Enhanced RAM-less Modular 2-Dimensional
Pipelined FFT

Maan Musleh

Mokhtar Aboelaze

Department of Computer Science and Engineering

York University
Toronto ON CANADA
email: {maan, aboelaze}@Qcse.yorku.ca

Abstract—Discrete Fourier Transform is one of the most
important operations in digital signal processing. DFT is
used in many applications in communication systems and
digital signal processing. DFT is also used in UWB OFDM
and in IEEE802.11n. Energy consumption in portable and
wireless devices is a crucial factor in the design of such sys-
tems. In this paper, we propose an FFT processor based
on the famous pipelined FFT architecture. Our design does
not require any RAM and replaces it with buffers. Our de-
sign is based on 2-D FFT and does not require the power
hungry RAM, instead the RAM is replaced by delay lines
and a simple circuit to configure the delay lines. Our design
consumes less energy compared with processors with RAM,
and can handle any size FFT (not only squared size).

Index Terms—Fast Fourier Transform, Modular FFT ar-
chitecture, Pipelined FFT, Low power

I. INTRODUCTION

HE Discrete Fourier Transform (DFT) remains a crit-

ical computation in several digital communication as
well as signal processing applications. The DFT is widely
employed in analyzing frequencies contained in discrete sig-
nals, solving partial differential equations, and performing
other operations such as convolution. The multitude of
research devoted to enhance the DFT algorithm and hard-
ware in terms of speed, time, and power underlines its huge
importance. Several DFT implementations were proposed
for all hardware systems from general-purpose computers
to systolic arrays and special purpose hardware.

The most common algorithm for performing the DFT is
the fast Fourier Transform (FFT) proposed in [5]. The al-
gorithm is efficient enough to perform the same traditional
DFT, O(N?) complexity, in O(Nlog N) time. A pipelined
implementation of the algorithm [8] was later developed.
The implementation consists of several modules sharing
a common memory storage - of coefficient factors. Each
module consists of a specific number of delay elements,
multipliers and adders. In addition, each module contains
two switches controlled by an external control circuit. A
simple address generator proposed in [4] is commonly used
to supply the ROM with the address of the specific coeffi-
cient to be used by one or more modules at a specific clock
cycle. The proposed generator simply depends on a single
counter to obtain memory addresses and switching logic.

This research is funded by a grant from the National Science and
Engineering Research Council (NSERC) of Canada

In the remaining parts of this section, we will briefly
mention some recent attempts for designing low energy
fast FFT processors. In [3] The authors designed a low
power FFT processor using many low power design tech-
niques such as clock gating, low power library cells, and
operand isolation. In [2] the authors proposed a multi-
path delay commutator structure. Their proposal doubled
the throughput of the previous radix-2 and radix-4 FFT
processors, which makes it attractive for high throughput
long-length FFT processors. However, the authors did not
consider the energy as an issue in their design.

[11] presented a design for 128/64 point FFT/IFFT
processor. The authors used a multipath delay feed-
back architecture. Their design objective was a proces-
sor for multiple-input multiple-output (MIMO) orthogo-
nal frequency- division multiplexing (OFDM) based IEEE
802.11n wireless local area network baseband processor.
Their design can calculate 128-point FFT with four inde-
pendent data sequences within 3.2 psec which makes it
able to meet the IEEE 802.11n standard requirement

Jinag in [9] proposed a high performance architecture for
long sequence FFT (8k sequence) for OFDM digital video
broadcasting. He used distributed arithmetic in order to
reduce the cost of multipliers and adders. He also used
CORDIC multipliers for the twiddle factor multiplication.
His main objective tis to reduce the area cost of the design
without sacrificing the speed. The authors in [12] pro-
posed an FFT processor for a Digital Audio Broadcasting
(DAB) receiver. They used in their design the principle of
circuit-sharing pipeline design, where circuit redundancies
between modules or blocks of different implementations
of different standards are utilized in order to decrease the
chip are required for the overall implementation of the sys-
tem. They implemented their design using TSMC CMOS
with 0.35 pm technology. Their implementation showed a
reduction in the hardware overhead.

In [13] the authors presented a trade off analysis for fixed
point memory based FFT processors. They also imple-
mented their design on a Xilinx Spartans FPGA. Chen et
al. in [1] proposed an architecture for long variable size
FFT processor. They implemented their design on FPGA
for variable size N = 4™ n =1 — 10 points. Their design
can work on speeds up to 150MHz. In [10] The authors
proposed an FFT/IFFT processor for mobile in-car enter-
tainment system using wireless broadband. Using partially

oversampling architecture they showed that their design re-
duces the complexity by 37% and requires small aera for
implementation.

