] 
around the interval [start_R[j–1], start_R[j+1]]. Since start_Q’[1] is aligned against the reference over only 
about 10% (2×5%) of the PID of the reference, the second stage costs about 10% of the time required by the 
method without the aid of the branch-and-prune mechanism. Although the search yields a local minimum, most 
of these local minima is either close to the global one or equals the global one. This is due to the fact that for 
most of the best matches the first note of the query is exactly aligned with a note in the reference. Therefore, 
approximation yielded by the branch-and-prune mechanism would not evidently degrade the matching accuracy. 
This improved algorithm B&P Pitch Interval Area is given in the following. 

Algorithm B&P-Pitch-Interval-Area 
 and 1. Input: the query PID sequence Q = <start_Q([i], PI_Q[i]>i , 2, …, m= 1

the reference PID sequence R = <start_R[j], PI_R[j]>j = 1, 2, …, n
   Output: MinArea 
2. //Initialize the shifted query version Q’ 
 For i  1 to m do 

start_Q’[i]  start_Q[i] 
PI_Q’[i]  PI_Q[i] 

3. //Compute the area obtained from each of the alignment that the first 
note of the query matched with a note of the reference 
For j  1 to n－m+1 do 

For i  1 to m do 
start_Q’[i]  start_Q[i] + (start_R[j]－ start_Q[1]) 

A[j]  ∑
α=
k wα | PI_Q'[iα]–PI_R[jα] | 1

4. //Find positions of query causing top 5% minimal areas 
   Set {1≦j≦n－m+1|A[j] is in top 5% minimal areas}  
5. //Evaluate minimal area around each of the top 5% minimal areas 
   MinArea  ∞ 

For each j in Set 
For i  1 to m do 

start_Q’[i]  start_Q[i] + (start_R[j–1]－ start_Q[1]) 
after[i]  ]}[][|][{argmin

1
istart_Q'jstart_Rjstart_R >

≤≤ nj

step[i]  start_R[after[i]] － start_Q’[i] 
While ((after[1] ≦ start_R[j+2] ) and (after[m] ≦ n)) 

// Compute the area A between the two melodies Q’ and R 
A ∑

α=
k wα | PI_Q'[iα]–PI_R[jα] | 1

           If A < MinArea then MinArea  A 
// Shift the query sequence 
shift-step  ][min

mi1 ≤

For i  1 to m do 
             start_Q’[i]  start_Q’[i  + shift-step ]

If step[i] = shift-step then  
after[i]  after[i] + 1 

                step[i]  start_R[after[i]] － start_Q’[i] 
            else step[i]  step[i] － shift-step 

Partial shifting steps of coarse alignments for the example shown in Fig. 5 are listed in Table 1. The top 5% 
minimal areas yielding by these coarse alignments occur at j = 14 and 39; while the global minimal area occurs 
around j = 14. In the while-loop of step 5 of the above algorithm, an approximate minimal area is searched over 
the interval [δ(j–1), δ(j+1)]. For j = 14, the searched interval is [δ(13), δ(15)]= [1680, 2040]. 

Table 1. Shifting step δ and corresponding area A(δ) for each step of coarse alignment 

 j 1 2 3 4 5 … 12 13 14 15 16 … 37 38 39

δ 0 120 240 480 600 … 1560 1680 1920 2040 2160 … 5400 5520 5760

A(δ) 1700 3430 3500 2940 2990 … 3830 4400 530 3120 4050 … 4320 4660 1450
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3   Experimental Results 

Due to the fact that people perceive the outer voice better than the inner voice in polyphonic music [16], we 
extract the highest notes of polyphonic music as features. Our music retrieval system first employs the pitch 
contour extraction algorithm to transfer the multi-tracks polyphonic music to multi-track monophonic music for 
both query and reference. 

We used a corpus of 807 classical music songs obtained from the internet, totally consisting of 3,065,420 mu-
sic notes. 50 songs were randomly chosen, the most well-known theme [17] from each is extracted to form a 
query containing 10 to 36 music notes. As a result, a query set of 50 queries is formed. In order to simulate some 
possible errors introduced by the users, we generated a variant version of the original query set by randomly 
changing the pitches of some notes within an octave, deleting some notes, or inserting some notes in each query. 
The number of alterations in each query is between 2 and 8. 

