
An Efficient Data Reporting Scheme in Large Wireless Sensor
Networks with Mobile Sinks

Shiow-Fen Hwang, Kun-Hsien Lu, Yun-Shen Wang, Yi-Yu Su, Chyi-Ren Dow
Department of Information Engineering and Computer Science

Feng Chia University, Taichung, Taiwan 40724, R.O.C.
Email: {sfhwang, p9217988, m9433201, p9112089, crdow@fcu.edu.tw}

Abstract-Efficient data reporting is an important
issue for wireless sensor networks (WSNs) with
mobile sinks. However, high sink update cost
causes sensor nodes to consume much energy,
especially when sinks move rapidly. In this paper,
we propose an efficient data reporting scheme in
large WSNs with mobile sinks. In our network
environment, the sensor field is divided into
several grids, and forms a hierarchical sensor
network adaptively, according to network sizes.
We set location servers to provide the location
information of the mobile sink. Only those sensor
nodes in a small area where the mobile sink is
located need to construct weight function to find
an efficient path to the mobile sink. Therefore,
energy consumption caused by location update
cost from the mobile sink is significantly reduced.
Meanwhile, we dynamically adjust the update
scope according to the location of the mobile sink,
to further reduce the energy consumption.
Simulation results show that our proposed method
is scalable, and outperforms TNT and our previous
work[9], in terms of average energy consumption
per round and successful rate.

Keywords: wireless sensor networks, data
reporting, hierarchical, mobile sink, grid.

1. Introduction

A wireless sensor network (WSN) is composed
of one or several sinks (base stations), and a large
number of sensors. Sensor nodes have limited
capacities, such as power supply, computing
ability, and memory storage,…, etc., and are
responsible for sensing and forwarding the specific
data to the sink[1]. Therefore, WSNs are relegated
as application or task oriented networks.

Data gathering is a basic and important
operation in WSNs. It can be categorized into three
methods including time-driven, event-driven, and
query-driven [2]. In these methods, sensor nodes

near to the sink usually consume more energy to
deliver data than sensor nodes far from the sink
and the network lifetime suffers from the hotspot
problem when the sink is stationary. Recently, a
number of proposed studies [3-7] showed that
mobile sinks can provide lots of advantages over
static sinks. For example, a mobile sink can
redirect traffic flows and balance the energy
consumption among sensor nodes. However, in
such scenario that the mobile sink moves
arbitrarily in the sensor field, how to design an
efficient data reporting scheme for sensor nodes is
a critical issue.

In [8], Q.Ye et al. have proposed two protocols,
called TNT and PTNT, to address sink mobility
problem. In TNT, each node maintains a tracking
counter and sets up a beacon timer. The mobile
sink broadcasts a beacon periodically to its
neighboring nodes. If a neighboring node receives
the beacon, then increases its tracking counter by 1,
otherwise, decreases that by 1 when the beacon
timer expires. Therefore, the sensed data can be
forwarded to the mobile sink by using the
sequence of the tracking counters. However, in this
scheme, inefficient paths could be incurred due to
the special movement patterns of the sink, thus
result longer transmission delays.

S.-F. Hwang et al. [9] proposed a weight
function to provide efficient data reporting in
WSNs with mobile sinks. Sensor field is divided
into several grids and only one node is selected as
a head in each grid. For saving energy, some heads
become active nodes to sense and forward data in
each round. The definition of a round is, the
mobile sink issues a query to request active nodes
to sense and gather the queried data, and the sink
moves arbitrarily until it receive the gathered data.
In addition, all active nodes are classified into
multiple levels. The classified levels are utilized to
construct the weights of active nodes, according to
the weight algorithm in [9]. When the active nodes
receive a query from the mobile sink, the queried
information can be forwarded along the path

determined by the active nodes’ weights. When the
mobile sink moves, it only needs to locally
broadcast an update packet to its neighboring
active nodes, and the classified levels are used to
limit weight update scope. However, this method
can not scale well to large sensor networks, the
main reason is that the location update scope
becomes very large, and the frequent location
updates consume much energy.

