
An Energy-Efficient En-route Filtering False Data Scheme in Wireless
Sensor Networks

Ren-Junn Hwang Yu-Hang Liu Chueh Wang
Department of computer Science and Information Engineering, Tamkang University,

Tamsui, Taipei, Taiwan 251, R.O.C
junhwang@ms35.hinet.net 692191512@s92.tku.edu.tw ufjl1785@ms7.hinet.net

Abstract- Compromised nodes could launch several
attacks in wireless sensor network. The easiest way is to
fabricate a report that doesn’t happen actually or to send
incorrect data. Such attack will result in not only false
alarm but also the energy consumption of intermediate
nodes to forward this report. There are many schemes
proposed to solve this problem. They use the idea that a
legitimate report must consist of several endorsements
given by multiple surrounding nodes that also sense the
same event. However, the compromised node also can
give false endorsement on real event causing the real
report to be considered a false data and be filtered out.
We proposed a filtering scheme to counter some related
attacks, analyzed filtering effectiveness, resiliency,
storage and energy saving, and held simulation to show it
is more efficient than the other solutions.
Keywords: wireless sensor network, en-route filter,
security, false data injection.
1. Introduction

The wireless sensor networks (WSNs) have been paid
much attention in these years. They could apply to detect
different environments such as military surveillance,
monitoring forest fire, etc. The main functionality of
WSNs is to detect the events in the environments and to
report them to the sink. Sending fabricated reports that did
not occur to the sink is called false data injection attack.
SEF[12], IHA[15], LBRS[11], and PVBS[8] filter false
data by the endorsements of multiple nodes, i.e., message
authentication codes (MAC). Wrong endorsement attack,
mentioned in PVBS[8], the attackers generating the false
MACs, can be verified to filter out. We proposed a data
filtering scheme to prevent above two kinds of attacks,
false data injection attack and wrong endorsement attack.
2. Related work

There are some research results related to filter false
data scheme. SEF[12] is the first paper to address the
false data injection attack. IHA[15], LBRS[11] and
PVBS[8] propose improved schemes based on the
framework of the SEF. However, the main drawback in
SEF is that if the adversary has collected a number of
compromised nodes anywhere, the adversary can claim
events happening in any place without the risk of being
filtered. In other words, the resiliency in SEF is not well.
IHA[15] also has poor resiliency. If the attacker collects
more than t compromised nodes, the schemes will fail.

Besides, all keys are derived from the several secret keys,
so it must ensure the initial phase is secure. The security
problem is also in PVBS[8], because all the keys are
assigned to each node by the sink after cluster formation.
We comment it impractical since it communicates a lot to
transmit keys and it must ensure the transmission in
secure channel. What’s worse, if some of clusters changes,
the sink must assign keys again.
3. Preliminaries
3.1 Assumption and the network model

Consider a sensor network of a large number
energy-constrained sensor nodes and a resource-abundant
sink. Sensor nodes do not move after deployment. The
sensor nodes are grouped into exclusive clusters by a
cluster model. The sensor network contains multiple
clusters. The sensor nodes are deployed in high density,
so that each event can be detected by many sensors
simultaneously. There are at least s sensors detecting the
same event in the cluster. It is a basic assumption for
many security-sensitive WSNs applications, such as [7] [8]
[9] [11] [12] [14] [15].

In a cluster, one node is elected to be the cluster-head
(CH), and CH assigns a unique ID to its member, which
the ID is only used in this cluster. After cluster formation,
every node should know which cluster it belongs to, who
CH is, and what its ID is in this cluster. There are many
ways to form clusters, elect CHs, and get unique ID, such
as [4] [6] [13].

We assume every CH could know the routing path to
the sink. Especially, the CH could know each relay node
on the path and the number of hops between the relay
node and the CH. There are many ways to achieve it, such
as DSR[5]. On the same issue, PVBS[8] also makes the
same assumption.
3.2 The attacker model

We assume that the attacker may compromise a node
by physically capture or other ways and then obtain the
security information installed in the node. The attacker
cannot compromise the sink since the protection at the
sink is powerful enough. The attacker will use the
compromised nodes to inject false reports into the
wireless sensor network and make the damages as
mentioned before. They also attack the real report: when a
sensor node needs endorsements of other nodes on a real
event, the compromised nodes give false endorsements.

