
Efficient Squaring Algorithm for Embedded RISC Processors

Feng-Fu Su, Ren-Junn Hwang and Loang-Shing Huang
Department of Computer Science and Information Engineering TamKang University

Tamsui, Taipei County, Taiwan 251, R.O.C.
E-mail:lsh876@ms27.hinet.net

Abstract-Squaring X2 is a special case of
multiplication that plays an important role to
several public-key cryptosystems such as the RSA
and ECC cryptosystems. This paper proposes an
efficient squaring algorithm for embedded RISC
processors. In order to improve the performance,
we utilize the feature (multiply/accumulate unit) of
the embedded RISC processors and minimize the
number of external memory accesses. Our
squaring algorithm is 59-72% faster than Yang et
al.s for the range of bit-length from 1024 to 8192
by Texas Instruments TMS320C55x DSP.

Keywords: Squaring algorithm, Exponentiation
algorithm, Embedded system.

1. Introduction

Squaring, i.e. multiplying a number by itself, is
the main operation in the exponentiation. There are
many cryptographic methods, including RSA
cryptosystem [5], elliptic curve cryptography [3],
and so on, that are based on the exponentiation
computation. The standard procedure for
exponentiation operation requires many
multiplications and squarings. The squaring takes
most of the computation cost of an exponentiation
operation. The times of squaring in the
computation of Xe are dependent on the bit length
of e. The exponent of RSA computation should be
a large integer by security consideration. Therefore,
squaring large integer is a key factor in the
performance of many public key cryptosystems.

In squaring a large integer, i.e. X2 = (xn-1, xn-2,
, x1, x0)b

2, many cross-product terms of the form
xi xj and xj xi are equivalent. They need to be
computed only once and then left shifted in order
to be doubled. An n-digit squaring operation is
performed using only (n2 + n)/2 single-precision
multiplications. Consequently, the squaring

operation is more efficient than the multiplication
operation. In 2004, Yang et al. proposed a new
efficient squaring algorithm that fixes the
error-indexing bug of the Guajardo-Parr squaring
algorithm [2, 8]. However, their algorithm needs
many external memory accesses in implementing
it. This algorithm is not suitable for applying to
embedded RISC processors.

In the embedded RISC processor, such as
digital signal processor (DSP), the time consuming
of multiply instruction is the same as load/store
instruction [1]. If the squaring algorithm requires
fewer multiply instructions or fewer load/store
instructions, it enhances the computation
performance. We improve the squaring algorithm
by minimizing the number of external memory
accesses to enhance the computation performance
of the embedded RISC processors in the related
computation. Our implementation result shows
that the performance of our improved squaring
algorithm is nearly 2.5 times faster in comparison
with the Yang et al.s squaring algorithm on the
embedded RISC processors.

The rest of this paper is organized as follows: in
section 2, we first review the Yang et al.s squaring
algorithm. In section 3, we present an efficient
squaring algorithm. The details of our
implementation results are described in section 4.
Finally we conclude this paper in section 5.

2. Yang et al.s squaring algorithm

In 2004, Yang et al. proposed an efficient
squaring algorithm, Algorithm 1, to avoid both the
improper carry handing bug of the standard
squaring algorithm and the error-indexing bug of
the Guajardo-Paar squaring algorithm [8].

Algorithm 1: Yang et al.s squaring algorithm
Input: X = (xn-1, xn-2, , x1, x0)b
Output: Z = (z2n-1, z2n-2, , z1, z0)b

1. (z2n-1, z2n-2, , z1, z0)b (0, 0, , 0, 0)b
2. for i = 0 to n-1
2.1 c 0
2.2 for j = i+1 to n-1
2.2.1 (c, s) zi+j + xjxi + c
2.2.2 zi+j s
2.3 zi+n c
3. Z 2Z
4. c 0
5. for i = 0 to n-1
5.1 (c, s) z2i + xixi + c, z2i s
5.2 (c, s) z2i+1 + c, z2i+1 s
6. Return Z = (z2n-1, z2n-2, , z1, z0)b

The algorithm computes Z = X2. The capital

letters, such as X, Z, represent multiple precision
integers. For example, X is a multiple precision
integer which can be written as an array (xn-1, xn-2,
, x1, x0)b consisting of n digits (b is the digital
base, 0 xi < b). The lowercase letters, such as x, z,
c, s, denote single precision integers. Yang et al.
claimed that their algorithm is accurate and
efficient [8]. However, we find that the steps 2.2,
2.3, 3, and 5 of algorithm 1 require many memory
accesses. Memory access is time-consuming
because it must switch on highly capacitive
address and data buses, row and column decode
logic, and data lines with a high fan-out [4]. Yang
et al.s squaring algorithm is not adopted to
implement on the embedded RISC processors.

3. Our efficient squaring algorithm

In this section, we propose a new efficient
squaring algorithm for the embedded RISC
processor. In the embedded RISC processor, the
time consuming of multiply instructions are the
same as load/store instructions. Load and store
instructions are more expensive than other
instructions that involve just register accessing.
Our improved squaring algorithm, Algorithm 2,
minimizes the number of external memory
accesses to enhance the efficiency of performing
related operation in the embedded RISC processor.