There was no other implementation that was able to
compete with the pipeline FFT architecture [8] in terms of
latency. However, several attempts were made to improve
power consumption and gate count. A modular pipelined
FFT [6] implementation, using two pipelined FFTs and
specialized central elements, introduces substantial savings
in the amount of delay elements and distributed coeffi-
cient storage needed. The specialized central elements for
a modular radix-r FFT uses » RAMs, » ROMs, r com-
plex multiplier, and an address generator. The modular
implementation assumes that the pipelined FFT produces
r outputs at a time. Assuming the pipeline FFT produces
a single output at a time, then the central elements will re-
duce to one RAM, one ROM, and one complex multiplier.
The ROM(s) and the RAM(s) need to be accessed simul-
taneously, and thus requiring a more complex address gen-
erator that can provide addresses to ROM(s) and RAM(s)
at the same time.

In addition, the modular pipelined FFT algorithm works
only for squared sizes of input such that M = N2. That
means if an application needs to compute the DFT of an
input of size 512, it has to append 512 zero values to the
input and release 512 more output data having the value
of 0. This case is major disadvantage in terms of efficiency
and utilization.

The proposed RAM-less modular FFT replaces the
RAM with specialized delay elements requiring simple con-
trol logic. This design will eliminate the extra power con-
sumed by the RAM and its control logic. It will also elim-
inate the ROM and the complex multiplier by tweaking
the second pipelined FFT as explained in Section II. The
proposed scheme joins two pipelined FFT modules of sizes
R and C; RC = N, with specialized central elements con-
sisting solely of specialized delay elements and a simple
control logic.

II. 2-D-LIKE FAST FOURIER TRANSFORM

The basic idea behind the 2-D-like FF'T is that the in-
put data of size N can be rearranged in a 2-Dimensional
rectangle of size RC. Figure 1 shows that the ith input
data in a 1-D form can be represented using two iterators
r and c in a 2-D form input data using the following trans-
formation i =rC' + ¢, where 0 <r < Rand 0 <c¢ < C. The
one dimensional DFT is given by Equation 1

-

27rnk

(1)

A commonly used notation replaces e~ *%* with WRk.
This expression is commonly called the twiddle factor.

In order to transform Equation 1 to the 2-D like form of
DFT, the summation has to be replaced by double sum-
mation using two iterators r and ¢ replacing the iterator

1] 1 2 -1

C C+1 C+2 2C-1

2C 2C+2 | 2C+3 JC-1

(R-13C [R-nc+ |R-1c+2 RC-1
Fig. 1. data input rearranged in 2-D form

R-1C-1

Z Z x(rC + o)W n(TCJrC)
c=0

(2)
Equation 2 can be s1mphﬁed more by realizing that
2(@t0) = gagb Using this property will lead to having two
twiddle factors in the 2-D-like equation(WR"¢ and WZe).
An extra simplification will help understand the mecha-
nism of our design. The twiddle factor W' equals to
WE" since N = RC. The equation will then yield to:

R-1 Cc-1

= Z Wg" Z z(rC + c)Wx©

r=0 c=0

X(n) (3)

Equation 3 helps understand the logic behind our pro-
posed hardware design. The inner sum of (3) represents
an N-point FFT for each group of C items. There will
be exactly R outputs. Those R outputs will be the in-
put for an R-point FFT (outer sum). Let us represent an
N-point DFT function that takes an input of size C' by
F$(z). That means, for N = RC, an N-point DFT func-
tion, F¥(z), can be done by a function of a function of
DFT, Ff(F§ ()

III. MobpULAR PIPELINED FFT

The modular pipelined FFT [6] consists of two v/ N-point
standard pipelined FFT coupled with central elements and
address generation logic. The address generation logic is
based on the work done by Cohen [4].

In their paper [7], Swartzlander et al. derived a 2-D
like FFT equation. The derivation presumes a squared-
size input (N = M?) of data. The input is arranged in a
square of size (M X M), while the output generated by
the FFT is in the form of a transposed square of the same
size.

