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Abstract- Compromised nodes could launch several 
attacks in wireless sensor network. The easiest way is to 
fabricate a report that doesn’t happen actually or to send 
incorrect data. Such attack will result in not only false 
alarm but also the energy consumption of intermediate 
nodes to forward this report. There are many schemes 
proposed to solve this problem. They use the idea that a 
legitimate report must consist of several endorsements 
given by multiple surrounding nodes that also sense the 
same event. However, the compromised node also can 
give false endorsement on real event causing the real 
report to be considered a false data and be filtered out. 
We proposed a filtering scheme to counter some related 
attacks, analyzed filtering effectiveness, resiliency, 
storage and energy saving, and held simulation to show it 
is more efficient than the other solutions.  
Keywords: wireless sensor network, en-route filter, 
security, false data injection.  
1. Introduction  

The wireless sensor networks (WSNs) have been paid 
much attention in these years. They could apply to detect 
different environments such as military surveillance, 
monitoring forest fire, etc. The main functionality of 
WSNs is to detect the events in the environments and to 
report them to the sink. Sending fabricated reports that did 
not occur to the sink is called false data injection attack. 
SEF[12], IHA[15], LBRS[11], and PVBS[8] filter false 
data by the endorsements of multiple nodes, i.e., message 
authentication codes (MAC). Wrong endorsement attack, 
mentioned in PVBS[8], the attackers generating the false 
MACs, can be verified to filter out. We proposed a data 
filtering scheme to prevent above two kinds of attacks, 
false data injection attack and wrong endorsement attack. 
2. Related work 

There are some research results related to filter false 
data scheme. SEF[12] is the first paper to address the 
false data injection attack. IHA[15], LBRS[11] and 
PVBS[8] propose improved schemes based on the 
framework of the SEF. However, the main drawback in 
SEF is that if the adversary has collected a number of 
compromised nodes anywhere, the adversary can claim 
events happening in any place without the risk of being 
filtered. In other words, the resiliency in SEF is not well. 
IHA[15] also has poor resiliency. If the attacker collects 
more than t compromised nodes, the schemes will fail. 

Besides, all keys are derived from the several secret keys, 
so it must ensure the initial phase is secure. The security 
problem is also in PVBS[8], because all the keys are 
assigned to each node by the sink after cluster formation. 
We comment it impractical since it communicates a lot to 
transmit keys and it must ensure the transmission in 
secure channel. What’s worse, if some of clusters changes, 
the sink must assign keys again. 
3. Preliminaries 
3.1 Assumption and the network model 

Consider a sensor network of a large number 
energy-constrained sensor nodes and a resource-abundant 
sink. Sensor nodes do not move after deployment. The 
sensor nodes are grouped into exclusive clusters by a 
cluster model. The sensor network contains multiple 
clusters. The sensor nodes are deployed in high density, 
so that each event can be detected by many sensors 
simultaneously. There are at least s sensors detecting the 
same event in the cluster. It is a basic assumption for 
many security-sensitive WSNs applications, such as [7] [8] 
[9] [11] [12] [14] [15]. 

In a cluster, one node is elected to be the cluster-head 
(CH), and CH assigns a unique ID to its member, which 
the ID is only used in this cluster. After cluster formation, 
every node should know which cluster it belongs to, who 
CH is, and what its ID is in this cluster. There are many 
ways to form clusters, elect CHs, and get unique ID, such 
as [4] [6] [13]. 

We assume every CH could know the routing path to 
the sink. Especially, the CH could know each relay node 
on the path and the number of hops between the relay 
node and the CH. There are many ways to achieve it, such 
as DSR[5]. On the same issue, PVBS[8] also makes the 
same assumption. 
3.2 The attacker model 

We assume that the attacker may compromise a node 
by physically capture or other ways and then obtain the 
security information installed in the node. The attacker 
cannot compromise the sink since the protection at the 
sink is powerful enough. The attacker will use the 
compromised nodes to inject false reports into the 
wireless sensor network and make the damages as 
mentioned before. They also attack the real report: when a 
sensor node needs endorsements of other nodes on a real 
event, the compromised nodes give false endorsements. 



