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Abstract-Squaring X2 is a special case of 
multiplication that plays an important role to 
several public-key cryptosystems such as the RSA 
and ECC cryptosystems. This paper proposes an 
efficient squaring algorithm for embedded RISC 
processors. In order to improve the performance, 
we utilize the feature (multiply/accumulate unit) of 
the embedded RISC processors and minimize the 
number of external memory accesses. Our 
squaring algorithm is 59-72% faster than Yang et 
al.s for the range of bit-length from 1024 to 8192 
by Texas Instruments TMS320C55x DSP. 
 
 
Keywords: Squaring algorithm, Exponentiation 
algorithm, Embedded system.  
 
 
1. Introduction  

Squaring, i.e. multiplying a number by itself, is 
the main operation in the exponentiation. There are 
many cryptographic methods, including RSA 
cryptosystem [5], elliptic curve cryptography [3], 
and so on, that are based on the exponentiation 
computation. The standard procedure for 
exponentiation operation requires many 
multiplications and squarings. The squaring takes 
most of the computation cost of an exponentiation 
operation. The times of squaring in the 
computation of Xe are dependent on the bit length 
of e. The exponent of RSA computation should be 
a large integer by security consideration. Therefore, 
squaring large integer is a key factor in the 
performance of many public key cryptosystems. 

In squaring a large integer, i.e. X2 = (xn-1, xn-2, 
, x1, x0)b

2, many cross-product terms of the form 
xi  xj and xj  xi are equivalent. They need to be 
computed only once and then left shifted in order 
to be doubled. An n-digit squaring operation is 
performed using only (n2 + n)/2 single-precision 
multiplications. Consequently, the squaring 

operation is more efficient than the multiplication 
operation. In 2004, Yang et al. proposed a new 
efficient squaring algorithm that fixes the 
error-indexing bug of the Guajardo-Parr squaring 
algorithm [2, 8]. However, their algorithm needs 
many external memory accesses in implementing 
it. This algorithm is not suitable for applying to 
embedded RISC processors. 

In the embedded RISC processor, such as 
digital signal processor (DSP), the time consuming 
of multiply instruction is the same as load/store 
instruction [1]. If the squaring algorithm requires 
fewer multiply instructions or fewer load/store 
instructions, it enhances the computation 
performance. We improve the squaring algorithm 
by minimizing the number of external memory 
accesses to enhance the computation performance 
of the embedded RISC processors in the related 
computation. Our implementation result shows 
that the performance of our improved squaring 
algorithm is nearly 2.5 times faster in comparison 
with the Yang et al.s squaring algorithm on the 
embedded RISC processors. 

The rest of this paper is organized as follows: in 
section 2, we first review the Yang et al.s squaring 
algorithm. In section 3, we present an efficient 
squaring algorithm. The details of our 
implementation results are described in section 4. 
Finally we conclude this paper in section 5. 

 
 
2. Yang et al.s squaring algorithm  

In 2004, Yang et al. proposed an efficient 
squaring algorithm, Algorithm 1, to avoid both the 
improper carry handing bug of the standard 
squaring algorithm and the error-indexing bug of 
the Guajardo-Paar squaring algorithm [8]. 
 
Algorithm 1: Yang et al.s squaring algorithm 
Input: X = (xn-1, xn-2, , x1, x0)b 
Output: Z = (z2n-1, z2n-2, , z1, z0)b 



1. (z2n-1, z2n-2, , z1, z0)b  (0, 0, , 0, 0)b 
2. for i = 0 to n-1 
2.1 c  0 
2.2 for j = i+1 to n-1 
2.2.1 (c, s)  zi+j + xjxi + c 
2.2.2 zi+j  s 
2.3 zi+n  c 
3. Z  2Z 
4. c  0 
5. for i = 0 to n-1 
5.1 (c, s)  z2i + xixi + c, z2i  s 
5.2 (c, s)  z2i+1 + c, z2i+1  s 
6. Return Z = (z2n-1, z2n-2, , z1, z0)b 

 
The algorithm computes Z = X2. The capital 

letters, such as X, Z, represent multiple precision 
integers. For example, X is a multiple precision 
integer which can be written as an array (xn-1, xn-2, 
, x1, x0)b consisting of n digits ( b is the digital 
base, 0  xi < b). The lowercase letters, such as x, z, 
c, s, denote single precision integers. Yang et al. 
claimed that their algorithm is accurate and 
efficient [8]. However, we find that the steps 2.2, 
2.3, 3, and 5 of algorithm 1 require many memory 
accesses. Memory access is time-consuming 
because it must switch on highly capacitive 
address and data buses, row and column decode 
logic, and data lines with a high fan-out [4]. Yang 
et al.s squaring algorithm is not adopted to 
implement on the embedded RISC processors.  
 