(Mk1 +ko)=

Zmo 0 Wmuko Z,IZI::IO x(Mmy +mo) Wit ko WﬁUkl (4)

RAM-LESS MODULAR 2-DIMENSIONAL PIPELINED FFT

The derived equation (4) tells more about the architec-
ture used. It is apparent from the equation that two M-
point FFTs are performed. The output of one of the FFTs
is multiplied by a complex multiplier - Wﬂokl - and be-
comes an input for the second FFT. The block diagram in
Figure 2 shows the different components of the Modular
Pipelined FFT [7].

Radix r

|_|Pipeline
FFT

Module

Radix r

Inputs Pipeline

[Port Qutputs

Exchange

rPort [|
Exchange

==, |

EFT Pre rotation
Maodule

Fig. 2. Block Diagram of Radix-r Modular Pipeline FFT

The following sections explain the components of the
Modular Pipeline FFT: the pipelined FFT module (A), the
centralized elements (B) and the address generator (C).

A. Pipelined FFT

Several attempts were made to achieve a highly efficient
FFT processor, nevertheless, there was no implementation
that was able to improve in terms of speed on the Pipeline
FFT processor [8]. The pipeline FFT is organized into dif-
ferent modules operating simultaneously. Relating this to
the basic theory of FFT, each module represents a specific
stage in the FFT computation The block diagram in Fig-

Retation vectar
addres=s

Rotation vector
storage

|
l l
Inputg._{ M-1 Moduls }—{ M-2 Moduls }7
1

Binary counter
stage (MSE)

Cutput
O Module

Binary counter Binary counter

stage(L3E)

Fig. 3. Block Diagram for a Pipeline FFT Processor

ure 3 shows how the different modules co-operate together
to run the FFT computation. Each module in the pro-
cessor accepts three inputs and produces one output. The
first input is supplied by the previous module; the input of
the first module comes from the main input stream. The
second input comes from the ROM that stores rotation
vectors. The third input is a control signal coming from
the binary counter to switch the mode of operation of the
module.

Each operating module consists of delay elements, coef-
ficient storage, commutators, multipliers and adders. All
modules share a common memory where the coefficients
(twiddle factors) are stored. The number of processing
modules required to perform the Fast Fourier Transform
depends on the size of input and the radix. To perform a
radix r N-point FFT | log,. N modules are required. In theis
discussion, an integer prefix is added to the name of the
module to distinguish the different modules. This prefix is
equal to the number of delay elements in the module.

In a radix-2 16 points FFT, 4 modules are required to
perform FFT. The modules are arranged from input to

M delay lines

¥l

Fig. 4. M-Module of Pipelined FFT

output as follows: 23-module, 22-module, 2'-module, and
20_-module. As was mentioned before, the prefix integer
indicates the number of delay elements in each module.
That means the number of delay elements for each of the
modules are 8, 4, 2, and 1, respectively.

Each module takes a complex input, twiddle factor (com-
plex coeflicient), and a control signal and produces one
complex output. The complex output of one module is the
complex input of the next module, with the exception of
the last module in which the complex output is a single
output of the system.

The signal cont controls the flow of data inside and be-
tween modules. The signal switches the module between
two modes of operations. This paper refers to these modes
as Passive Mode and Active Mode.

In the Passive Mode, the module accepts an input and
passes it to the delay elements which in turn shift one
position to the right. The right most element in the delay
line becomes the output of the module. This output is in
fact either the input for the next module or the output of
the Pipeline FFT.

In the Active Mode, the module accepts an input z;n and
passes it to the arithmetic unit. The rightmost element in
the delay line, referred to as y;n in Figure 4, becomes the
second input to the arithmetic unit. The arithmetic unit
will need also a third input, W;, to perform the required
operations (5, 6.

(5)

Tout = x;n + y;nW;

Yyout = x;n — y;nW;

(6)

The W; is the twiddle factor taken from the Shared Mem-
ory. A very crucial step inside the pipeline FFT is to
supply the modules with the correct twiddle factor at the
correct time. A key factor that helps in simplifying this
problem is the symmetrical nature of the different stages
(resembled by the modules) in the pipelined FFT. In gen-
eral, the M-module requires a different twiddle factor every

M cycles. Two important facts play a role in solving this
problem. The first one is that M is always a multiple of 2.
The other one is the fact that at any given clock cycle, all
modules requiring a new twiddle factor ask for the same
complex value. Thus the shared memory has to supply
one twiddle factor per cycle and satisfy the demands, of
all modules.