In this paper, we propose a scalable method to
improve the method proposed in [9]. Our proposed
method is based on [9], the differences are that we
divide the sensor network into several blocks
adaptively to form a hierarchical sensor network.
Only sensor nodes in the block where the mobile
sink is located need to construct multiple levels
and weights information. Therefore, the update
scope is limited to a block. Furthermore, we
propose a dynamic update method to adjust the
update scope dynamically, according to the
location of the mobile sink.

The rest of this paper is organized as follows.
Section 2 introduces the network model. Section 3
describes efficient data reporting. Section 4
summarizes simulation results. The conclusion is
in Section 5.

2. Network Model

Let a sensor network be partitioned into 2 2n n×
grids, and the coordinate of a node is the
coordinate of the grid that it is located in.

The node with the smallest ID in a grid will
first serve as the head. Other nodes in the grid
enter to sleep mode for conserving energy. In
addition, some heads are designated to be active
nodes and other heads enter to sleep mode
according to the active node selection algorithm
proposed in [9]. Figure 1 displays two examples of
the selected active nodes by using the active node
selection algorithm.

For the communication of two adjacent active
nodes, the transmission range is defined as 2 2 d,
where d is the length of the grid side. For good
coverage, the sensing range is defined as 5 d.

(a) round r (odd) (b) round r+1

Figure 1. Active nodes in round r and round r+1.

In order to manage the network efficiently, the

network is partitioned into different layers in
advance as follows.

A grid is called a layer-0 grid. A layer-1 grid is
composed of 2 2r r× layer-0 grids, 1r ≥ . (For
convenience, a layer-1 grid is called a block later).
A laye-2 grid is composed of 2×2 layer-1 grids,
and a layer-i grid is composed of 2×2 layer-(i-1)
grids, 2, , 1i n r= − +L .

Let a node p with coordinate
0 0(,)x y , then its

coordinate in the block where it located is

()0 0(', ') mod 2 , mod 2r rx y x y= , (1)

and its coordinate of layer- i is

() 0 0, , , 1,2, , 11 12 2
i i

x yx y i n rr i r i
⎛ ⎞⎢ ⎥ ⎢ ⎥

= = − +⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ − + −⎣ ⎦ ⎣ ⎦⎝ ⎠
L

(2)

Figure 2 shows an example of a 2 layers sensor
network, where r=2, n=3. The original coordinate
of A is (5,6), the coordinate of A in its block is
(1,2), and the coordinates of A in layer-1 and
layer-2 are (1,1) and (0,0), respectively.

(0,0) (1,0) (3,0)(2,0) (4,0) (5,0) (6,0) (7,0)

A

(0,1) (1,1) (3,1)(2,1) (4,1) (5,1) (6,1) (7,1)

(0,2) (1,2) (3,2)(2,2) (4,2) (5,2) (6,2) (7,2)

(0,3) (1,0) (3,3)(2,3) (4,3) (5,3) (6,3) (7,3)

(0,4) (1,4) (3,4)(2,4) (4,4) (5,4) (6,4) (7,4)

(0,5) (1,5) (3,5)(2,5) (4,5) (5,5) (6,5) (7,5)

(0,6) (1,6) (3,6)(2,6) (4,6) (5,6) (6,6) (7,6)

(0,7) (1,7) (3,7)(2,7) (4,7) (5,7) (6,7) (7,7)

Y

X

A

(0,0) (1,0) (3,0)(2,0)

(0,1) (1,1) (3,1)(2,1)

(0,2) (1,2) (3,2)(2,2)

(0,3) (1,3) (3,3)(2,3)

(0,0) (1,0) (3,0)(2,0)

(0,1) (1,1) (3,1)(2,1)

(0,2) (1,2) (3,2)(2,2)

(0,3) (1,3) (3,3)(2,3)

(0,0) (1,0) (3,0)(2,0)

(0,1) (1,1) (3,1)(2,1)

(0,2) (1,2) (3,2)(2,2)

(0,3) (1,3) (3,3)(2,3)

(0,0) (1,0) (3,0)(2,0)

(0,1) (1,1) (3,1)(2,1)

(0,2) (1,2) (3,2)(2,2)

(0,3) (1,3) (3,3)(2,3)

Y

X

(1,1) (0,0)

 (a) (b)

Figure 2. (a) Original coordinates, (b) The
coordinates of A in layer-1 and layer-2.

