
Shuttle: an Instant Model Synchronization Assistant for GMF Editors
Based on Concept Synchronization

Chen-yi Kao Cheng-chia Chen
Department of Computer Science, National Cheng-chi University

g9214@cs.nccu.edu.tw chencc@cs.nccu.edu.tw

Abstract-Roundtrip engineering and refactoring
are killer features of modern Integrated
Development Environment (IDE) systems. Most
implementations of these features nowadays,
however, are tailor-made for scenarios like laying
out Win32 GUI or diagramming UML and hence
are hard to generalize; moreover, the refactoring
is usually restricted to exact string matching and
thus unable to synchronize artifacts with different
occurrences of the equivalent term. These
problems inhibit today's IDEs from supporting
developments requiring synchronization across
models, languages and documents.

Shuttle is a novel instant modeling assistant
developed by us running on Eclipse Graphical
Modeling Framework (GMF) [1] editors. It
monitors users' input model elements and link
them by related concepts. Later modifications of
an element will trigger rules to find the others
under the same related concepts and result in
various synchronization recommendations which
developers may choose to enforce consistency
among parts of the developed system.

The link-trigger mechanism of Shuttle is based
on what we call concept synchronization (CS),
which is inspired by the idea of “concept” in
ontology and “concept search” in information
retrieval. CS captures the simple idea that model
elements with related text descriptions would be
very likely modified accordingly if one of them is
changed by the developer. To detect all others
related to a target model element, we establish a
many-to-many mapping ahead of time between
elements and WordNet Synsets [2] according to
the element text descriptions and then, with
WordNet’s help [3], all elements related to the
target can be found by looking for those mapped
to Synsets associated with the target.

Keywords: model synchronization, concept,
Eclipse, GMF, WordNet.

1. Introduction
In the history of dealing with data

synchronization issues, refactoring [4] provides an
exact-keyword-match-based method for program
evolving. Data binding [5][6] focuses on general
binding and synchronization techniques for
runtime object data. Automatic roundtrip
engineering [7] goes further to automate model
synchronization between different phrases of
system development. Visual Paradigm [8] even
generates use cases and classes from text
description for requirement-to-design model
forward engineering.

In general cases, model synchronization is a
special case of model, even graph, transformation
since every model is essentially a kind of graph.
Transformation systems, such as TIGER [9],
GROOVE [10], CODEX [11] and VIATRA2 [12],
operate the synchronization on the solid basis of
graph theory.

However, all methods above are of certainty
and don’t consider that “usually a model is named
and documented with natural languages”. When it
comes to working on natural languages, a method
of uncertainty seems inevitable.

In [13] “concept search” of information
retrieval is mentioned as the next trend of
information searching. Far from “keyword search”,
concept search uses logical relations instead of
precise word occurrences to represent documents
like Web pages. Therefore documents having
different word occurrences can be found together
if they’re related semantically. We think that
software model elements can be treated in this way
since most modern model elements are well
documented in natural languages.

We introduce an enhanced, semi-automatic and
semantic - textually semantic at first - model
synchronization technique of “concept
synchronization”. It is based on “concept search”
from information retrieval. We believe that model
elements can be grouped into many concepts
according to these elements’semantics. If they are
textual elements like GMF Labels, then the

mailto:g9214@cs.nccu.edu.tw
mailto:chencc@cs.nccu.edu.tw


semantics can be in textual ones like synonym,
hypernym or hyponym, etc. Therefore the model
synchronization becomes that elements under the
same concept reach a new semantic consistency
once one of them is modified with that new
semantics.

Shuttle is such a semi-automatic and
non-interrupting semantically model
synchronization assistant for friendly GMF
graphical modeling environment. It accepts
WordNet lexical database and GMF Labels as two
major inputs and tries to group Labels by using
WordNet’s data. It utilizes CS in three stages:
concept linking, concept rule inference and
synchronization recommending, which plays as
current only output. Tight Eclipse integration via
GMF API is going to give users smooth and
familiar modeling experiences.

As in this paper, we will discuss more about
Eclipse GMF integration in the following section.
From section 3 to 5 we will focus on Shuttle’s core
logic of the three-stage concept synchronization.

2. Monitoring model elements on GMF
editors

GMF is a generic framework for graphically
manipulating models on Eclipse. Shuttle utilizes
WrapLabel, event handler, tooltip and Decoration
mechanism of GMF for user-editor interaction. All
of them, except the event handler, are prepared for
the friendly output generated by Shuttle. The ways
of monitoring inputs and showing outputs are
introduced here, while more output content is
delivered in 5.3.