We assume the attacker would launch this attack to injure 
the real report. 
3.3 The design objectives 

For a sensor network with above assumptions and 
model, the proposed scheme provides the following 
functionality: 1. Filter out the false report, namely, false 
data injection attack, caused by compromised nodes or 
other unexpected factors. 2. Reduce the damage which 
compromised nodes give false MACs on a real report, 
namely, wrong endorsement attack. 3. The false report 
could be filtered out en-route by the proposed scheme to 
reduce the energy consumption of the intermediate nodes 
to forward false reports. 4. More efficient than the related 
solutions [8] [11] [12] [15]. 
4. The proposed scheme 
4.1 Notations 

Table 3. Notations 

 
4.2 Basic Idea 

To solve the problem that compromised nodes inject 
the false data arbitrarily, the report to describe an event 
needs some endorsements given by sensor nodes, i.e. the 
sensor nodes give reporter the MACs of this report 
generated by their secret keys individually. When the 
report is forwarded on the routing path to the sink, if the 
relay node keeps the same secret key, it will verify the 
validity of the MACs. If there are some invalid MACs, 
they will drop this report since it maybe a false data 
injection attack by compromised nodes. This is the 
general en-route filtering framework used in [8] [12] [11] 
[15] and ours. In [12], it is dependent on the probability of 
key sharing. We introduce the Blom’s key establishment 
scheme [1] to ensure any two nodes would share a 
pairwised key. 

The CH of the proposed scheme should publish a 
message. The message includes the verifiers’ IDs, i.e., the 
intermediate sensor nodes, are chosen from the CH’s 
routing path to the sink. We name this message “verifier 
list”. CH has duty of maintaining its verifier list for some 
situation, e.g. the using times of the verifier list exceeds 
the predefined threshold, or the CH has gotten some 
warnings from the sink to update. By verifier list, the 
sensor node could find out a verifier’s ID to derive a 
shared key to generate a MAC of its sensing data. On the 
other hand, when a report is forwarding to the sink, the 
relay node could know whether it is the verifier or not and 
which shared key it should derive by the information of 
the report. 
4.3 Blom’s scheme 

 Now, we briefly introduce Blom’s scheme [1] here 
and readers can refer to [2] [3] for details. It enables each 
pair of nodes in the network to establish a pairwised key. 
It has the property called “λ-secure”, where λ is a security 
parameter. It means that if no more than λ nodes are 
compromised, all other communication links of 
non-compromised nodes remain secure. 

A symmetric matrix KN×N includes all the pairwised 
keys of N nodes, which each element kij or kji is the key 
shared between node i and node j.  The matrix K is 
derived from (DG)TG, where the matrix D(λ+1)×(λ+1) is 
symmetric and secret, and the matrix G(λ+1)×N is public. 
The matrix AN×(λ+1) created as A= (DG)T is also a secret 
matrix. Before deployment, each node i stores the ith row 
of the matrix A and the ith column of matrix G. After 
deployment, each pair of nodes i and j can compute a 
pairwised key kij = kji by exchanging their columns and 
computing the dot product of their own row and the 
column of the other’s. It is easy to see that:  

K=A．G=(DG)T．G=G TD T．G=G TD．G=(A．G)T=KT, 
Due to the matrix K is a symmetric, each pair of nodes 

can derive the same key. 
 The public matrix G is also designed to be a 

Vandermonde matrix derived from a seed, which is 
mentioned in [10]. It reduces the communication and 
storage overhead but needs more computation. What the 
node i needs to store are the row i of matrix A and the 
seed. The node which wants to get the columns of other 
nodes can use the seed to derive it. Finally, if any node i 
want to establish a pairwised key with other node j, the 
node i only needs to know the ID of node j. 
4.4 Proposed scheme 

The proposed scheme includes five phases: 
initialization phase, publishing verifier list phase, report 
generation phase, en-route filtering phase and sink 
verification phase. 

Initialization phase: Each sensor is assigned a 
unique ID and key material to establish key by Blom’s 
scheme. Each sensor starts to cooperate with its neighbors 
to form a cluster. The CH is elected, and assigned a 
unique ID to its members; the ID is used only in this 
cluster. 

Publishing verifier list phase: The CH has to 
determine and publish a verifier list. This verifier list 
includes IDs of the intermediate sensor nodes which are 
chosen by the CH. The CH also arranges these IDs 
randomly. The CH will alter and publish the verifier list 
when the verifier list has been used exceeds the 
predefined threshold, or the CH has got sink’s warnings to 
update. 
 To determine the verifier list, the CH establishes a 
table first to maintain four factors of each sensor node on 
its routing path. The four factors are: Hops, Times, 
Warning, and Sum. Hops, is hops from the node to the CH. 
Times, is times the nodes has been chosen into the verifier 
list. The factor of each node is set to zero initially. When 
a node is chosen into the verifier list, this factor of the 



node will be increased by the CH. Warning, is warnings 
have been received from the sink. When the CH receives 
the warnings, it will increase the factor of corresponding 
nodes. Sum, is the weighted sum of above three factors. 
The weights of above three values are hopsWeight, 
timesWeight, warningWeight, respectively. 

