
Analysis and Detection of Process Interaction Errors

Chin-Feng Fan and Shang-Lin Tsai
Computer Science and Engineering Dept., Yuan-Ze University, Taiwan

csfanc@saturn.yzu.edu.tw

Abstract- Among the new failure modes
introduced by computer-controlled systems,
process interaction error is the most unpredictable
and serious one that may cause disastrous
consequences. This paper proposes a fault tree
approach to analyze such a failure mode, and a
constraint-based approach to detect such failures
at run time. The former provides a template
focusing on interaction conflicts; the latter
developed a range of interaction-oriented
constraints for checking. Insights dealing with
process interaction errors are also presented.

Keywords: Fault trees analysis, process
interaction errors, mode confusion, constraints.

1. Introduction

Computer has been increasingly incorporated
into safety-critical domains, such as aviation,
transportation, nuclear, and medicine. Accidents
occur during operating systems in these domains
may result in disasters. New failure modes have
been introduced by the incorporation of computer
into such systems. Among the new failure modes,
“process interaction error” is the most serious one.
Here we use “process” to refer to the processes
executed by computer software, hardware systems,
as well as human operators. Traditional safety
analysis focuses on equipment failure. However,
current accidents of digital systems involve
problems of interaction among equipment,
computer, and humans. Interaction errors can be
defined as unexpected situations during interaction
between human-machine or hardware/software
processes.

This paper presents a new fault tree method
focusing on process interaction errors. It considers
intention errors with conflicting pre-/post-
conditions among processes. This approach
makes the fault tree analysis systematic, repeatable,
and visible. We have applied this fault tree
template to successfully analyzing several past
accidents. It can also be used in before-hand
analysis. However, interaction error is an
undecidable problem [1]; thus, analysis in advance
cannot be complete. Run-time constraints should

also be used to monitor process interaction and
detect possible problems in time so as to prevent
potential accidents. A set of interaction-oriented
constraints is presented in the paper. Among them,
temporal and relational constraints are widely
useful and effective. They can be used to check
expected system states, responses, and human
operations. Some empirical metrics of
constraints are also addressed. With the proposed
analysis and detection, the number of potential
interaction errors can be effectively reduced.

2. Background

Fault tree analysis is a safety analysis technique
widely used in nuclear, aerospace, and electronics
industries. It uses a backward approach to analyze
the causes of hazards. It uses AND/OR gates to
describe the combination of causes for an
undesired top event. Hardware fault trees
terminate at the component failure events.
Software fault tree (SFT) analysis [4] consists of a
set of templates for different language constructs
such as statement parts as failure causes. None of
current fault tree methods focusing on interaction
problems.

 Mode confusion refers to the state when the
operator has confused concepts of the current
system working modes. It plays a major part in
process interaction errors. Leveson [3] has
classified mode confusion into the following six
categories: interface interpretation error,
inconsistent behavior, indirect mode changes,
unintended side effects, lack of appropriate
feedback, and operator authority limits.

 Fault injection refers to the technique to
introduce faults on purpose to test the system’s
behavior so that its survivability or robustness can
be observed. Fault injection was used in this
research to check the effect of the presented
constraints.

Constraints play a major role in Leveson’s new
safety model STAMP [4]. SpecTRM-RL [7] is
Leveson’s specification language with a set of
constraints around 60 constraints with double
counting. Most of them belong to variable level
constraints dealing with input, output, or command.

This research extended SpecTRM-RL approach
with more relational level and interaction oriented
constraints.

3. Analysis Approach
3.1. Analysis model and error classification

From studying past interaction accidents, we
then propose the following interaction error
classification:
1. input errors
2. display errors
3. message errors
4. timing errors
5. shared resource errors
6. conflicting actions due to mode confusion

 Note that these categories are not independent.
Timing errors may occur in the cases of input,
display, or message errors; while, mode confusion
usually happens due to display errors. Fig. 1 shows
interaction in a computer controlled system with
the above error types labeled with numbers in the
figure to provide visual interpretation.

6.Mode
confusion

Computer Software

Physical system

Human

process

process

resource
message

sensors actuators

display

input

display

messageinput
input /
command

1.

2.

