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Abstract-The oblivious transfer protocol has a 
critical problem on the sender’s communication 
complexity. For this reason, we present a significant 
component called common cipher, which conceals 
all sender’s secrets. The sender can derive the 
corresponding decryption keys from a common 
cipher and different encryption keys. The advantage 
of the technology of common cipher is to greatly 
reduce the sender’s communication cost. Therefore, 
we employ our common cipher to develop an 
efficient OT n

k . Our result is superior to all previous 
solutions in regard to the sender’s communication 
complexity. In our OT n

k  protocol, the sender cannot 
determine which k  secret messages the chooser 
received even if the sender has unlimited 
computational power, and the chooser cannot get 
the other kn − secret messages if the factorization 
problem is hard. When 1=k , we particularly 
suggest an efficient solution. 
 
Keywords: Cryptography, Oblivious Transfer, RSA, 
Network Security. 
 
1. Introduction 
 

The Oblivious Transfer protocol (OT for short) 
was first introduced by Rabin [19] in 1981. Rabin’s 
OT is a two-party protocol in which the sender 
delivers a one bit secret b  to the chooser. In this 

case, the chooser has 
2
1  probability to get this secret, 

and on the other hand, the sender does not learn 
whether the chooser receives it. Until now, OT 
schemes for various types have been proposed (e.g., 
[2,5,6,8,13,14,15,18,22,24]). 

The chooser wants to get anticipated secret 
information instead of according to probability, so 
the 1-out-of-2 OT ( )OT 2

1  is developed. The sender 
transmits two secrets ( )mm 10 ,  to the chooser. 
Assume that the chooser wants to acquire the secret 

.mα  After oblivious transfer, the sender cannot know 
α , and the chooser cannot get m α−1 . In order to 
provide a wide range of applications for electronic 
commerce, many papers extended the original 

protocol to 1-out-of- n  OT ( )OT n
1 . OT n

1  is a natural 
extension of OT 2

1 , that is to say the sender have n  
secrets and the chooser can only select one. Similarly, 
k -out-of- n ( )OT n

k  is very easy to understand. The 
chooser can select  k  secret messages under the 
situation of nk <≤1 . 

OT is an important cryptography primitive. It can 
play a key role to design a lot of cryptographic 
protocol, including electronic trading [1,10], private 
information retrieval [4] (PIR), digital signature [23], 
oblivious search [17] and so forth. 

In the recent literature, the authors have proposed 
many efficient OT n

1  [6,16,20,21,22] and OT n
k  

[13,18,24] protocols. Security assumption of  these 
schemes is mainly based on discrete logarithm 
problem, computational Diffie-Hellman problem [9] 
and RSA problem [9]. No matter whether these OT 
protocols have good improvement in computation 
cost, they still need to take ( )nO  complexity in the 
sender’s communication. For this reason, we present 
a significant component called common cipher. In 
other words, we can hide a lot of secret messages in 
one cipher. This concept is extended from Maurer 
and Yacobi’s identity-based non-interactive public-
key distribution scheme [11]. The sender can derive 
the corresponding decryption keys from the common 
cipher and different encryption keys. 

In our OT n
k  protocol, the sender cannot 

determine which k  secret messages the chooser 
received even if the sender has unlimited 
computational power, and the chooser cannot get the 
other kn − secret messages if the factorization 
problem is hard. When 1=k , we particularly 
suggest an efficient solution. 
 
Road-Map. The remainder of this paper is 
organized as follows. In Section 2 we present some 
definitions and the security requirements for our OT 
schemes. In Section 3, we introduce our common 
cipher technique and discuss its practicality. We 
describe our efficient OT n

k  protocol in Section 4. In 
Section 5, we compare the overheads with other OT 
schemes. The concluding remarks are given in 
Section 6. 
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2. Preliminaries 
 
2.1. k-out-of-n OT 
 

OT n
k  is a transmission protocol for two parties, 

the sender and the chooser. The sender have secret 
messages mmm n,,, 21 K . The chooser can choose k  
ones from these n  secret messages. OT n

k  must 
satisfy the following requirements. 
 
Completeness: If the chooser and the sender 
honestly follow the procedure of the protocol, the 
chooser can properly get k  secret messages. 
 
The chooser’s privacy: The chooser's privacy is 
unconditionally secure. In other words the sender 
does not know which secret messages are chosen by 
the chooser. 
 
The sender’s privacy: Even if chooser is dishonest, 
he is still unable to learn other remaining 

kn − secret messages or other meaningful 
combinations. 
 