Sum = Hops×hopsWeight + Times×timesWeight + 
Warning×warningWeight 

CH gets priorities of nodes by comparing the values of 
Sums. The smaller the Sum is, the higher the priority is. 
Sum_MAX, the upper-bound of Sum is defined, i.e., if Sum 
of a relay node is larger than Sum_MAX, CH will no 
longer choose it into verifier list. When the CH needs to 
determine and publish a new verifier list, it will compare 
the value of Sum of each node in the table. After 
published verifier list, CH increases Times of each node in 
the verifier list and recomputed the value of Sum. 

Such design is very flexible for the different users 
to set the weight according to their requirements. By 
increasing hopsWeight, the verifiers might be closer to the 
CH; by increasing timesWeight, the percentage of each 
node chosen might be more average. In our 
recommendation, we set the values of hopsWeight and 
warningWeight to be equal to the number of hops 
between the CH and the sink and timesWeight to 1. 
 If Sum of some nodes are equal, we need to 
compare the other values: Warning→Hops→Times. There 
is also a case that we couldn’t find out s nodes e.g. the CH 
is too close to the sink or the network has been running a 
long time. 

Report generation phase: When an event occurs, 
there are three important roles collaborating to generate 
the final report: (1) the sponsor, who is the first node 
senses the event; (2) the endorsers, who are the nodes also 
senses the same event; (3) the CH, who is the role to 
collect sensing data and endorsements from its members. 
Each sensor node determines its verifier ID from the 
verifier list by 

r = MID mod s 
where MID is the ID of the node i using in the cluster. 
The node i will take r-th ID from the published verifier 
list. Without loss of generality, we assume the verifier of 
the node i is the node j in the following statements. By 
this ID, the node i can derive a shared key, Ki,j , with the 
node j. The shard key will be used to generate an MAC 
for the event report. The detailed steps of this phase are as 
the following:  
Step 1:  When an event happens, the sponsor broadcasts 
the message: 

 Reading, i, j, C(Ki,j, Reading)    
where i, j is IDs pair of sensor node and verifier node, Ki,j 
is the pairwise key shared between node i and j , C(.) is 
the MAC function . Reading is the sensed data of the 
event.  
Step 2: After the other nodes receive this message, 
they check it and determine whether giving the 
endorsements or not, the detailed steps are as follows: 

2-1:  The endorsers compare the broadcasted 
reading with its reading.  

2-2:  If the difference is within some predefined 
error range, the node will generate and send the following 
message to the CH.  

i, j, C(Ki,j , Reading) 
where C(Ki,j, Reading) is the endorsement of the Reading. 
Step 3:  The CH has received the data and the 
endorsements from different nodes, the CH performs the 
following sub-steps to check messages and determine 
whether generating the event report to sink or not. 
3-1:  The CH first checks whether each IDs pair (i, j) is 
valid or not by equation (2). If any pair is invalid, it will 
drop this data immediately. 
3-2:  After filtering out the invalid data, if the CH has 
received at least s distinct data from different nodes, it 
will aggregate them to be an event report and send it to 
the sink as the following format: 

Reading||{i, j, C(Ki, j, Reading)}||right||wrong 
where { } is a set including each IDs pair and MAC sent 
by each endorser; right is number of verified valid MACs; 
wrong is number of invalid MACs. right and wrong are 
initially zero and maintained in the forwarding process of 
the en-route filtering phase. 

En-route filtering phase: When a sensor node 
receives an event report in the forwarding process, it will 
do the following to decide to forward or drop it. 
Step 1:  Check the format of this report. If invalid, drop 
this report and terminate this phase; otherwise, continue 
Step 2. 
Step 2:  Check whether it is one of verifiers of this report 
by examining each IDs pair (i, j). If yes, continue Step 3 
to do more checks; otherwise, drop the report and 
terminate this phase. . 
Step 3:  Check whether the value of right reaches the 
threshold Tt or not. If reaches, forward it; otherwise, 
continue Step 4 to determine whether verifying the report 
or not. 
Step 4:  Determine to verify or forward the report by the 
Algorithm 1. If it doesn’t satisfy the condition, it forwards 
the report; otherwise, continues Step 5 to verify the 
report. 
Step 5:  Derives the Ki,j by taking the ID i into Blom’s 
scheme. Another MAC of the report is generated by this 
Ki,j and compared to the corresponding MAC in the event 
report.  
Step 6:  By comparison, increase the value of right or 
wrong. If the value of wrong reaches the threshold Tf, 
drop this report; otherwise, forward this report. 