Those active nodes which are closest to the

center in each layer-i grid are chosen as location
servers of layer-i, 2i ≥ . They record the location
information about the mobile sink. If the
coordinates of the mobile sink in layer-i is (,)i ix y ,
then its location server of layer-i stores the
location information of the mobile sink as
sink_loc(sink_id, (,)i ix y) in its location table.

3. Efficient Data Reporting

In this section, we describe the proposed
efficient data reporting scheme, including the
classification of active nodes, the construction of
local weights, the dynamic update method and data
forwarding. The main goal of our scheme is to
reduce the energy consumption and support good
scalability as well.

3.1 Classification of active nodes

The objective of active nodes classification is to

balance the energy consumption among active
nodes. First, all active nodes are classified into two
levels, level 1 and level 2, by using the active node
level classification algorithm proposed in [9], as
shown in Figure 3. Therefore, an active node p can
determine whether it belongs to level 1 or level 2
in round r, and sets up its low level value L(p).
After the active node p knows its L(p) (i.e. equal to
1 or 2) in a given round, then its highest level
value L'(p) will be defined in advance.

ActiveNodeLevelClassification(r,)

if (mod 2 = 0 and r mod 4 = 0 or 1) or
(mod 2 = 1 and r mod 4 = 2 or 3) then

L(p)=1
else

L(p)=2
end if

'x

(', ')p x y=

'x

Figure 3. Active node level classification

algorithm.

The following definition 1 is used to find the
highest level of the active node p.

Definition 1. For an active node p, if its four
(diagonal) neighboring active nodes exist and all
of them belong to level i (i≧2), then the active
node p belongs to level (i+1). The highest level of
an active node is the maximum value of the level
which it belongs to.

By definition 1, active node p can know which
levels it belongs to by locally communicating with
its neighboring active nodes, and active node p can
find its L'(p). We observe that the active node will
be closest to the center of the sensor field if its
highest level value is maximum.

Figure 4 shows an example of the classified
level in a 8×8 (grids) networks. First, level 1 active
node A has four neighboring level 2 active nodes,
thus node A belongs to level 3. Then, level 2
active node B has four neighboring level 3 active
nodes, node B belongs to level 4. Final, level 3
active node C knows that it also belongs to level 5
in the same way. Consequently, we have L(A)=1,
L' (A)=3, L(B)=2, L' (B)=4, L(C)=1, and L' (C)=5.

level 1
level 2
level 3
level 4
level 5

A

B

C

Figure 4. Levels of some active nodes in a block.

3.2. Construction of local weights

When the mobile sink executes a task, it first
issues a Sink Query Packet (SQP), and then
broadcasts it to all active nodes. The SQP format is
Sink_Query <sink_id, type, weight, round>, where
the type field represents the role of the active node
sending the SQP packet, the round field means
current round number. The type values is 0, 1, or 2,
which indicates the mobile sink, level 1 active
node, or level 2 active node, respectively. Each
active node receiving the SQP packet builds its
low level weight w, and highest level weight w'.
The w and w' are utilized to forward data during
data reporting.