2.2. The RSA Problem 
 

Suppose that pqN = ( p  and q  are all prime 
numbers), e is an integer and satisfies 

( )( )( ) 111,gcd =−− qpe  , and ZC N
*∈ . 

The RSA problem is to find the unique integer 
Zm N

*∈  such that ( )NCme mod≡ . Under RSA 
assumption, someone is infeasible to solve RSA 
problem if the factorization of the composite number 
is difficult. 
 
3. Common Cipher 
 

The main idea of our common cipher is coming 
from Maurer and Yacobi’s [11] identity-based non-
interactive public-key distribution scheme. Their 
scheme [11], based on a novel trapdoor one-way 
function, allows trusted authority to calculate 
discrete logarithm under the situation of a given 
number modulo a publicly known composite number 
M  while that is infeasible for an adversary not 
knowing the factorization of .M  We are interested 
in such a novel trapdoor one-way function. Further, 
Lim and Lee [7] proposed some suggestions and 
modifications for Maurer-Yacobi’s scheme to be fit 
to develop a lot of applications. 

What is common cipher? It means to conceal a 
lot of secret messages in one cipher. The sender can 
derive the corresponding deciphering keys from this 
cipher and different encryption keys. 

 Only the sender knows decryption keys of these 
secret messages, so it is safe to publish the common 

cipher. Now we carefully describe the construction 
steps of common cipher in the following. 
 
3.1. Building Common Cipher 
 

Let pppM 321 ..=  be a factorization of M into 
three prime numbers, and these prime numbers are 
all odd numbers and different. The Euler phi-
function ( ) =Mφ ( )( )( )111 321 −−− ppp . For 

,,,2,1 ni K= ei  and di must satisfy ( )Mde ii φ<< ,1  
and ( )( ) 1,gcd =Mei φ . We assume that mmm n,,2,1 K  
are secret messages and  the secret space is Z M

* . 
For ni ,,2,1 K=  and ,3,2,1=j  common cipher 

C  is built according to the following procedure: 
 

(1) Compute xxxC iii 321 ,,,  satisfying the equation 
( )pmC ji

xij mod≡   for .3,2,1=j  
(2)  Apply the Chinese Remainder Theorem [9] to 

compute ei  from xx ii 21,  and xi3 , such that 
( )MmC i

ei mod≡ . 
(3) Compute an unique value di  such that 

( )( )Mde ii φmod1≡ . 
 
Remark 3.1 The reader can refer to [11] for the 
details of numbers of primes, range of each prime 
and so on. Maurer and Yacobi in [11] suggest 
choosing 3 to 4 prime factors of between 60 and 70 
decimal digits. As selecting each prime on a proper 
range, the sender is feasible in calculating discrete 
logarithms xxx iii 321 ,,  modulo p j  to the base mi . 
On the contrary, without knowing the factorization 
of ,M an adversary is difficult to calculate the 
discrete logarithms xxx iii 321 ,, . 
 
4. Efficient OT n

k  with Common Cipher 
 

Malkhi and Sella investigate the relationship 
between OT and blind signatures, and propose a very 
efficient OT n

1  protocol called blind OT [8] which 
relies on Chaum’s RSA based blind signature 
scheme [3]. We find that if we combine blind OT 
with our common cipher, that is a major 
breakthrough in efficiency of OT. Therefore we 
propose an efficient OT n

k  in light of blind OT’s 
essence. In our scheme, the chooser sends ⎡ ⎤( )2

kO  
messages to the sender. The sender sends ⎡ ⎤( ) 12 +kO  
messages back to the chooser. As to the computation 
cost, the chooser performs ⎡ ⎤( )kO 2  exponentiations, 
( )kO  exclusive-or operations and ⎡ ⎤( )2

3 kO  
multiplications, and the sender performs ⎡ ⎤( )2

kO  
exponentiations. Compared with other protocols, our 
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scheme attains the beneficial results in 
communication and computation complexity. 
 
4.1. Proposed Protocol 
 

Our scheme consists of an initialization phase 
and a transfer phase. Initialization phase is a pre-
computation phase done by the sender, and the 
execution of OT protocol is in transfer phase. In 
order to guarantee the security and prevent the 
common module attack [12], the parameters of 
initialization phase must be renewed and published 
again after a transaction of OT. Hence we suppose 
that the sender can precompute a lot of parameters of 
initialization phase. It is a minor shortcoming that 
the public parameters cannot be reused. But the 
proposed protocol really can reduce the 
communication cost in transfer phase which will 
generally become a communication bottleneck. We 
remove this limitation in 1=k protocol. 