We assume the attacker would launch this attack to injure
the real report.
3.3 The design objectives

For a sensor network with above assumptions and
model, the proposed scheme provides the following
functionality: 1. Filter out the false report, namely, false
data injection attack, caused by compromised nodes or
other unexpected factors. 2. Reduce the damage which
compromised nodes give false MACs on a real report,
namely, wrong endorsement attack. 3. The false report
could be filtered out en-route by the proposed scheme to
reduce the energy consumption of the intermediate nodes
to forward false reports. 4. More efficient than the related
solutions [8] [11] [12] [15].
4. The proposed scheme
4.1 Notations

Table 3. Notations

4.2 Basic Idea

To solve the problem that compromised nodes inject
the false data arbitrarily, the report to describe an event
needs some endorsements given by sensor nodes, i.e. the
sensor nodes give reporter the MACs of this report
generated by their secret keys individually. When the
report is forwarded on the routing path to the sink, if the
relay node keeps the same secret key, it will verify the
validity of the MACs. If there are some invalid MACs,
they will drop this report since it maybe a false data
injection attack by compromised nodes. This is the
general en-route filtering framework used in [8] [12] [11]
[15] and ours. In [12], it is dependent on the probability of
key sharing. We introduce the Blom’s key establishment
scheme [1] to ensure any two nodes would share a
pairwised key.

The CH of the proposed scheme should publish a
message. The message includes the verifiers’ IDs, i.e., the
intermediate sensor nodes, are chosen from the CH’s
routing path to the sink. We name this message “verifier
list”. CH has duty of maintaining its verifier list for some
situation, e.g. the using times of the verifier list exceeds
the predefined threshold, or the CH has gotten some
warnings from the sink to update. By verifier list, the
sensor node could find out a verifier’s ID to derive a
shared key to generate a MAC of its sensing data. On the
other hand, when a report is forwarding to the sink, the
relay node could know whether it is the verifier or not and
which shared key it should derive by the information of
the report.
4.3 Blom’s scheme

 Now, we briefly introduce Blom’s scheme [1] here
and readers can refer to [2] [3] for details. It enables each
pair of nodes in the network to establish a pairwised key.
It has the property called “λ-secure”, where λ is a security
parameter. It means that if no more than λ nodes are
compromised, all other communication links of
non-compromised nodes remain secure.

A symmetric matrix KN×N includes all the pairwised
keys of N nodes, which each element kij or kji is the key
shared between node i and node j. The matrix K is
derived from (DG)TG, where the matrix D(λ+1)×(λ+1) is
symmetric and secret, and the matrix G(λ+1)×N is public.
The matrix AN×(λ+1) created as A= (DG)T is also a secret
matrix. Before deployment, each node i stores the ith row
of the matrix A and the ith column of matrix G. After
deployment, each pair of nodes i and j can compute a
pairwised key kij = kji by exchanging their columns and
computing the dot product of their own row and the
column of the other’s. It is easy to see that:

K=A．G=(DG)T．G=G TD T．G=G TD．G=(A．G)T=KT,
Due to the matrix K is a symmetric, each pair of nodes

can derive the same key.
 The public matrix G is also designed to be a

Vandermonde matrix derived from a seed, which is
mentioned in [10]. It reduces the communication and
storage overhead but needs more computation. What the
node i needs to store are the row i of matrix A and the
seed. The node which wants to get the columns of other
nodes can use the seed to derive it. Finally, if any node i
want to establish a pairwised key with other node j, the
node i only needs to know the ID of node j.
4.4 Proposed scheme

The proposed scheme includes five phases:
initialization phase, publishing verifier list phase, report
generation phase, en-route filtering phase and sink
verification phase.

Initialization phase: Each sensor is assigned a
unique ID and key material to establish key by Blom’s
scheme. Each sensor starts to cooperate with its neighbors
to form a cluster. The CH is elected, and assigned a
unique ID to its members; the ID is used only in this
cluster.