Algorithm 2: Our improved squaring algorithm
Input: X = (xn-1, xn-2, , x1, x0)b
Output: Z = (z2n-1, z2n-2, , z1, z0)b
1. (z2n-1, z2n-2, , z1, z0)b (0, 0, , 0, 0)b, (p, q, r)
 (0, 0, 0)
2. for i = 1 to n-1
2.1 for j = 0 to (i – 1)/2
2.1.1 (p, q, r) (p, q, r) + 2xjxi-j
2.2 zi r

2.3 r q, q p, p 0
3. for i = n to 2n-3
3.1 for j = (i-n+1) to (i-1)/2
3.1.1 (p, q, r) (p, q, r) + 2xjxi-j
3.2 zi r
3.3 r q, q p, p 0
4. z2n-1 q
5. for i = 0 to n-1
5.1 (q, r) z2i + xixi, z2i r
5.2 (q, r) z2i+1 + q, z2i+1 r
6. Return Z = (z2n-1, z2n-2, , z1, z0)b

Our improved algorithm is used to implement

long integer squaring on processors with a
multiply/accumulate (MAC) unit [6]. Most
embedded RISC processors (DSPs) feature a
multiply/accumulate (MAC) unit with a word
“wide” accumulator so that a certain number of
products can be accumulated without loss of
precision. The triple (p, q, r) of Algorithm 2
represents registers because of 2xjxi-j being the
result of a triple-precision integer. The operations
of Steps 2.3 and 3.3 is just a digit right-shift of (p,
q, r). The most costly computation of Algorithm 2
is the execution of Steps 2.1 and 3.1. After
finishing Step 2.1 or 3.1, we can get one result (i.e.
r) and output it (Step 2.2 or 3.2). Because of only
one memory access (Step 2.2 and 3.2 totally need
2n times) and then get one result, our proposed
algorithm is faster than Algorithm 1 (Step 2.2.2 of

Algorithm 1 totally needs
(1)

2

n n
times).

4. Implementation results
To measure the performance of our improved

squaring algorithm together with Yang et al.s, we
implemented these two algorithms on the Texas
Instruments TMS320C55x DSP [7]. The DSP
includes two MACs, four independent 40-bit
accumulators, a 40-bit ALU, a 16-bit ALU, a
40-bit shifter, and so on. The program codes are
implemented by assembler language. In the given
experimental analysis, the multiplier X is from
1024 to 8192 bits long. The bit length of RSA
computation should be larger than 1024 by
security considerations. Numbers of CPU clock
cycles for realization of these two squaring
algorithm are given in Table 1. The forth column
of Table 1 shows our improved squaring algorithm
is 59-72% faster than Yang et al.s for the range of
bit-length from 1024 to 8192.

In other words, our improved algorithm needs
only 41% of the computational cost needed by the
Yang et al.s for a 1024-bit squaring. It is

noteworthy that our algorithm can significantly
improve the squaring performance for the
embedded RISC processors. That is to say, the
speed of our improved squaring algorithm is
almost 2.5 times faster than that of the Yang et
al.s.

5. Conclusion

This paper proposes an efficient squaring
algorithm that is suitable for the embedded RISC
processors. Our squaring algorithm is based on
minimizing the number of external memory
accesses. Our computational performance analysis
shows that our squaring algorithm is 59-72% faster
than Yang et al.s for the range of bit-length from
1024 to 8192 on the Texas Instruments
TMS320C55x family of digital signal processors.
In a word, the speed of our squaring algorithm is
almost 2.5 times faster than that of the Yang et
al.s. It is noteworthy that our algorithm can
significantly improve the squaring performance for
the embedded RISC processors.

ACKNOWLEDGEMENTS

This work was partially supported by the
iCAST project sponsored by the National Science
Council, Taiwan, under the grants
no.97-2221-E-032-019.

References
[1] Johann Groschädl. Roberto M. Avanzi, Erkay
Savas, and Stefan Tillich, ‘Energy-efficient
software implementation of long integer modular
arithmetic’, CHES 2005, LNCS 3659, 2005,
pp.75-90
[2] J. Guajardo and C. Paar, ‘Modified squaring
algorithm’, Available from URL:
http://citeseer.ist.psu.edu/672729.htm
[3] Koyama K, Maurer U, Okamoto, and Vanstone
SA, ‘New public-key schemes based on elliptic
curves over the ring Zn’, Proc. CRYPTO’91, Santa
Barbara, 1991, pp.252-266
[4] K. Roy and M.C. Johnson, ‘Software design
for low power’, Lower power design in deep
submicron electronics, vol. 337 of NATO Advanced
science institutes series, chapter 6.3, 1997,
pp.433-460
[5] R. Rivest, A. Shamir, and L. Adleman, ‘A
method for obtaining digital signature and
public-key cryptosystems’, Commun. of ACM,
1978, vol.21, no.2, pp.120-126
[6] S.R. Dussé and B. S. Kaliski, ‘A cryptographic

library for Motorola DSP 56000’, Proc.
EUROCRYPT ‘90, 1991, pp.203-213
[7] Texas Instruments, Inc., ‘TMS320C5510’,
Available from URL:
http://www.compactpci-systems.com/products/sear
ch/fm/id/?6812
[8] Wu-Chuan Yang, Peng-Yueh Hseih, and
Chi-Sung Laih, ‘Efficient squaring of large
integers’, IEICE Trans. Fundamentals, 2004,
vol.E87-A, no.5, pp.1189-1192

Table 1. Numbers of CPU clock cycles for
realizing two squaring algorithms

Length
(bits)

Yang et al.s
(clock cycles)

Ours
(clock cycles)

Speedup
(%)

1024 5392 2221 59
2048 18981 6509 66
4096 70725 21197 70
8192 272516 75149 72