2.1. Model elements in GMF
Behind GMF editors model elements (e.g.

classifiers, actors, comments, etc.) are classified
into three basic graphical parts. They are Shapes,
Labels and Connections. At first we focus on
Labels, which are the most obvious parts using
natural languages and the closest ones to
“documents” we called in IR, as shown in Figure 1.
Then we can use natural language or IR tools and
techniques on these elements without complicated
adaption for proof-of-concept.

Every Label has an EditPart (more precisely,
org.eclipse.gef.editparts.AbstractGra

phicalEditPart) as a controller of editing
model element under the Model-View-Controller
pattern, while the view is WrapLabel and the
model its text property. The event listeners built
with every Label EditPart sense and handle editing
events of the Label. Therefore we design Shuttle’s
own EditPart event listener classes and register

their instances to all Labels for Shuttle’s way of
detecting Label content changes and linking
Labels and concepts described in section 3.

Figure 1. GMF Labels. There’re four
sub-figures showing various Labels (all text in

the figures are ‘text’properties of Labels).
Some of the figures are depicted from [14].

Each time when a GMF element is monitored
by Shuttle its ‘figure’ property is examined to
check if its view is a WrapLabel. When the
examination is passed, Shuttle retrieves the
WrapLabel’s text property and compares it with
the previous retrieved one to sense the change of
text. Once the change happens Shuttle predicts the
elements to be modified correspondingly and
brings them to the spotlight using the following
GMF Decoration mechanism and WrapLabel
tooltips. The detail is also revealed in section 5.3.

2.2. Utilizing GMF Decoration Service
GMF Decoration Service (with

org.eclipse.gmf.runtime.diagram.ui.se

rvices.decorator as its main Java package
identifier) [15] is an API group related to GMF
editors. The major function of service is to
decorate GMF model elements and is right
suitable for showing our future recommendations.
The lazy decorating of service makes it possible to
preprocess the elements (i.e., Labels) in which
we’re interested behind the scene.

Figure 2. GMF Decoration Service [15].



Figure 3. Shuttle’s “plugin.xml”, where bold text means necessary attributes. Therefore our
customized decorator provider, RecommendationHintDecoratorProvider, is discoverable by

a GMF editor.

The preprocessing is done via GMF extension
point “Presentation Decorator Providers” [16],
which lets GMF plug-ins declare their
implementations of interface
IDecoratorProvider, as shown in Figure 3.
Via the interface developers directly retrieve GMF
editors and even Labels as the targets (called
decorator targets) of decorating operations through
method “provides(IOperation operation)”.
Shuttle retrieves all monitored Labels in this way.
At first the Decoration Service utilization is
prepared for Shuttle’s output, at last its side effect
helps us complete monitoring the input.

When a monitored element is modified and the
corresponding modifications on other elements are
predicted, first the decorations on those elements
are shown up to inform Shuttle users, and second
clues for the modifications are written to the
tooltips of those elements. Hence only
modification clues for elements that the users may
have interests in are shown on hovering.

By utilizing GMF Decoration Service we
bypass the canonical GMF editor generation steps
such as developing graphical/tooling/mapping
definitions with operating EMF.Codegen and
genmodels while we directly interact with general
Labels. This makes Shuttle a ready-for-use plug-in,
rather than a ready-for-building one following
classical GMF scheme.

3. Concept linking
Automatically and semantically concept linking

plays the key part in Shuttle’s logic. To achieve
such automatic semantic, especially in natural
languages, analysis, we use WordNet technology.
WordNet provides massive databases of lexical
semantics in natural languages. Size does matter
and it’s why automatic linking becomes possible.

3.1. Text boundary detection

In refactoring keyword matching is used
directly in model synchronization. However
following the naming convention of modern
modeling, many model elements are named in
compounds. And compounds mean compound
semantics. So extracting those compounds is the
first step toward further semantic analysis and is
done by detecting their boundaries.

To handle both general sentences and
compound words, we apply at first Sentence
BreakIterator, then Word BreakIterator, all
instantiated from java.text.BreakIterator,
to each Label text. Currently Word BreakIterator
only detects boundaries of camel-case or
underscore-separated compounds. We plan to
replace it by some more powerful BreakIterator
from International Components for Unicode (ICU)
[17] when it’s available in the future.