It is evident that the module accepts the input W; only
when it is in the active mode. In addition, the module
accepts the input only when it is changing from passive
mode to active mode (when the input data just fills the
delay lines) and keeps using the same value of W; through-
out the active mode. However a new W; will be accepted
again when the module changes again from passive mode
to active mode.

The switch between the active mode and the passive
mode is controlled by the Control Circuit which in turn
supplies the cont signal to the module. The advantage of
the algorithm used in this design is that it simplifies the
generation of the control signals for all modules to a simple
counter of size Ig N bits. Each bit of the counter supplies
the signal for one module, where the most significant bit
to the least significant bit supplies the signals for the first
to the last modules respectively.

The Control Circuit in the pipelined FFT provides ad-
dresses to the Shared Memory and control signals to the
individual modules. The Control Circuit consists of sim-
ply a counter of size log N [8]. The individual bits of the
counter supply the control signals to the modules as shown
in Figure A.

In sum, the N-point pipeline FFT processor contains N-
bit counter, 32 X N bits memory storage, and log N M-
modules. Each module contains two adders, one multiplier
and M delay lines - summing up to N delay lines for all
modules.

B. Centralized Elements

The modular pipeline FFT joins two standard pipeline
FFT processors with specialized central elements. The cen-
tral elements consists of RAM(s), ROM(s), multiplier(s),
two switching circuits and an address generator. The
RAM is used to store processed data generated by the first
pipeline FFT. The switching circuit decides which RAM
the data should be saved in. Once all data are generated
and saved in the RAM(s), the address generator will gen-
erate addresses to read data from both the RAM(s) and
the ROM(s). The ROM(s) contains rotation factors that
should be multiplied by the data before they are streamed
as input to the second pipeline FFT processor. Depend-
ing on the design the central elements can contain one or
r of each of the RAM(s), ROM(s) and multiplier(s). The
RAM(s) in total need to be large enough to save N com-
plex data (this also applies to the ROM(s))

C. Address Generator

The last component in the modular design is the ad-
dress generation logic. This is the crucial component that
coordinates and connects all the distinct units together.

I

A
|5 [ram| >

RAM1

| Address Generator

Y

.
>X

Pipeline Pipeline
FFT FFT

0 1

|

!

P@ I e Texm
”
*

P@ I wToexm
-
a3

Fig. 5. Radix-2 Modular Pipelined FFT

As shown in Figure 6, the address generator is composed

Counter
RAM1T Address b(n-1)
RAMO Address b(n-1)
Exchange
Rotator
REaM Address h(01h(n-2) |

Fig. 6. Address Generator

of counters, multiplexers, and combinational logic [6]. The
address generator creates addresses for each RAM unit and
supplies signals to control the data exchangers [7]. Coeffi-
cient ROMs do not need special address generation logic;
the coefficients can be preloaded to the ROM at the proper
places for the counter to access them properly [6]. The size
of the counter can be as large as log, N. The highest bit of
the counter determines the addressing mode. Depending
on the the architecture of the central elements the rest of
the bits will be used to supply signals to the exchanger
(high bits) and generate addresses (lower bits). To give an
example of this, we will assume a 16-bit radix-2 modular
pipeline FFT with 2 RAMs and 2 ROMs in the central
elements. The counter of the address generator needs 1
bit to change the addressing mode, 1 bit to specify which
RAM/ROM to be used, and log, N/2 bits to generate the
address.

This architecture in Figure 5 is designed to handle a
real-time stream of input data. When all outputs from
the first pipeline FFT are written into the RAMs, the first
pipeline FFT can accept input for another FFT operation.
At some point, the address generator will generate 3 types
of addresses simultaneously, an address to read from the
ROMs, an address to read from the RAM, and an address
to write to the RAM. That also implies that the RAM has
to have simultaneous read-write access capability. This
design, however, can be adapted to different implementa-
tions [6].

IV. ENHANCED RAM-LESS MODULAR PIPELINED FFT

In the proposed design, the central elements consists of
solely delay elements controlled by a control circuit. Using
the delay elements, the RAM can be eliminated. The ROM
in the modular design [6] was used to supply the central
multiplier with rotation factors before the data can be fed

RAM-LESS MODULAR 2-DIMENSIONAL PIPELINED FFT

into the second stage pipelined FFT. The enhanced mod-
ular design modifies the second stage multiplier to elim-
inate the ROM(s) and the multiplier(s) from the central
elements. The modification applied is in the twiddle fac-
tors saved in the internal ROM of the pipelined FFT. The
twiddle factors saved in the ROM of the modified C-point
pipelined FET are of the N-th root of unity instead of the
C-th root of unity. That will compensate for the lack of
the rotation cofficients in our design.