Publishing verifier list phase: The CH has to
determine and publish a verifier list. This verifier list
includes IDs of the intermediate sensor nodes which are
chosen by the CH. The CH also arranges these IDs
randomly. The CH will alter and publish the verifier list
when the verifier list has been used exceeds the
predefined threshold, or the CH has got sink’s warnings to
update.
 To determine the verifier list, the CH establishes a
table first to maintain four factors of each sensor node on
its routing path. The four factors are: Hops, Times,
Warning, and Sum. Hops, is hops from the node to the CH.
Times, is times the nodes has been chosen into the verifier
list. The factor of each node is set to zero initially. When
a node is chosen into the verifier list, this factor of the

node will be increased by the CH. Warning, is warnings
have been received from the sink. When the CH receives
the warnings, it will increase the factor of corresponding
nodes. Sum, is the weighted sum of above three factors.
The weights of above three values are hopsWeight,
timesWeight, warningWeight, respectively.

Sum = Hops×hopsWeight + Times×timesWeight +
Warning×warningWeight

CH gets priorities of nodes by comparing the values of
Sums. The smaller the Sum is, the higher the priority is.
Sum_MAX, the upper-bound of Sum is defined, i.e., if Sum
of a relay node is larger than Sum_MAX, CH will no
longer choose it into verifier list. When the CH needs to
determine and publish a new verifier list, it will compare
the value of Sum of each node in the table. After
published verifier list, CH increases Times of each node in
the verifier list and recomputed the value of Sum.

Such design is very flexible for the different users
to set the weight according to their requirements. By
increasing hopsWeight, the verifiers might be closer to the
CH; by increasing timesWeight, the percentage of each
node chosen might be more average. In our
recommendation, we set the values of hopsWeight and
warningWeight to be equal to the number of hops
between the CH and the sink and timesWeight to 1.
 If Sum of some nodes are equal, we need to
compare the other values: Warning→Hops→Times. There
is also a case that we couldn’t find out s nodes e.g. the CH
is too close to the sink or the network has been running a
long time.

Report generation phase: When an event occurs,
there are three important roles collaborating to generate
the final report: (1) the sponsor, who is the first node
senses the event; (2) the endorsers, who are the nodes also
senses the same event; (3) the CH, who is the role to
collect sensing data and endorsements from its members.
Each sensor node determines its verifier ID from the
verifier list by

r = MID mod s
where MID is the ID of the node i using in the cluster.
The node i will take r-th ID from the published verifier
list. Without loss of generality, we assume the verifier of
the node i is the node j in the following statements. By
this ID, the node i can derive a shared key, Ki,j , with the
node j. The shard key will be used to generate an MAC
for the event report. The detailed steps of this phase are as
the following:
Step 1: When an event happens, the sponsor broadcasts
the message:

 Reading, i, j, C(Ki,j, Reading)
where i, j is IDs pair of sensor node and verifier node, Ki,j
is the pairwise key shared between node i and j , C(.) is
the MAC function . Reading is the sensed data of the
event.
Step 2: After the other nodes receive this message,
they check it and determine whether giving the
endorsements or not, the detailed steps are as follows:

2-1: The endorsers compare the broadcasted
reading with its reading.

2-2: If the difference is within some predefined
error range, the node will generate and send the following
message to the CH.

i, j, C(Ki,j , Reading)
where C(Ki,j, Reading) is the endorsement of the Reading.
Step 3: The CH has received the data and the
endorsements from different nodes, the CH performs the
following sub-steps to check messages and determine
whether generating the event report to sink or not.
3-1: The CH first checks whether each IDs pair (i, j) is
valid or not by equation (2). If any pair is invalid, it will
drop this data immediately.
3-2: After filtering out the invalid data, if the CH has
received at least s distinct data from different nodes, it
will aggregate them to be an event report and send it to
the sink as the following format:

Reading||{i, j, C(Ki, j, Reading)}||right||wrong
where { } is a set including each IDs pair and MAC sent
by each endorser; right is number of verified valid MACs;
wrong is number of invalid MACs. right and wrong are
initially zero and maintained in the forwarding process of
the en-route filtering phase.