An active node p receiving the SQP packet for
the first time determines if it should rebroadcast
the SQP packet or not, and then sets up its low
level weight according to the weight construction
algorithm in [9]. Figure 5(a) shows an example of
low level weight construction, the number
displayed in the bottom-right corner of each grid
indicates w. We can observe that an active node far
away from the sink will have larger w than those
which are near to the sink. After the active node p
obtains its w(p), it use (3) to calculate w'(p). Figure
5(b) is an example of highest level weight (w')
construction, the number displayed in the
bottom-right corner of each grid indicates w and
the other number displayed in the upper-right
corner of each grid indicates w'. Note that only the
active nodes in the block including the sink need to
construct the weight values. If an active node
needs to transmit data packet to the sink, it just
needs to query its nearest location server to get the
location of the block which the sink is located in.

'() ()'() max{ () (),0}
2

L p L pw p w p −= − (3)

0

1

2

3

0

1

2

3

1

1

2

3

1

1

2

3

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

0

0

0 1

22

2

1

2

12

1
2

0

1

2

3

0

1

2

3

1

1

2

3

1

1

2

3

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

2

S S

 (a) (b)

Figure 5. (a) An example of low level weight (w)
construction. (b) An example of highest level

weight (w') construction. Note that some grids do
not be labeled w' values, it means that w' is equal

to w.

While the mobile sink just moves in a block,
only some of the active nodes in the block need to
update their weights according to the weight
update algorithm in [9], as shown in Figure 7.

However, when the mobile sink moves to a
neighboring block, it will broadcast and construct
the highest level value and weight values in the
new block. The active nodes in the old block will
keep the weight values for a while, until the border
nodes of the old block do not sense the mobile sink.
Figure 6 shows an example that a mobile sink
moves to a neighboring block, it broadcasts an
announcement packet to active nodes in the new
block, active nodes receiving the packet construct
their highest level value and weight values.

0

1

2

3

0

1

2

3

1

1

2

3

1

1

2

3

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

0

0

0 1

22

2

1

2

12

1
2

S

Figure 6. A mobile sink moves to a neighboring

block.

WeightUpdate (Sink_Beacon<sink_id, type, i>)
An active node receives a sink beacon packet
if L'(p)≧i then

if (type =0 and L(p)=1) or (type =1 and L(p)=2) or
(type =2 and L(p)=1) then

w'(p)=0
i=i+1
type= L(p)
broadcast sink beacon packet

end if
end if

Figure 7. Weight update algorithm.

3.3 Dynamic update method
According to the weight values, we can find an

efficient path to forward data to the mobile sink.
However, when the mobile sink moves, weight
information must be updated. Figure 7 is the
weight update algorithm which proposed in [9],
where i is used to limit the update scope, and its
initial value is 1. The mean of the type is the same
as in SQP packet. In this algorithm, an active node
p receiving the sink beacon packet resets its w'(p)
as 0, and increases i value by 1 to rebroadcast. It is
obvious that a method for reducing weight update
cost is to increase the increment of i value. For
example, i = i + 1 can be simply modified as i = i +

β, where β=1, 2, 3, …. Hence, the larger the β
value is, the smaller the update scope is. However,
this method is inflexible.

When the mobile sink is in the corner of a block,
and the β value is set as 1 (Figure 8(a)), the update
cost is not very high and the effect on hop counts
is not obvious. However, the update cost becomes
very high while the sink moves to the center of a
block. If the β value is set as 3 (Figure 8(b)), when
the mobile sink is in the corner of a block, the
update scope is too small to effect on the hop
counts and the successful rate of data packets may
decrease. However, when the sink is in the center
of a block, since the active nodes reach the center
of the sensor network easily according to the
weight values of active nodes. Therefore, the sink
update scope can be small and do not effect on the
hop count and the successful rate of data packet.

For avoiding the disadvantage of fixing β, we
propose a dynamic update method to improve the
energy efficiency and preserve the successful rate
of data packet. We adjust the parameter of
dynamic scope, β, according to the location of the
mobile sink in a block. The algorithm is shown in
Figure 9.