 We formally describe these phases below. 
 
Initialization Phase: 

The sender prepares ppp 321 ,, , pppM 321 ..= , 
the Euler phi-function ( )Mφ  and n secret 
messages .,,2,1 mmm nK  For .,,2,1 ni K=  
Initialization Phase goes on with the following steps: 
 
(1) The sender uses the technology of common 

cipher to deal with mi , and computes C , ( )de ii , , 
chooses a random number ( )Zr M

*
φ∈ . 

Then she publishes ,C ,M .reii ⊕=ε  
(2) The sender chooses a random number ( ) ,*Zb Mφ∈  

and computes 
 

( ) ( ),mod.
1

1 Mdbo
n

i
ipri φ⎟
⎠
⎞

⎜
⎝
⎛∏=

=

−

( ) ( )Mdbe
n

i
ipri φmod

1

2
2 1

⎟
⎠
⎞

⎜
⎝
⎛∏=

=

− . 

Then the sender computes and publishes the 
following values: 

      
[ ]

( ),mod.
1,,1

1 Meb
ini

i φα ∏=
≠∈

 

[ ]
( ),mod.

2,,1
2 Meb

ini
i φα ∏=
≠∈

  

,K  

[ ]
( ).mod.

,,1
Meb

nini
in φα ∏=
≠∈

 

 
Transfer Phase: 

Suppose that the chooser selects k  indexes 
ttt k,,, 21 K { }n,,1K∈ . 

 
(1) Chooser first picks ,*ZB M∈  then he needs to 

consider the following two situations: 
 

Case 1 ( k  is even) 

(a) Computes ( ) ( )BBB en
i eib

even
α111. 22

== ∏ =  and 
ααβ tti ii 212 −

=  for ⎣ ⎦2,,2,1 ki K= . 

(b) Computes BCX eveni iβ=  for ⎣ ⎦2,,2,1 ki K=  
and sends them to the sender. 

 
Case 2 ( k  is odd) 
(a) Computes ( ) BBB eeb

odd
n
i i )(. 111 α== ∏ =  and 

ααβ tti ii 212 −
=  for ⎣ ⎦2,,2,1 ki K= . 

(b) Computes BCX eveni iβ=  for ⎣ ⎦2,,2,1 ki K=  
and ⎡ ⎤ BCY oddk kα=

2
, and sends them to the 

sender. 
 

(2) Sender computes ( ) MXZ ii
pri mode =  for 

⎣ ⎦2,,2,1 ki K= . 
 If k is odd, then he must additionally compute  

⎡ ⎤ ⎡ ⎤( ) .mod2

 

2
MYW k

o pri
k =  Finally, the sender 

sends r , Zi  for ⎣ ⎦2,,2,1 ki K=  and ⎡ ⎤W k
2

 to 
the chooser. 

(3) Chooser decrypts the cipher according to the 
following equations: 

     
k.,,ire tit i L21for   , =⊕= ε

( ) ( ),mod. 1 2
 

12
MBZm i

e
t

t i
i

−=
−

 

( ) ( ),mod. 1  12
2

MBZm i
e

t
t i

i
− −=  for ⎣ ⎦2,,2,1 ki K= . 

      If k is odd, the chooser must additional decrypt  

⎡ ⎤( ) .mod. 1
2

MBWm kkt
−=  

 
4.2. Security Analysis 
 
Claim 1: (Completeness) If the sender and the 
chooser follows the process of the protocol correctly, 
the chooser will receive exactly k of n secret 
messages retrieved from the common cipher. 
 
Utilizing the public values announced in the 
initialization phase, the chooser can hide k  secret 

indexes ttt k,,, 21 K  into ( ) MBCX
n
i eib

i i mod1.
2

∏ == β  
for ⎣ ⎦2,,2,1 ki K=  ( ⎡ ⎤

( ) ,mod1.
2

MBCY
n
i ik eb

k ∏ == α  if k  

is odd). There are two blind factors b and B  are 
embedded into ,1X ,,2 KX ⎣ ⎦X k

2
 (, ⎡ ⎤Y k

2
). Because 

only the sender knows e pri  and o pri , therefore she 
can unblind b  embedded inside these ciphers. Thus 
the result of unblinding becomes 

( )
( )( ) MBCXZ

n
i eibt it i

n

i
dib

i
e pri

i mod1.
2

212 1

2
2 1

 
⎟
⎠
⎞⎜

⎝
⎛== ∏ =−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∏
=

−

αα  

for ⎣ ⎦2,,2,1 ki K=  
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( ⎡ ⎤ ⎡ ⎤( ) ( )( )( ) MBCYW n
i eibtk

n

i
dib

k
o pri

k mod1. 1
.1

2
 

2
∏ = ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∏
=

−
== α ). 