In Step 4, we don’t force the node to verify unless it 
has sufficient energy. The reason is MAC verification 
takes computational cost. If the energy of the node is low, 
we hope the node to keep its energy to survive. Even if 
the energy is medium, we hope the node consider the 
necessity of verification. i.e., how many MACs verified. 
If there is only few MACs have been verified, the node 
needs to do the verification of this report. The Algorithm 
shows the conditions of deciding the verification. 



Algorithm 1. VerifyCondition() 
if energy > energyEnough then verify Report; 
else if energy <energyPoor then forward Report; 
else if (right + wrong) ≤ fewVerified then verify Report; 
else forward Report; 

The user must predefine the value of these three 
parameters: energyEnough and energyPoor are lower 
bound and upper bound of energy. fewVerified is the 
threshold, which the node does the verification if the 
energy of the node is medium and the number of verified 
MACs isn’t more than it. As shown in the algorithm 1, the 
relay node compares the value of fewVerified to the sum 
of right and wrong. Because this sum also means the 
number of MACs have been verified.  

Sink verification phase: When the sink receives 
the report, it checks the format of the report as relay node 
does and whether endorsers belong to the same cluster or 
not. It is also able to verify all the MACs in the report and 
make the decision. In this phase, the sink plays a role as 
final guard. 

If some node is used too many times in a period, it 
will send the warning to each CH against choosing the 
node. The value of the warning depends on how long time 
the sink wants the node to be free. If the sink wants the 
node not to be chosen forever, it will send the Sum_MAX 
to each CH. 
5. Analysis 

Here we analyze the efficiency, resiliency, and key 
storage of our scheme. 
5.1 Filtering effectiveness 

There are many factors affecting the filtering 
effectiveness. Two most important of them are (1) the 
probability that attacker could cheat all the verifiers; (2) 
the positions of the verifiers.  

If there is only one compromised node, the 
probability p1 that attacker could cheat all verifiers is: 

1

1
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If we choose a secure hash function to generate 
MACs, the probability p1 is negligible. There is also 
another case that attacker has more than one compromised 
nodes, we will discuss in the section 5.2. 

 The positions of verifiers depend on the verifier 
list which is published by the CH. If the chosen nodes are 
near the CH and have enough energy, the false report 
must be filtered out in first few steps. This is what we 
need because it reduces the communication overhead of 
relay nodes. However, if we always choose the same 
nodes to be verifiers, these nodes will consume much 
energy on computation. PVBS[8] and LBRS[11] are also 
in this situation. As shown in figure 4, we gather statistics 
on the percentage of each relay node chosen to be verifier 
when the verifier lists are published 1000 times by the 
different CHs which are different distance to the sink. We 
can see that most of verifiers are only 10 hops to the CH 
but some verifiers are not. We also simulate how the 
verifiers filter out the false reports in section 6. 

 
Figure 4 distributions of verifiers 

5.2 Resiliency 
Consider the resiliency to increasing number of 

compromised nodes. If there are cm compromised nodes 
comes from the same cluster, we can compute the 
probability p2 that the false report could cheat all verifiers 
is: 

2
1 ,  where  is the length for a MAC in bits.
2

s cm
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Thus, the probability p2 could be ignored unless the 
attacker has compromised s nodes in a cluster. 
5.3 Key storage 

In our scheme, the key storage of each node 
depends on the λ-size of the matrix which used in Blom’s 
scheme. Thus, the scale of nodes in the network doesn’t 
affect the key storage of each node directly. However, in 
other scheme such as SEF[12], the probability of key 
sharing is based on how many keys they have. If we want 
to increase the filtering effectiveness of SEF, the 
probability of key sharing between each pair of sensor 
nodes must increase. It results in not only the increased 
number of keys loaded for each sensor node, but also 
more disclosure of secret information for each 
compromised node. Besides, the number of key storage in 
LBRS[11] and PVBS[8] are low. However, LBRS must 
assume no compromised nodes happen until the location 
discover and key assignment phase finish, and PVBS 
takes very high cost on communication since the sink 
must send the key for each node. If the network size is 
large, PVBS is impractical. 
6. Simulations 