En-route filtering phase: When a sensor node
receives an event report in the forwarding process, it will
do the following to decide to forward or drop it.
Step 1: Check the format of this report. If invalid, drop
this report and terminate this phase; otherwise, continue
Step 2.
Step 2: Check whether it is one of verifiers of this report
by examining each IDs pair (i, j). If yes, continue Step 3
to do more checks; otherwise, drop the report and
terminate this phase. .
Step 3: Check whether the value of right reaches the
threshold Tt or not. If reaches, forward it; otherwise,
continue Step 4 to determine whether verifying the report
or not.
Step 4: Determine to verify or forward the report by the
Algorithm 1. If it doesn’t satisfy the condition, it forwards
the report; otherwise, continues Step 5 to verify the
report.
Step 5: Derives the Ki,j by taking the ID i into Blom’s
scheme. Another MAC of the report is generated by this
Ki,j and compared to the corresponding MAC in the event
report.
Step 6: By comparison, increase the value of right or
wrong. If the value of wrong reaches the threshold Tf,
drop this report; otherwise, forward this report.

In Step 4, we don’t force the node to verify unless it
has sufficient energy. The reason is MAC verification
takes computational cost. If the energy of the node is low,
we hope the node to keep its energy to survive. Even if
the energy is medium, we hope the node consider the
necessity of verification. i.e., how many MACs verified.
If there is only few MACs have been verified, the node
needs to do the verification of this report. The Algorithm
shows the conditions of deciding the verification.

Algorithm 1. VerifyCondition()
if energy > energyEnough then verify Report;
else if energy <energyPoor then forward Report;
else if (right + wrong) ≤ fewVerified then verify Report;
else forward Report;

The user must predefine the value of these three
parameters: energyEnough and energyPoor are lower
bound and upper bound of energy. fewVerified is the
threshold, which the node does the verification if the
energy of the node is medium and the number of verified
MACs isn’t more than it. As shown in the algorithm 1, the
relay node compares the value of fewVerified to the sum
of right and wrong. Because this sum also means the
number of MACs have been verified.

Sink verification phase: When the sink receives
the report, it checks the format of the report as relay node
does and whether endorsers belong to the same cluster or
not. It is also able to verify all the MACs in the report and
make the decision. In this phase, the sink plays a role as
final guard.

If some node is used too many times in a period, it
will send the warning to each CH against choosing the
node. The value of the warning depends on how long time
the sink wants the node to be free. If the sink wants the
node not to be chosen forever, it will send the Sum_MAX
to each CH.
5. Analysis

Here we analyze the efficiency, resiliency, and key
storage of our scheme.
5.1 Filtering effectiveness

There are many factors affecting the filtering
effectiveness. Two most important of them are (1) the
probability that attacker could cheat all the verifiers; (2)
the positions of the verifiers.

If there is only one compromised node, the
probability p1 that attacker could cheat all verifiers is:

1

1
1 , where is the length for a MAC in bits.
2

s

ep e
−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

If we choose a secure hash function to generate
MACs, the probability p1 is negligible. There is also
another case that attacker has more than one compromised
nodes, we will discuss in the section 5.2.

 The positions of verifiers depend on the verifier
list which is published by the CH. If the chosen nodes are
near the CH and have enough energy, the false report
must be filtered out in first few steps. This is what we
need because it reduces the communication overhead of
relay nodes. However, if we always choose the same
nodes to be verifiers, these nodes will consume much
energy on computation. PVBS[8] and LBRS[11] are also
in this situation. As shown in figure 4, we gather statistics
on the percentage of each relay node chosen to be verifier
when the verifier lists are published 1000 times by the
different CHs which are different distance to the sink. We
can see that most of verifiers are only 10 hops to the CH
but some verifiers are not. We also simulate how the
verifiers filter out the false reports in section 6.