Obviously, the chooser can easily unblind 
⎣ ⎦ZZZ k

2
,,, 21 K  and ⎡ ⎤W k

2
, because he knows blind 

factor B  and can calculate MB mod1− . The chooser 
can decipher  the secret messages 

( ) ( )( ) ,.. 1212 2 1  2
12 BBCBZm dt idt i

et i
i

et i
t i

−−−
− ==  

( ) ( )( )BBCBZm dt idt i
et i

i
et i

t i
1212

 121  12
2 .. −− −− − ==  for 

⎣ ⎦2,,2,1 ki K=  
( ⎡ ⎤( ) ( )( )( ),mod.. 11

2
MBBCBWm d

t
tkkk

−− ==  if k is 
odd). 
 
Claim 2: (Chooser’s privacy) the sender cannot 
learn which k messages are choosen by the chooser.  
 
Because the sender cannot know the secret blind 
factor B  selected by the chooser, so our scheme 
satisfies the chooser's privacy. Regard to detailed 
proof, readers can understand the property of 
information-theoretic blindness from Chaum's blind 
signature scheme [3]. 
 
Claim 3: (Sender’s privacy) the chooser cannot get 
more than k secret messages. 
 
As illustrated in Claim 1. The chooser utilizes blind 
factor B , so the sender does not know which secret 
messages the chooser wants to obtain. In our scheme, 
b  is an important factor that can prevent the chooser 
from constructing the errorous X i  and ⎣ ⎦Y k

2
 to 

maliciously get more messages. By using 

( ) ⎟
⎠
⎞

⎜
⎝
⎛∏=

=

− n

i
ipri dbe

1

2
2 1  and ( ) ⎟

⎠
⎞

⎜
⎝
⎛∏=

=

− n

i
ipri dbo

1

1. , the 

sender can guarantee that the chooser only can 
obtain two secret messages form Zi , for 

⎣ ⎦2,,2,1 ki K=  and one secret message from ⎡ ⎤W k
2

. 
In other words, the sender can guarantee the chooser 
finally can only get k  secret messages at most. 
  
4.3. When 1=k  
 

Under the condition of ,1=k  in order to reduce 
the amount of information published by the sender, 
we modify the protocol of Section 4.1 as follows. 
 
Initialization Phase: 
(1) This step is the same as one in Section 4.1 except 

that the sender does not disclose ε i  for 
.,,2,1 ni K=  

(2) The sender chooses a random number ( ) ,*Zb Mφ∈  

and computes ( ) ( )Mdbe
n

i
ipri φmod.

1

1
⎟
⎠
⎞

⎜
⎝
⎛∏=

=

− . 

Then she computes and publishes following 
numbers: 

( ) ( ),mod. 1 Mebe n
i ipub φ∏= =  

[ ]
( ),mod.

1,,1
1 Meb

ini
i φα ∏=
≠∈

 

[ ]
( ),mod.

2,,1
2 Meb

ini
i φα ∏=
≠∈

  

,K  

[ ]
( ).mod.

,,1
Meb

nini
in φα ∏=
≠∈

 

 
Transfer Phase: 

Suppose the chooser selects a secret index 
s { }n,,1K∈ . 
 
(1) The chooser randomly picks ,*ZB M∈  and 

computes ,mod MX BC e pubsα=  then sends X  
to the sender. 

(2) Sender computes )(mod MXY e pri φ=   and sends 
Y  to the chooser. 

(3) Chooser can decrypt the cipher by calculating 
( ) .mod. 1 MBYms

−=  
 
5. Overhead Comparison 
 

Transfer phase is the most important procedure 
in the OT protocol. Hence about overhead 
comparison, we focus on the transfer phase. All OT 
schemes that we compare with have good efficiency 
in communication and computation complexity. In 
addition, we omit to evaluate the precomputation 
costs in all OT schemes. 