3.2. WordNet Synset concept
In the prototype of Shuttle we have only one

kind of concept: WordNet Synset (Set of cognitive
synonyms [2]), which comes from the resolution
of WordNet lexical database navigation. WordNet
is basically a database and to access it we use MIT
Java Wordnet Interface (JWI) by Massachusetts
Institute of Technology.

3.2.1. Linking WordNet Synset concepts and
model elements. For Label text Shuttle uses two
steps to take the advantage of WordNet. They are
WordNet Dictionary lookup, for stemming, and
(both basic and advanced) concept search, as
depicted in Figure 4. In our demonstration
scenario a developer builds a model of Rule
System containing a class called “Rule”, which
contains two operations named “apply” and
“recommendApplication” in each own Label, as
illustrated in the figure’s upper part. In the lower
left part some model editor objects represent our
Rule System model.



deployment ME-Concept bindi...EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

"application":

WordNet

Index Word

"apply": WordNet

Synset

"recommendApplication": Label

"apply": Label

final: direct concept l ink

1: WordNet

Dictionary

Lookup

final: direct concept l ink

2: concept search

Figure 4. The upper part shows a modeling
scene from a GMF-based Eclipse UML2 Class

Diagram editor; lower part is a UML
deployment diagram depicting the “concept

linking”behind the scene.

Once Shuttle starts the linking operation some
intermediate objects are generated as shown in the
lower right part. For example, during the first step
Dictionary lookup, after boundary detection of
“recommendApplication” we use
edu.mit.jwi.dict.IDictionary’s
getIndexWord(java.lang.String lemma,

PartOfSpeech pos) method to collect the
Dictionary IndexWords of subtext “Application”
for all part-of-speeches.

In the second step of concept search we get
Synsets that the IndexWords are belonged to as the
basic concepts of the element text. In the next here
comes Shuttle’s intelligent play to retrieve
advanced concepts by advancing to related Words
(for lexical relations in various POS’s) and
Synsets (for semantic relations under the same
POS) via methods
edu.mit.jwi.item.ISynset’s
getRelatedWords() and
edu.mit.jwi.item.IWord’s
getRelatedSynsets(). Current advancing
strategy includes navigating all kinds of WordNet
search pointers [3] with 1 hop advance. In Rule
System scenario we find “apply” as a
derivationally related form of “Application” [18].

Since we have all these basic and advanced
concepts, finally we can directly link the concepts
to the elements for faster traversal among concepts
and elements in the future. Additionally each
linkage is bidirectional for easy propagation of
element modification events under the same
concept. For Rule System example, modification
to either Label “recommendApplication” or

“apply” is going to be notified on the other one via
the common concepts “application” and “apply”.
For future development of Shuttle the links are
especially generalized and wrapped in rules and
we are going to introduce this in the next section.

4. Concept synchronization rules
Our concepts are synchronization relations

thought good to be enforced. To reflect this
intentional enforcement rule architecture with
recommendation mechanism is chosen for Shuttle.
Therefore we have to repack our concept links as
rules, i.e., concept synchronization rules, with
setting triggers to collect Label text modification
events and recommenders to recommend
correspondent modification synchronizations. All
of these are done via traversing the links.

We design a pair of trigger and recommender
for each model element (Label). And the couples
are shared by rules. In the example of Figure 5
Rule X and Y share trigger1, trigger3,
recommender3 and recommender6, which
correspondingly hook to model element me1, me3
and me6. This time me1 is modified and triggers
concept rule X, causing linked me3 to get notified
with some recommendations. The propagation of
modification event is painted in red in the figure.

Figure 5. The interaction between model
elements, triggers, recommenders and rules.

5. Recommending the change of
concept linking

The modification of Label text leads to the
change of concept linking behind.
Recommendations and hints are visual and taking
the advantage of GMF Decoration Service to
reveal such change. Furthermore our
non-interrupting recommendation keep users
focusing on their urgent modeling jobs while it
provide worthy modeling tips to help them reach
higher productivity.

5.1. Finding the change when it happens
Our goal is to recommend subtext change only.



For example the original operation
“recommendApplication” in our Rule System
links to at least two concepts, “recommend” and
“application”, and we want only recommendations
about the change of “Application” but to avoid
ones of “recommend” if there’s just
“recommendApplication” changed to
“recommendExecution”.

Levenshtein Algorithm is an ideal way for
detecting such partial changes. First we align
original and modified Label text as well as the
algorithm does and retrieve a series of Levenshtein
Editings. Secondly we collect subtexts with the
Editings costing larger than 0, for now, as Likely
Changing Boundaries. These Boundaries are just
the text unit for concept linking. Hence the
difference between original and modified
text-concept linking is found.