To evaluate the performance of the proposed methods, we implemented and compared the naïve geometric 
matching algorithm proposed by D. Ó. Maidín with and without the branch-and-prune mechanism, called Pitch-
GeoMatching and B&P-Pitch-GeoMatching, respectively, and the proposed geometric matching algorithms 
with and without the branch-and-prune mechanism, called Pitch-Interval-GeoMatching and B&P-Pitch-
Interval-GeoMatching, respectively. The test results from the four versions of matching algorithms over the 
query set and its variant are shown and compared in Fig. 6 and Fig. 7, respectively. As discussed in the previous 
section, the time complexity of the four algorithms are all O(m2n), but with different leading constants. Table 2 
shows the average search time required by each of the four algorithms tested the two query sets. The ratio of the 
average time costs required by the four matching algorithms is about 100: 38: 33: 18. Our Pitch-Interval-
GeoMatching indeed improves the time efficiency of D. Ó. Maidín’s Pitch-GeoMatching by about 3 times.  
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Fig. 6. Time cost required by the four algorithms tested on the original query set 
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Fig. 7. Time cost required by the four algorithms tested on the variant query set 
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Table 2. Comparison of average time costs (in seconds) required by the four algorithms on two query sets 

Algorithms Pitch- B&P-Pitch- Pitch-Interval- B&P-Pitch-Interval-
Query set GeoMatching GeoMatching GeoMatching GeoMatching

original 108.54 42.57 35.62 19.54

variant 110.91 41.76 37.76 19.82

average 109.73 42.16 36.69 19.68  
 
More experiments were conducted to test effectiveness of the four algorithms. The retrieval rank for the query 

is used to evaluate the effectiveness of a matching algorithm, which is the rank of the relevant references in the 
retrieved list produced by the algorithm. Tested on the original query set, the retrieval ranks by each of the four 
algorithms are all 1. This indicates that our approach have the same effectiveness as the naïve geometric match-
ing algorithm proposed by D. Ó. Maidín on the original query set. 

Tested on the variant query set, the average retrieval ranks from the pitch matching algorithms with/without 
branch-and-prune are both 1.06; while the average retrieval ranks for the proposed algorithms with/without 
branch-and-prune are 1.48 and 1.52. The retrieval ranks of our method is slightly lower because alteration of a 
note in a query affects two pitch intervals in its pitch interval sequence, but only affects one pitch in its pitch 
sequence. However, the sacrifice of a little accuracy to improve time efficiency is worth. The retrieval rates on 
top-n lists for the four algorithms are illustrated in Fig. 8. The retrieval rates on top-3 retrieval for the Pitch-
GeoMatching and B&P-Pitch-GeoMatching both achieve 100%; while the retrieval rates for the Pitch-
Interval-GeoMatching and B&P-Pitch-Interval-GeoMatching achieve 100% on top-7 and top-8 lists, respec-
tively. 
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Fig. 8. Retrieval rates on top-n lists for pitch/pitch-interval geometric matching algorithms  
with/without branch-and prune mechanism tested on the variant query set 
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Fig. 9. Retrieval rates on top-n lists for LCS and our proposed methods 
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In order to demonstrate the effectiveness of geometric matching, we compare our method with the commonly 
used non-geometric matching, the Longest Common Substring (LCS) [18] method. As shown in Fig. 9, the 
retrieval rates of the four algorithms all achieve 100%; while that of the LCS method achieves 16% only. Notice 
that the LCS method is only about 2 times faster than the B&P-Pitch-Interval-GeoMatching, although the for-
mer and the latter have different orders of time complexity, O(mn) and O(m2n), respectively. 

4   Conclusions and Future Work 

Although geometric matching methods are more effective than others, they are quite time-consuming. We pre-
sented an improved version of the geometric matching method proposed by D. Ó. Maidín [13] so that its time 
efficiency is satisfactory for on-line applications. The improvement is achieved in two aspects: (1). matching the 
pitch interval instead of the pitch sequence to achieve key invariance, and (2). providing a branch-and-prune 
mechanism to quickly discard most of the unlikely positions of the query. Our experimental results show that the 
time efficiency was indeed improved with a slight drop in accuracy. 

    However, the proposed matching algorithms do not deal with the scaling problem of duration or rhythm, 
which will be the subject of our future research. Furthermore, the issue of polyphonic music matching is another 
problem in the field of music information retrieval, which will also be included in our future research. 
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