Control ‘
|

JEEEEEEEEEEEEN AN RN

U‘ 1 ‘ 2‘ 3‘4‘ 5‘6‘7‘ 3‘ 9 ‘10‘11‘12‘13‘14‘15‘15‘1?‘13‘19‘20{21‘22‘23‘24{
] |

Modified
Pipeline Pipeline
FFT

FFT‘

Fig. 7. Enhanced Ram-less Modular Pipelined FFT

Looking back at the derived function for the modular
FFT, FY(z) = FE(F$(z)), the function shows the one
FFT operation will be the input of the other FFT opera-
tion. The twist is that the first FFT operation is of size
C applying and N point FFT. This FFT is represented by
the modified pipeline FFT in Figure 7.

The output of the modified pipeline FFT goes into the
delay lines at specific positions defined by the control unit.
This output will later be taken from delay0 register as an
input for the second pipeline FFT. The position that the
output has to be inserted in depends on the number of
outputs left plus its order of input to the second pipeline
FFT.

For any output 7 in an R x C located at row r and
column ¢, the number of outputs left is the addition of
the number of elements left in the same column and the
number of rows left multiplied by the number of columns
C, see A; in Equation 7.

Ai=C—-—c—-14+C*x(R—r—1)=N—-Cr—c—1 (7)

For the same output ¢, the order of input to the second
pipeline FFT is the addition of the number of elements
above it in the same column and the number of columns
preceding ¢ multiplied by number of rowsR, see B; in Equa-

tion 8.
Bi=r+Rx(c)=Rc+r (8)
The control unit calculates A; + B; +1 = D;(9) at every
cycle ¢ and inserts the corresponding output to the desired
register. The logic which enforces one input at a time to
the second pipeline FFT and one output at a time from
first modified pipeline FFT ensures that no output will
overwrite another in the delay registers.

Di=N-Cr+r+Rc—c=N—-r(C—1)+c(R—-1) (9)

It can be noted from Equation 9 that the maximum num-
ber of delay registers is 2/N. Table I shows a sample input
orders for a 32-point FFT where R =8 and C = 4.

TABLE 1
TABLE OF INPUT ORDERS FOR A 32-POINT FFT R=8 AND C =4

) T C Al Bl Dl
0 0 0 31 0 32
1 0 1 30 8 39
2 0 2 29 16 46
3 0 3 28 24 53
4 1 0 2vr 1 28
15 3 3 16 27 44
6 4 0 15 4 20
17 4 1 14 12 27
18 4 2 13 20 34
19 4 3 12 28 41
28 7 0 3 7 11
29 7 1 2 15 18
30 7 2 1 23 25
31 7 3 0 31 32

The second stage FFT will give the output of the overall
N-point FFT operation with the same order of the out-
put. There will be no need to transpose the grid as in the
modular pipeline FFT [6], [7].

V. CoST AND COMPARISON

Comparing the proposed enhanced design with the mod-
ular design [6], [7], the main factors of difference recognized
are in the number of delay elements and size of storage ele-
ments. The modular FFT uses less delay elements than the
enhanced design while the enhanced design improves vastly
in terms of storage units. In fact the N-point modular FFT
uses 2v/N — 2 elements versus 2N — 1 elements used by an
N-point enhanced design. However, the N-point modular
FFT uses 4N bytes of RAM and 4N bytes of ROM in the
centralized elements and 4v/N bytes of ROM inside the
pipeline FFT(s), while the enhanced FFT design uses ab-
solutely no storage units in the central elements and a sum
of 2(R+ C) bytes in the pipeline FFT(s).

The enhanced design also has a faster clock cycle than
the modular design. The fact that no storage units are
used in the central elements of the enhanced design gives
room to improve the clock cycle since we eliminate the si-
multaneous read/write operations to the RAM(s) existing
in the modular design. Table II compares bewteen the
modular FFT [6], [7] and our proposed enhanced modular
design with respect to the cost of the central unit. Note
that the cost of the two pipelined FEFT is the same for the
modular and enhanced FFT.

Also our design does not use any multipliers in the cen-
tral unit. For non-squared matrices, our esign require 2NN

buffers in the central element. Since we can write to any
of them, that requires a decoding circuit equivalent to the
same size memory. However for squared matrices, we write
only to 2v/N buffers; thus requiring a much simpler decod-
ing circuit compared with the same size memroy.