 
3. Our efficient squaring algorithm  

In this section, we propose a new efficient 
squaring algorithm for the embedded RISC 
processor. In the embedded RISC processor, the 
time consuming of multiply instructions are the 
same as load/store instructions. Load and store 
instructions are more expensive than other 
instructions that involve just register accessing. 
Our improved squaring algorithm, Algorithm 2, 
minimizes the number of external memory 
accesses to enhance the efficiency of performing 
related operation in the embedded RISC processor. 

 
Algorithm 2: Our improved squaring algorithm 
Input: X = (xn-1, xn-2, , x1, x0)b 
Output: Z = (z2n-1, z2n-2, , z1, z0)b 
1. (z2n-1, z2n-2, , z1, z0)b  (0, 0, , 0, 0)b, (p, q, r) 
 (0, 0, 0) 
2. for i = 1 to n-1 
2.1 for j = 0 to (i – 1)/2 
2.1.1 (p, q, r)  (p, q, r) + 2xjxi-j 
2.2 zi  r 

2.3 r  q, q  p, p  0 
3. for i = n to 2n-3 
3.1 for j = (i-n+1) to (i-1)/2 
3.1.1 (p, q, r)  (p, q, r) + 2xjxi-j 
3.2 zi  r 
3.3 r  q, q  p, p  0 
4. z2n-1  q 
5. for i = 0 to n-1 
5.1 (q, r)  z2i + xixi, z2i  r 
5.2 (q, r)  z2i+1 + q, z2i+1  r 
6. Return Z = (z2n-1, z2n-2, , z1, z0)b 

 
Our improved algorithm is used to implement 

long integer squaring on processors with a 
multiply/accumulate (MAC) unit [6]. Most 
embedded RISC processors (DSPs) feature a 
multiply/accumulate (MAC) unit with a word 
“wide” accumulator so that a certain number of 
products can be accumulated without loss of 
precision. The triple (p, q, r) of Algorithm 2 
represents registers because of 2xjxi-j being the 
result of a triple-precision integer. The operations 
of Steps 2.3 and 3.3 is just a digit right-shift of (p, 
q, r). The most costly computation of Algorithm 2 
is the execution of Steps 2.1 and 3.1. After 
finishing Step 2.1 or 3.1, we can get one result (i.e. 
r) and output it (Step 2.2 or 3.2). Because of only 
one memory access (Step 2.2 and 3.2 totally need 
2n times) and then get one result, our proposed 
algorithm is faster than Algorithm 1 (Step 2.2.2 of 

Algorithm 1 totally needs 
( 1)

2

n n 
times). 

  
 

4. Implementation results  
To measure the performance of our improved 

squaring algorithm together with Yang et al.s, we 
implemented these two algorithms on the Texas 
Instruments TMS320C55x DSP [7]. The DSP 
includes two MACs, four independent 40-bit 
accumulators, a 40-bit ALU, a 16-bit ALU, a 
40-bit shifter, and so on. The program codes are 
implemented by assembler language. In the given 
experimental analysis, the multiplier X is from 
1024 to 8192 bits long. The bit length of RSA 
computation should be larger than 1024 by 
security considerations. Numbers of CPU clock 
cycles for realization of these two squaring 
algorithm are given in Table 1. The forth column 
of Table 1 shows our improved squaring algorithm 
is 59-72% faster than Yang et al.s for the range of 
bit-length from 1024 to 8192. 

In other words, our improved algorithm needs 
only 41% of the computational cost needed by the 
Yang et al.s for a 1024-bit squaring. It is 



noteworthy that our algorithm can significantly 
improve the squaring performance for the 
embedded RISC processors. That is to say, the 
speed of our improved squaring algorithm is 
almost 2.5 times faster than that of the Yang et 
al.s. 

  
 
5. Conclusion  

This paper proposes an efficient squaring 
algorithm that is suitable for the embedded RISC 
processors. Our squaring algorithm is based on 
minimizing the number of external memory 
accesses. Our computational performance analysis 
shows that our squaring algorithm is 59-72% faster 
than Yang et al.s for the range of bit-length from 
1024 to 8192 on the Texas Instruments 
TMS320C55x family of digital signal processors. 
In a word, the speed of our squaring algorithm is 
almost 2.5 times faster than that of the Yang et 
al.s. It is noteworthy that our algorithm can 
significantly improve the squaring performance for 
the embedded RISC processors.  
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Table 1. Numbers of CPU clock cycles for 
realizing two squaring algorithms 

Length 
(bits)

Yang et al.s 
(clock cycles)

Ours  
(clock cycles) 

Speedup 
(%) 

1024 5392 2221 59 
2048 18981 6509 66 
4096 70725 21197 70 
8192 272516 75149 72 

 