Figure 4 distributions of verifiers

5.2 Resiliency
Consider the resiliency to increasing number of

compromised nodes. If there are cm compromised nodes
comes from the same cluster, we can compute the
probability p2 that the false report could cheat all verifiers
is:

2
1 , where is the length for a MAC in bits.
2

s cm

ep e
−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Thus, the probability p2 could be ignored unless the
attacker has compromised s nodes in a cluster.
5.3 Key storage

In our scheme, the key storage of each node
depends on the λ-size of the matrix which used in Blom’s
scheme. Thus, the scale of nodes in the network doesn’t
affect the key storage of each node directly. However, in
other scheme such as SEF[12], the probability of key
sharing is based on how many keys they have. If we want
to increase the filtering effectiveness of SEF, the
probability of key sharing between each pair of sensor
nodes must increase. It results in not only the increased
number of keys loaded for each sensor node, but also
more disclosure of secret information for each
compromised node. Besides, the number of key storage in
LBRS[11] and PVBS[8] are low. However, LBRS must
assume no compromised nodes happen until the location
discover and key assignment phase finish, and PVBS
takes very high cost on communication since the sink
must send the key for each node. If the network size is
large, PVBS is impractical.
6. Simulations

We use some simulations to further verify our
analysis. In our simulation, we focus on (1) filtering
effectiveness (2) resiliency (3) energy savings. We use the
following parameters in our simulation:

Table 4. Parameter setting

6.1 Filtering effectiveness

In this section, we will show the filtering

effectiveness of our scheme. As shown in table 5, we
present the filtering effectiveness under the following
cases:

Table 5. The simulation of filtering effectiveness

6.1.1. Case A. As figure 5, we could see that the mean of
hops that false reports dropped is pretty few even in the
case cm = 4. Comparing with SEF, our scheme has better
filtering effective and doesn’t change so much in the
increasing cm.

Figure 5 The filtering effectiveness (sufficient energy

and Tf = 1)
6.1.2. Case B. As shown in figure 6, we simulated with
medium energy.

Table 6. Parameter setting in energy.
Notations Value
energyEnough 75%
energyPoor 25%
fewVerified 2

It shows the filtering effectiveness of our scheme is better
than SEF slightly in the case cm=1,2,3, but worse in the
case cm=4. However, the attacker wants to achieve the
case cm=4 in our scheme is more difficult than SEF since
the CH and the sink will more check the endorsements
come from the same cluster or not.
6.1.3. Case C. As shown in figure 7, we simulate with
defense of the wrong endorsement attack. In other words,
we vary the value of Tf, which means the tolerance to
invalid endorsements. Obviously, the effect of increasing
Tf must make the filtering effectiveness down. But our
scheme can filter out the false reports in 10 hops even in
the case of Tf = 3.

Figure 6 The filtering effectiveness (middle energy
and Tf = 1)

Figure 7 The filtering effectiveness (different Tf and

sufficient energy)
6.1.4. Case D. In figure 8, we simulated both attacks with
medium energy. Filtering effectiveness doesn’t be
affected much when Tf =3, because fewVerified = 2. If the
relay nodes only have medium energy, there are only
three of the MACs will be verified at most. Thus, if one of
this three MACs is verified valid, the report will be
forward to the sink due to the value of wrong can’t reach
three. In this result, the mean of hops that false report
forwarded will increase a lot.

Figure 8 The filtering effectiveness (different Tf and

middle energy)
6.2 Resiliency

In this section, we gather the statistics of
compromised nodes in the same cluster when the attacker
has randomly compromised some nodes. We also take the
mean of the results of running 1000 times. The number of
nodes in a cluster is 10, and varies the number of nodes in
the network. Two cases, worst and average case are
shown in figure 9 and figure 10, respectively.

What we care is if there are more than 5
compromised nodes belong to the same cluster due to s =5.
As shown in the figure 9, the attacker must compromise
more than 20% of nodes in the network. On the other
hand, as figure 10, the attacker must compromise more
than 50% of nodes in the network. It shows the high
resiliency of our scheme in the case s = 5. The user can
use this simulation to determine how large the value of s
should be for different environment.

Figure 9 Resiliency (worst case)

Figure 10 Resiliency (average case)

6.3 Energy saving
Even though, we spend more energy on generating

the MACs, but it’s negligible. It takes 15 μJ computing a
RC5-based MAC in [12]. Therefore, we want to show the
energy saving is on communication.