Figure 6. Finding the modified subtexts (i.e.,
Likely Changing Boundaries) in an original

text.

5.2. Recommendations and hints
Recommendation hints notify the existence of

recommendations without interfering users’
current modeling operations.

In a concept change to the original text, for the
trigger Labels their concept links are eliminated
due to the change and so are their original attached
recommendations; for the recommender Labels
recommendations are directed to show off via the
links. For the present, recommendations reveal
only the causes and no objects of model
synchronization.

5.3. Showing hints/recommendations on
GMF editors

Shuttle displays hints and recommendations
right on Labels for a more comprehensive, friendly
and productive modeling experience. In GMF
Decoration Service a Decorator Target (i.e., our
Label) is responsible for printing decorations on
itself. We treat hints as GMF Decorations, which
can be hooked into Labels and displayed later
when any recommendation is generated and
attached to these Labels.

We use WrapLabel tooltips to carry
recommendations for Labels. Cooperating with
hints, tooltips that show on mouse hovering make
Shuttle not interrupt user’s current work and idea.
And later on users can totally determine which
recommendation to apply.

6. Conclusion

6.1. Shuttle in a nutshell
Our system finally looks like Figure 7. The

system operates in three stages, where stage I is
right described in section 2, stage II in section 3
and stage III in both section 4 and 5. After
initializing, Shuttle collects GMF Labels of
interest from editors and binds listeners to those
Labels during stage I to sense future text changes.
In stage II we detect text boundaries, search
WordNet with sub-text for Synset concepts and
hence link Labels and concepts. Once any linked
Label is changed, the linkage, or rule, is triggered
to open stage III. And some synchronization
recommendations are prepared for the other Labels
through the triggered rule.

Note that in Figure 7 editor A and B are typical
GMF editors. They are not components of Shuttle.
Neither Shuttle designs any proprietary GMF
editor. Shuttle is intentionally pure functionality
enhancement for every GMF editor. And this
policy makes Shuttle work on possibly all GMF
editors with the least efforts.

6.2. Future works
On the road to ideal model synchronization

Shuttle is just at the beginning. More specifically,
what we describe in section 4 are ‘half’ rules.
Comparing to rules written in general rule
languages, a Shuttle rule functions no enforcement.
We want to extend such half rules to full ones to
enforce recommendations. That may make our
recommendations truly “recommend” the change
of target Label text, or the suggested objects of
synchronization, in the future.

Since we have chosen such uncertain semantic
analysis to detect synchronization relations, recall
and precision measurement from information
retrieval becomes necessary for proving its
effectiveness. It’s expectable to see high recall but
low precision after using our approach since
natural language terms used in modeling are
highly regulated. In the future we want to provide
some relative experimental results for reference. In
the next we may use machine learning skills to
improve Shuttle’s precision. Allowing custom
even structural rules may improve it too.



act Current Logic

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version EA 7.1 Unregistered Trial Version

initializing Shuttle

natural language sync . rule inference

Stage II: linking element and concepts

element property

Stage I: monitoring MPM
elements

element property

Shuttle starting
initializing

JWI

looking up

Dictionary

searching

concept

GMF editor A

GMF editor Bregistering

listener(s)

retriev ing

element

properties

detecting

word

boundary

extended

searching

concepts

final direct

linking

Stage III: triggering & matching
rule

generating

recommendation

«datastore»

JWI W ordNet

Dictionary

rules

showing

recommendation

listener notified

(property edited)

recommendation

interested

showing

recommendation hint

recommendation

Figure 7. The UML Activity Diagram of Shuttle

Also as an instant tool efficiency improvement
is one of our continuous works. Detailed
performance issues will be addressed in the future.

6.2.1. Structural concepts/rules. This is our
ultimate goal of adopting rule architecture – to use
knowledge reasoners with general rules to achieve
more intelligent model synchronization. We will
monitor not only Labels, but Shapes and
Connections; not only text, but all kinds of model
element properties. The way is to link models and
ontologies on the basis of our achievement of
WordNet Synset concept linking.

Figure 8. Linking model and ontology. The
ontology (lower one) is from [19]錯誤! 找不到

參照來源。 and assuming the model is about

an object class in textual view.