We use some simulations to further verify our 
analysis. In our simulation, we focus on (1) filtering 
effectiveness (2) resiliency (3) energy savings. We use the 
following parameters in our simulation: 

Table 4. Parameter setting 

 
6.1 Filtering effectiveness 

In this section, we will show the filtering 



effectiveness of our scheme. As shown in table 5, we 
present the filtering effectiveness under the following 
cases: 

Table 5. The simulation of filtering effectiveness 

 
6.1.1. Case A. As figure 5, we could see that the mean of 
hops that false reports dropped is pretty few even in the 
case cm = 4. Comparing with SEF, our scheme has better 
filtering effective and doesn’t change so much in the 
increasing cm. 

 
Figure 5 The filtering effectiveness (sufficient energy 

and Tf = 1) 
6.1.2. Case B. As shown in figure 6, we simulated with 
medium energy.  

Table 6. Parameter setting in energy. 
Notations  Value  
energyEnough 75% 
energyPoor 25% 
fewVerified 2 

It shows the filtering effectiveness of our scheme is better 
than SEF slightly in the case cm=1,2,3, but worse in the 
case cm=4. However, the attacker wants to achieve the 
case cm=4 in our scheme is more difficult than SEF since 
the CH and the sink will more check the endorsements 
come from the same cluster or not.  
6.1.3. Case C. As shown in figure 7, we simulate with 
defense of the wrong endorsement attack. In other words, 
we vary the value of Tf, which means the tolerance to 
invalid endorsements. Obviously, the effect of increasing 
Tf must make the filtering effectiveness down. But our 
scheme can filter out the false reports in 10 hops even in 
the case of Tf = 3. 

 

Figure 6 The filtering effectiveness (middle energy 
and Tf = 1) 

 
Figure 7 The filtering effectiveness (different Tf and 

sufficient energy) 
6.1.4. Case D. In figure 8, we simulated both attacks with 
medium energy. Filtering effectiveness doesn’t be 
affected much when Tf =3, because fewVerified = 2. If the 
relay nodes only have medium energy, there are only 
three of the MACs will be verified at most. Thus, if one of 
this three MACs is verified valid, the report will be 
forward to the sink due to the value of wrong can’t reach 
three. In this result, the mean of hops that false report 
forwarded will increase a lot. 

 
Figure 8 The filtering effectiveness (different Tf and 

middle energy) 
6.2 Resiliency 

In this section, we gather the statistics of 
compromised nodes in the same cluster when the attacker 
has randomly compromised some nodes. We also take the 
mean of the results of running 1000 times. The number of 
nodes in a cluster is 10, and varies the number of nodes in 
the network. Two cases, worst and average case are 
shown in figure 9 and figure 10, respectively.  

What we care is if there are more than 5 
compromised nodes belong to the same cluster due to s =5. 
As shown in the figure 9, the attacker must compromise 
more than 20% of nodes in the network. On the other 
hand, as figure 10, the attacker must compromise more 
than 50% of nodes in the network. It shows the high 
resiliency of our scheme in the case s = 5. The user can 
use this simulation to determine how large the value of s 
should be for different environment. 



 
Figure 9 Resiliency (worst case) 

 
Figure 10 Resiliency (average case) 

6.3 Energy saving 
Even though, we spend more energy on generating 

the MACs, but it’s negligible. It takes 15 μJ computing a 
RC5-based MAC in [12]. Therefore, we want to show the 
energy saving is on communication. 

The way of our simulation is to compute the energy 
consumption ratio between protected and unprotected 
scheme. We assume the energy consumption of each hops 
between two nodes is equal. So the ratio is proportional to 
hops. In figure 11, it shows our scheme protected could 
save much of energy because it can filter out the false 
report in first few hops. Even in the worse cases: (Tf =1 & 
cm=4) and (Tf =2 & cm=2), they still can save 50% energy 
if the number of hops between the CH and the sink is 
greater than 10. 
7. Conclusions 

We proposed a scheme to counter the compromised 
nodes generating the report on false event or giving the 
false endorsements on real event.  

Blom’s scheme in the key establishment is used to 
generate MACs. Additionally, we provide a way to 
arrange MAC pair which should be generated and verified. 
In our analysis and simulations, we showed this approach 
has better filtering effectiveness, resiliency and the energy 
consumption than the past solutions [8] [11] [12] [15].  

 
Figure 11 Energy saving (for communication) 
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