TABLE II
COMPARISON OF THE COST OF CENTRL UNIT

Modular FFT
2V/N —2

Enhanced FFT
2N —1+2V/N -2

Delay elements

RAM 4N
ROM 4N -
Multipliers 2 —

Another improvement over the modular design exists in
the fact that the modular design does not accommodate
non-squared sizes of N. For instance, to calculate a 8k-
point pipeline FFT using the modular design, one has to
use 16k-point modular pipeline FFT. That means we are
using nearly 50% of the resources without any purpose
contributing to the modular pipeline FFT.

Lastly, the elimination of the storage units in the central
elements simplifies greatly the centralized control circuit
and enables for better usage of the circuit area and power
consumption. This design can be easily tweaked to meet
any requirement for any given signal processing applica-
tion.

VI. CONCLUSION

In this paper we proposed an enhanced RAM-less mod-
ular our design eliminates the RAM in the central ele-
ment and replace it with buffers. Our design uses less
buffer/RAM than the previous design, and uses also less
multipliers. Our proposed design can be used with non-
squared FFT length and require a shorter clock cycle since
we eliminated the read/write to the RAM in the central
element.

REFERENCES

[1] H. Chen; W. Qiang; G. Zhenbin; and W. Hongxing
7¢A Pipelined Memory-efficient Architecture for Ultra-long
Variable-size FFT Processors”’ Proceedings of the Interna-
tional Conference on Computer Science and Information
technology pp:357-361 Aug. 2008.

[2] C. C. Cheng and K. K. Parhi ”‘High-throughput VLSI
architecture for FFT computation”’ IEEE Transactions
on Circuits ans Systems Issue 10, pp:863-867 Oct. 2007.

[3] K.-S. Chong; B.-H. Hwee; and J.S. Chang "‘A low en-
ergy FFT/IFFT processor for hearing aid”’ Proceedings of
the International Symposium on Circuits and Systems pp
1169-1172 May 1007.

[4] D. Cohen, “Simplified control of FFT hardware,” IEEE
Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-24, pp. 577-579, 1976.

[5] J. W. Cooley and J. W. Tukey, “An algorithm for the ma-
chine calculation of complex Fourier series,” Mathematics
of Computation, vol. 19, no. 90, pp. 297-301, 1965.

[6] A. M. El Khashab and E. E. Swatzlander Jr., “A mod-
ular pipelined implementation of large fast Fourier,” he
thirty-Sizth Asilomar Conference on Signals, Systems and
Computers vol. 2, pp. 995-999. Nov. 2002

[7] A.M. El-Khashab and E. E. Swartzlander, Jr., “An archi-
tecture for a radix-4 modular pipeline fast Fourier trans-
form,” Application-Specific Systems, Architectures, and

[9]

(10]

(11]

(12]

(13]

Processors, 2003. Proceedings. IEEE International Con-
ference on, pp. 378-388, 24-26 June 2003.

H. L. Groginsky and G. A. Works, “A pipeline fast Fourier
transform,” IEEE Transactions on Computers, vol. C-19,
no. 11, pp. 1015-1019, 11 1970.

R. M. Jiang ”‘An area-efficient FFT architecture for
OFDM digital video broadcasting”’ IEEE Transactions on
Consumer Electronics Issue 4, pp:1322:1326. Nov. 2007.
D.-S. Kim; S.-Y. lee; and D.-J. Chung ”‘A partially oper-
ated FFT/IFFT processor for low complexity OFDM mod-
ulation and demodulation of WiBro in-car entertainment
system”’ IEEE Transactions on Consumer Electronics Is-
sue 2, pp:431-436 May 2008.

Y.-W. Lin; and C.-Y. Lee, ”‘Design of an FFT/IFFT pro-
cessor for MIMO OFDM systems. IEEE Transactions on
Circuits and Systems I Issue 4, pp:807-815. April 2007.
C.-C. Wang; and Y.-C. Lin ”‘An Efficient FFT Processor
for DAB Receiver Using Circuit-Sharing Pipeline Design”’
IEEE Transactions on Broadcasting Issue 3, pp:670-677
Sept. 2007.

H.G. Yeh; and G. Truong ”‘Speed and area analysis of
memory based FFT processors in a FPGA”’ Wireless
telecommunication Symposium WTS2007. pp:1-6. April
2007.