As depicted in Figure 8, if we can link both

model element “CompoundWordBreakIterator”
and ontology element “CompoundWord” to Synset
concept X and Y, then via common concepts X
and Y the host model and ontology get linked.
Once ontologies are able to bind to models, rules,
like ones written in Semantic Web Rule Language,
operating on ontologies shall more easily reflect
their inference results on models through the
common bounded ontologies.

References
[1] “gmf - GRAPHICAL MODELING

FRAMEWORK”, available: http://www.
eclipse.org/gmf/, 2006, accessed on 2006/7/2.

[2] “About WordNet”, available: http://wordnet.
princeton.edu/, accessed on 2007/1/16.

[3] “WNSEARCH(3WN) manual page”, available:
http://wordnet.princeton.edu/man/wnsearch.3
WN, accessed on 2007/7/27.

[4] Wikipedia contributors, “Code refactoring”,
available: http://en.wikipedia.org/wiki/
Refactoring, 2007/7/4, accessed on 2007/7/13.

[5] S. Violet, “Data binding”, Sun Microsystems,
Inc., available: http://developers.sun.com/
learning/javaoneonline/2006/desktop/TS-1594.
pdf.

[6] D. Orme, M. Ward, B. Wellhöfer , B. Reynolds
and others, “JFace data binding”, available:
http://wiki.eclipse.org/index.php/JFace_Data_
Binding, 2007/4/7, accessed on 2007/7/13.

[7] A. Henriksson and H. Larsson, “A definition of

http://wordnet/
http://en.wikipedia.org/wiki/
http://developers.sun.com/ learning/
http://developers.sun.com/ learning/


round-trip engineering”, 2003, University of
Linköping, Sweden.

[8] “Visual Paradigm”, available: http://www.
visual-paradigm.com/, 2006/12/4, accessed on
2007/1/16.

[9] Tiger Development Team, “Tiger project”,
available: http://tfs.cs.tu-berlin.de/~tigerprj/,
accessed on 2006/ 8/11.

[10] “GRaphs for Object-Oriented VErification
(GROOVE)”, available: http://groove.
sourceforge.net/groove-index.html, accessed
on 2006/8/10.

[11] H. Larsson and K. Burbeck, “CODEX - an
automatic model view controller engineering
system”, Presented at The Workshop on Model
Driven Architecture: Foundations and
Applications 2003, CTIT Technical Report
TR–CTIT–03–27, pp. 37-48, available:
http://trese.cs.utwente.nl/mdafa2003/proceedin
gs.pdf.

[12] Eclipse Foundation Inc., “VIATRA2
subproject”, available: http://dev.eclipse.org/
viewcvs/indextech.cgi/~checkout~/gmt-home/s
ubprojects/VIATRA2/index.html, 2006/7/28,
accessed on 2006/9/5.

[13] “Concept search: Cutting large keyword
searches down to size”, ASBMB News,
HighWire Press, available: http://highwire.

stanford.edu/inthepress/asbmb/asbmb_2003ma
r.dtl, 2003/3.

[14] Y. P., D. Roy and R. Gronback, “GMF
tutorial”, available: http://wiki.eclipse.org/
GMF_Tutorial, 2007/4/24, accessed on
2007/7/28.

[15] “Developer Guide to the GMF Runtime
Framework”, available: http://help.eclipse.org/
help32/index.jsp?topic=/org.eclipse.gmf.doc/pr
og-guide/runtime/Developer%20Guide%20to%
20Diagram%20Runtime.html, 2005, accessed
on 2007/4/16.

[16] “Presentation Decorator Providers”,
available: http://help.eclipse.org/help32/topic/
org.eclipse.gmf.doc/reference/extension-points/
org_eclipse_gmf_runtime_diagram_ui_decorat
orProviders.html, 2004, accessed on 2007/4/
16.

[17] “ICU Home Page”, available: http://www.
icu-project.org/, accessed on 2007/7/12.

[18] “WordNet Search - 3.0”, available: http://
wordnet.princeton.edu/perl/webwn?o2=&o0=1
&o7=&o5=&o1=1&o6=&o4=&o3=&s=Applic
ation&i=5&h=0010000000#c, accessed on
2008/7/30.

[19] S. Reed, “Open cyc ontology”, available:
http://www.cyc.com/2003/04/01/cyc, 2003/3/
31, accessed on 2007/7/ 28.

http://trese.cs.utwente.nl/mdafa2003
http://dev.eclipse.org/ viewcvs/indextech
http://dev.eclipse.org/ viewcvs/indextech
http://wiki.eclipse.org/
http://help.eclipse.org/
http://help.eclipse.org/help32/topic/
http://www/