In our OT n
k  scheme, as employing common 

cipher, each of ⎣ ⎦XXX k
2

,,, 21 K  and 

⎣ ⎦ZZZ k
2

,,, 21 K  ciphers in our scheme consists of 
double secret messages. Consequently, the 
communication cost of the sender is ⎡ ⎤ 1)( 2 +kO , and 
the chooser is only ⎡ ⎤)( 2

kO . We compare our OT n
k  

scheme with the schemes of Ogata et al. [18], Wu et 
al. [24] (based on discrete logarithm) and Mu et al. 
[13] (efficient interactive OT n

m  scheme). The result 
is shown in Table 1 and Table 2. 

In our OT n
1 (see Section 4.3) scheme, the chooser 

sends 1  message to the sender. Similarly the sender 
replies 1  message to the chooser. As to the 
computation cost, the chooser performs 1  
exponentiation and 2  multiplications, and the sender 
performs 1  exponentiation. We compare our OT n

1  
scheme with the schemes of Kurosawa et al. [6] 
(RSA-based scheme), Wu et al. [24] (for 1=k case) 
and Tzeng [22] (based on random oracle model). 
Table 4 and Table 5 show the overhead comparisons. 

Besides, Table 3 and Table 6 show the amount of 
published information within these OT schemes. 
Although our protocol needs to publish more public 
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values, nevertheless, our proposed scheme has a 
significant improvement on communication and 
computation complexity specially when k  is a small 
value. 
 
6. Concluding Remarks 
 

We have proposed a useful technique called 
common cipher. In our scheme, though the sender 
will be time-consuming in building common cipher, 
the communication cost of the sender can be greatly 
reduced. In our proposed OT n

k , some attack methods 
will be considered [12]. In order to guarantee the 
security of the protocol, the parameters of initial 
phase must be renewed and published again in each 
transaction. However, our proposed OT n

1  has no this 
problem. Our improvement really benefits the sender 
when the sender is required to deal with a lot of 
transactions at the same time. Moreover, our 
common cipher is specially suitable for the 
development of private information retrieval (PIR). 
In the environment of PIR, it is not necessary to 
restrict the chooser to only obtain k  out of n  
messages. 

Furthermore, we will work in the future to 
accelerate the construction of the common cipher 
and develop a more efficient OT n

k . 
 
 

Table 1. Communication complexity in OT n
k  

 Sender Chooser 
The 

proposed 
scheme 

⎡ ⎤2
k  group 
elements 

and 1 string 

⎡ ⎤2
k  group 
elements 

Ogata et al. 
[18] 

n strings 
n group elements 

( )12 +k  group 
elements 

Wu et al. 
[24] 

k  group elements k  group elements

Mu et al. 
[13] 

n strings n2 group 
elements 

 
Table 2. Computation complexity in OT n

k  
 Sender Chooser 

The 
proposed 
scheme 

⎡ ⎤2
k  

exponentiations 
⎡ ⎤k2  exponentiations 
⎡ ⎤
2

3 k multiplications 

k exclusive-or 
operations 

Ogata et 
al. [18] 

n4  
exponentiations 

( )13 +k  
exponentiations 

Wu et al. 
[24] 

k  exponentiations k2  exponentiations

Mu et al. 
[13] 

n2 exponentiation
s 

n multiplications 

k exponentiations 
k2 multiplications 

k additions 
 
 

Table 3. Amount of the public values in OT n
k  

 Number of public 
values 

The proposed 
scheme 

22 +n  

Ogata et al. [18] 1  
Wu et al. [24] 1+n  
Mu et al. [13] n  

 
Table 4. Communication complexity in OT n

1  
 Sender Chooser 

The 
proposed 
scheme 

1 group element 1 group element 

Kurosawa et 
al. [6] 

n  strings + 

⎡ ⎤Nlog2
* 

  
1 group element 

Wu et al. 
[24] 

1 group element 1 group element 

Tzeng [22] n  strings 
1 group element 

1 group element 

 
∗ qpN .=  with  prime numbers p  and q . 
 

Table 5. Computation complexity in OT n
1  

 Sender Chooser 
The 

proposed 
scheme 

1 exponentiation 
 

1 exponentiation
2 multiplications

Kurosawa 
et al. [6] 

1 exponentiation 
n divisions 

1 exponentiation
1 multiplication 

Wu et al. 
[24] 

1 exponentiation 2 exponentiations

Tzeng [22] 3 exponentiations 2 exponentiations
 

Table 6. Amount of public values in OT n
1  

 Number of public 
values 

The proposed 
scheme 

3+n  

Kurosawa et 
al. [6] 

3  

Wu et al. [24] 1+n  
Tzeng [22] 3  
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