The way of our simulation is to compute the energy
consumption ratio between protected and unprotected
scheme. We assume the energy consumption of each hops
between two nodes is equal. So the ratio is proportional to
hops. In figure 11, it shows our scheme protected could
save much of energy because it can filter out the false
report in first few hops. Even in the worse cases: (Tf =1 &
cm=4) and (Tf =2 & cm=2), they still can save 50% energy
if the number of hops between the CH and the sink is
greater than 10.
7. Conclusions

We proposed a scheme to counter the compromised
nodes generating the report on false event or giving the
false endorsements on real event.

Blom’s scheme in the key establishment is used to
generate MACs. Additionally, we provide a way to
arrange MAC pair which should be generated and verified.
In our analysis and simulations, we showed this approach
has better filtering effectiveness, resiliency and the energy
consumption than the past solutions [8] [11] [12] [15].

Figure 11 Energy saving (for communication)

ACKNOWLEDGEMENTS
This work was partially supported by the iCAST

project sponsored by the National Science Council,
Taiwan, under the grants no. NSC97-2745-P-001-001

Reference
[1]R. Blom, “An optimal class of symmetric key generation

system,” in Eurocrypt’84, Lecture Notes in Computer Science,
VOL. 209, Springer-Verlag, pp. 335-338, 1985.

[2]W. Du, J. Deng, Y. S. Han, P. K. Varshney , “A Key
Predistribution Scheme for Sensor Networks Using
Deployment Knowledge” IEEE Transactions on Dependable
and Secure Computing, VOL. 3, NO. 1, pp.62-77, 2006.

[3]W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, A. Khalili,
“A Pairwise Key Predistribution Scheme for Wireless Sensor
Networks,” ACM Transaction on Information and System
Security, VOL. 8, NO. 2, pp. 228-258, 2005.

[4]W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, “An
Application- Specific Protocol Architecture for Wireless
Microsensor Networks,” IEEE Transactions on Wireless
Communications, VOL. 1, NO. 4, pp. 660-670, 2002.

[5]D. Johnson, D.A. Maltz, J. Broch, “The dynamic source
routing protocol for mobile ad hoc networks (Internet-Draft),”
mobile ad hoc network (MANET) working group, IEFT
(1999).

[6]V. Kawadia, P. R. Kumar, “Power Control and Clustering in
Ad Hoc Networks,” In INFOCOM, 2003.

[7]S. Kumar, T. H. Lai, J. Balogh, “On k-coverage in a mostly
sleeping sensor network,” International Conference on Mobile
Computing and Networking, pp.144-158, 2004.

[8]F. Li, J. Wu, “A probabilistic voting-based filtering scheme in
wireless sensor network,” International Wireless
Communications & Mobile Computing Conference, pp.27-32,
2006.

[9]M. Ma, “Resilience of sink filtering scheme in wireless
sensor networks,” Computer Communications, VOL. 30, NO.
1, pp. 55-65, 2006.

[10]F. J. MacWilliams, N. J. A. Sloane, “The Theory of
Error-Correcting Codes.” Elsevier Science, New York. 1977.

[11]H. Yang, F. Ye, Y. Yuan, S. Lu, W. Arbaugh, “Toward
resilient security in wireless sensor networks,” Proceedings of
the 6th ACM International Symposium on Mobile ad hoc
Networking and Computing (MobiHoc), pp. 34-45, 2005.

[12]F. Ye, H. Luo, S. Lu, L. Zhang, “Statistical En-route
Filtering of Injected False Data in Sensor Networks,” IEEE
Journal on Selected Areas in Communications, VOL. 23, NO.
4, pp.839-850, 2005.

[13]O. Younis, S. Fahmy, “Distributed Clustering in Ad-hoc
Sensor Networks: A Hybrid, Energy-Efficient Approach,” In
INFOCOM, 2004.

[14]Y. Zhang, W. Liu, W. Lou, Y. Fang, “Location-Based
Compromise-Tolerant Security Mechanisms for Wireless
Sensor Networks,” IEEE Journal on Selected Areas in
Communications, VOL. 24, NO. 2, pp. 247-260, 2006.

[15]S. Zhu, S. Setia, S. Jajodia, P. Ning, “An Interleaved
Hop-by-Hop Authentication Scheme for Filtering False Data
in Sensor Networks,” in IEEE Proceedings of Symposium on
Security and Privacy, pp.259-271, 2004.