1

2

3

4

1

2

3

4

2

2

3

4

2

2

3

4

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

0

0

0 0

33

3

2

3

03

2
3

S 0

0

0

β=1 β=1
3

4

5

6

3

4

5

6

4

4

5

6

4

4

5

6

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

0

0

0 0

05

5

0

0

00

0
5

S

2

0

1

0

1

(a) Static weight update, β =1.

1

2

3

4

1

2

3

4

2

2

3

4

2

2

3

4

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

1

1

1 2

33

3

2

3

23

2
3

S 0

β=3 β=3
3

4

5

6

3

4

5

6

4

4

5

6

4

4

5

6

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

1

0

3 0

55

5

4

5

05

4
5

S

2

(b) Static weight update, β=3.

Figure 8. Static weight update under different
settings, (a) β=1 and (b) β=3.

2rDynamicUpdate(, a , b , k,)

then
β=a

else
β=b

end if

sink(,)s sx y

if (2 (1) 2 and 2 y (1) 2)r r r r
s sk x k k k× ≤ ≤ − × × ≤ ≤ − ×

Figure 9. Dynamic update algorithm.

Figure 10. An example of the setting of β.

1

2

3

4

1

2

3

4

2

2

3

4

2

2

3

4

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

0

0

0 0

33

3

2

3

03

2
3

S 0

0

0

3

4

5

6

3

4

5

6

4

4

5

6

4

4

5

6

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

1

0

3 0

55

5

4

5

05

4
5

S

2

(a) (b)

Figure 11. The effect on the update cost under the
situation of Figure 10.

If the mobile sink is nearer to the center than to

the border, β is set as a, otherwise, β is set as b,
where a > b. Figure 10 is an example of the setting
of β, where value k is set as 1/4, value a is 3 and
value b is equal to 1. Figure 11 indicates the effect
on the update cost under the situation of Figure 10,
in (a), since the mobile sink is near to the border of
the block, the value of β is set as 1, and when the
mobile sink moves to near the center as in (b), the
value of β is adjusted dynamically to be 3.

3.4 Data forwarding

When an active node p needs to send data
packet to the mobile sink s, there are two
situations:

(a) p and s are in the same block: First, active
node p transmits a data packet to a neighboring
active node n which has the smallest w'. If there
are two or more neighboring active nodes with the
same w', the active node p randomly selects one of
them to transmit. Gradually, the data packet will
be transmitted to an active node which w' is equal
to zero. And then, this active node continuously
forwards the data packet along the path that the
active nodes which w' are zero, until reach to the
mobile sink. Figure 12 shows an example of data
forwarding where P1 and s are in a same block.

(b) p and s are in different blocks: The active
node p queries the location information of s from
the nearest location server, and employs a greedy
routing to forward the data packet to the block
where the mobile sink is located. Then, the data
packet will be transmitted to the mobile sink as
situation (a). Figure 13 shows an example of data

forwarding where P2 and s are in different blocks.
Node P2 gets the location of the block which s is
located in from its nearest location server, and then
successfully forwards the data packet to the mobile
sink s.

0

1

2

3

0

1

2

3

1

1

2

3

1

1

2

3

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

0

0

0 1

22

2

1

2

12

1
2

S

P1
Figure 12. Data forwarding in a same block.

0

1

2

3

0

1

2

3

1

1

2

3

1

1

2

3

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

0

0

0 1

22

2

1

2

12

1
2

S

2P

Figure 13. Data forwarding in different blocks.

4. Simulation Results

In the simulation environment, the entire sensor
network is divided into 8×8, 16×16, 32×32 and
64×64 grids with 400, 800, 3200 and 6000 sensor
nodes, respectively. The side length of each grid is
12.5m. We set a block size is 8×8 grids. The first
order radio model proposed in LEACH[10] is used
to calculate the energy consumption of a sensor
node. The size of a data packet is 2000 bits and the
size of a control packet is 64 bits. A mobile sink
with speed 10m/s is deployed and the sink beacon
interval varies from 1 to 6 seconds. We compare
the proposed dynamic update method to our
previous method [9] and TNT [8]. In [9], it
requests the mobile sink to locally broadcast a
weight update packet and uses a constant β value
to limit the flooding scope of the update packet.
Therefore, we abbreviate this method to be “static
update”. On the other hand, in our proposed
dynamic update method, β value is dynamically
changed according to the location of the mobile
sink in the block as shown in Figure 9 so that we

present β value as (b,a) in the following simulation
results. Three performance metrics including
average energy consumption per round, average
hop counts, and successful rate are evaluated. The
successful rate indicates the ratio of the number of
data packets successfully received by the mobile
sink to the total number of data packets sent by
active nodes.

0

0.002

0.004

0.006

0.008

0.01

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Av
er

ag
e

po
w

er
 c

on
su

m
pt

io
n

pe
r

ro
un

d
(J

)

1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

(a) Network size: 8×8 grids

0

0.03

0.06

0.09

0.12

0.15

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Av
er

ag
e

po
w

er
 c

on
su

m
pt

io
n

pe
r

ro
un

d
(J

)

1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

(b) Network size: 16×16 grids

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Av
er

ag
e

po
w

er
 c

on
su

m
pt

io
n

pe
r

ro
un

d
(J

)

1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

 (c) Network size: 32×32 grids

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Av
er

ag
e

po
w

er
 c

on
su

m
pt

io
n

pe
r

ro
un

d
(J

) 1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

(d) Network size: 64×64 grids

Figure 14. Average energy consumption under
different update scope settings.

Figure 14 shows that the average energy

consumption per round for different β values under
different network sizes. In the proposed dynamic
update method, the sensor network is partitioned
into several blocks, and a small number of location
servers are selected to store the sink’s location
information. Meanwhile, in the block where the
sink is located, the dynamic update method is
utilized to reduce the weight update cost incurred
by sink mobility. Therefore, it has less average
energy consumption than the static update scheme,
especially when the network size is large. Figure

15 shows that the successful rate for different β
values under different network sizes. The dynamic
update method can keep high successful rate while
reducing the average energy consumption per
round.

Figure 16 shows the successful rate and average
hop counts under different network sizes and sink
beacon intervals. The β values for dynamic update
and static update method are set as (2,3) and 1,
respectively. The results indicate that the dynamic
update method has at least 90% successful rate
even in high sink beacon intervals and large
network sizes while the successful rate of the static
update method decreases rapidly in the same
environment. Moreover, in Figure 16(b), average
hop counts of the dynamic update method do not
be affected under different sink beacon intervals.
Figure 17 shows the comparison of the dynamic
update method, the static update method, and TNT.
The results indicate that TNT has higher average
hop counts than other methods and the dynamic
update method has less energy consumption per
round than other methods.

50%

60%

70%

80%

90%

100%

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Su
cc

es
sf

ul
 r

at
e

(%
)

1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

(a) Network size: 8×8 grids

50%

60%

70%

80%

90%

100%

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Su
cc

es
sf

ul
 r

at
e

(%
)

1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

(b) Network size: 16×16 grids

50%

60%

70%

80%

90%

100%

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Su
cc

es
sf

ul
 r

at
e

(%
)

1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

(c) Network size: 32×32 grids

50%

60%

70%

80%

90%

100%

1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

β

Su
cc

es
sf

ul
 r

at
e

(%
)

1
2
3
4
(1,2)
(1,3)
(1,4)
(2,3)
(2,4)
(3,4)

(d) Network size: 64×64 grids

Figure 15. Successful rate under different update
scope settings.

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Sink beacon interval (second)

Su
cc

es
sf

ul
 r

at
e

8x8
16x16
32x32
64x64
8x8(Static Update)
16x16(Static Update)
32x32(Static Update)
64x64(Static Update)

(a)

0

5

10

15

20

25

30

1 2 3 4 5 6
Sink beacon interval (second)

Av
er

ag
e

ho
p

co
un

ts 8x8
16x16
32x32
64x64

(b)

Figure 16. (a) Successful rate, (b) Average hop
counts under different network sizes and sink

beacon intervals.

0

10

20

30

40

50

8x8 16x16 32x32 64x64
Network size (grids)

Av
er

ag
e

ho
p

co
un

ts

TNT

Static update

Dynamic update

(a)

0

0.4

0.8

1.2

1.6

2

8x8 16x16 32x32 64x64
Network size (grids)

Av
er

ag
e

po
w

er
co

ns
um

pt
io

n
pe

r
ro

un
d(

J)

TNT

Static update

Dynamic update

(b)

Figure 17. (a) Average hop counts, (b) Average
energy consumption per round under different

network sizes.

5. Conclusion
In this paper, we propose an efficient data

reporting scheme in large wireless sensor networks
with mobile sinks. We build a hierarchical sensor
network to alleviate the energy consumptions of
active nodes. Only the block where the mobile sink
is located need to construct level and weight
information, and provides an efficient reporting
path to the mobile sink. We also propose the
dynamic update method to reduce update cost in
advance when the mobile sink moves. Simulation

results show that our proposed method is scalable,
and outperforms TNT and our previous work[9], in
terms of average energy consumption per round
and successful rate.

Acknowledgement

This research is supported by the National
Science Council of the Republic of China under
grant number NSC-96-2628-E-035-074-MY2.

References
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.

Cayirci, “Wireless sensor networks: a survey,”
Computer Networks, vol. 38, no. 4, pp. 393–422,
2002.

[2] J.N. Al-Karaki and A.E. Kamal, “Routing techniques
in wireless sensor networks: a survey,” IEEE
Transactions on Wireless Communications, vol. 11,
no. 6, pp. 6–28, 2004.

[3] J. Luo and J.-P. Hubaux, “Joint mobility and routing
for lifetime elongation in wireless sensor networks,”
Proceedings of IEEE INFOCOM, pp. 1735–1746,
2005.

[4] Yanzhong Bi, Jianwei Niu, Limin Sun, Wei Huangfu,
and Yi Sun, “Moving Schemes for Mobile Sinks in
Wireless Sensor Networks,” Proceedings of IEEE
IPCCC, pp.101–108, 2007.

[5] Yanzhong Bi, Limin Sun, Jian Ma, Na Li, Imran Ali
Khan, and Canfeng Chen, “HUMS: an autonomous
moving strategy for mobile sinks in data-gathering
sensor networks,” Journal on Wireless
Communications and Networking, 2007.

[6] Z. Vincze, R. Vida, and A. Vidács, “Deploying
Multiple Sinks in Multi-hop Wireless Sensor
Networks,” Proceedings of IEEE International
Conference on Pervasive Services, pp. 55–63, 2007.

[7] Gaotao Shi, Minghong Liao, Maode Ma, and Yantai
Shu, “Exploiting sink movement for energy-efficient
load-balancing in wireless sensor networks,”
Proceeding of the ACM international workshop on
Foundations of wireless ad hoc and sensor
networking and computing, pp. 39–44, 2008.

[8] Q. Ye and L. Cheng, “A Lightweight Approach to
Mobile Multicasting in Wireless Sensor Networks,”
International Journal of Ad Hoc and Ubiquitous
Computing, vol. 2, no. 1/2, pp. 36–45, 2007.

[9] S.-F. Hwang, K.-H. Lu, L.-R. Yang, and C.-R. Dow,
“Efficient Data Reporting for Object Tracking in
Wireless Sensor Networks with Mobile Sinks,”
Proceedings of The 14th Asia-Pacific Conference on
Communications (APCC), 2008.

[10]W.R. Heinzelman, A. Chandrakasan, and H.
Balakrishnan, “Energy-Efficient Communication
Protocol for Wireless Microsensor Networks,”
Proceeding of the 33rd Hawaii International
Conference on System Sciences, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