5

3

3

1

1

2

Fig. 1. Process interaction model

3.2. Proposed fault tree approach

Most contemporary fault trees are
constructed subjectively and do not focus on
process interaction errors. We propose a fault tree
template focusing on interaction errors, as shown
in Fig. 2. We consider action errors and intention
errors are two major reasons of interaction errors.
The above error categories are considered as the
root causes of the node “action errors”; they are
message errors, input errors, display errors, and
shared resources errors. Timing errors will be
considered underneath them. In this paper,
intention errors mainly consider mode confusion.
In such cases, there must exist
assumptions/conditions conflicts between related
processes. Thus, under the node “intention errors”,
conflicting pre- post-conditions between processes
are identified as the basic reasons. Use of this
fault tree template requires the following steps:

1. Draw state diagrams of each process with
pre- and post-conditions for each state.

2. Identify the involved processes and their
related states for the examined fault tree top
event.

3. Find their conflicting pre- and post-
conditions.

The advantage of this fault tree approach is that it
is systematic, repeatable and transparent.

3.3. Case study

To demonstrate the use of the fault tree
template, the Nagoya accident [7] was used as a
case study. On April 26, 1994, a China Airline
aircraft crashed at Nagoya Airport just before
landing. The cause of this accident was due to the
competing actions in landing between the pilot and
the autopilot system. The fact that the autopilot
was set was unaware of by the pilots. The state
diagrams of the pilot and the autopilot are shown
in Fig. 3. Note that the precondition of pilot’s
manual mode is that “related system
(object=autopilot; status= ┐control the plane)”; on
the other hand, the post-condition of autopilot’s
auto mode is that “object=autopilot; status=control
the plane)”. When the pilot is at the manual
mode and the autopilot is at the auto mode, a
conflict occurs. A similar situation occurs when
both the pilot and autopilot are idle. These two
situations are shown in Fig. 7. The former situation
led to Nagoya accident. This kind of conflicts due
to intention errors can be identified algorithmically
by checking preconditions and post-conditions
among interactive/related processes to find
conflicting pairs. Thus, by paring conflicting pre-
and post-conditions, some irrational and unlikely
interaction scenarios can even be identified in
advance.

Top event

Interaction Error

Input
errors

Display
errors

Conflict of P1’s
post-condition &
P2’s precondition

(sequential)

Conflict of P1’s
precondition &
P2’s precondition
(concurrent)

Message
errors

Shared resource
errors

Action errors Intention errors

Conflict of P1’s
post-condition &
P2’s post-condition
(concurrent)

Other
Hardware

Error

Process P1, P2

Fig. 2. Fault tree for process interaction errors

Idle

[Auto On]

[Auto Off]

Precondition:…
Post-condition:
(object= autopilot;
status =control the plane)

Precondition:…
Post-condition:
(object=autopilot,

status = ┐control the plane)

Go Around[go Around]

Auto State

select

[landing]
Landing

…..

autopilot

Precondition :
related subsystem
(object= autopilot,

status= control the plane)

Precondition:
related subsystem
(object= autopilot,
status = ┐ control the plane)
Post-condition…

pilot

Manual Idle

[Auto On]

[Auto Off]

Select Modes
[done]

Fig. 3 Nagoya state diagrams

Action Error

Autopilot, state=Idle
Ppostcondition (object=autopilot,

Status= ┐ control the plane)

Plane crash

Interaction Error

Conflict of A’s post condition &
B’s pre condition

Intention errors

Pilot, state=Idle
Pre -condtion: related system

(object=autopilot,
status=control the plane)

Pilot, state=Manual
Pre-condition: related system

(object=autopilot,
status=┐control the plane)

Autopilot, state=Auto
Post-condition (object=autopilot,

Status= control the plane)

….

A & B

…

Fig. 4. Nagoya accident fault tree

4. Detection Approach
4.1. Proposed constraints

The above fault tree approach can successfully

explain causes of interaction errors in past
accidents; moreover, it can be used for analysis
before hand. However, it is impossible to identify
all kinds of potential interaction problems in

advance. Then, run-time monitoring using
constraints can be used. It is an effective approach
to dynamically detect possible interaction errors.
Moreover, the pre- and post- conditions used in the
above fault tree template can be viewed as
constraints as well.
 We extend SpecTRM-RL constraints and
propose the following four levels of constraints.
SpecTRM-RL constraints contain mainly the first
two levels of constraints.
1. Variable level constraints:
They are local level constraints concerning a single
variable. They include variable types, values,
ranges checking, as well as hazardous values, and
ranges checking. Data variations between two
consecutive inputs/outputs are also considered.
2. Temporal constraints:
Since timing is important for interaction problems,
temporal constraints are grouped into a distinct
category. Temporal checking includes expected
duration, age, and minimum/maximum time
between two inputs/updates/messages.
3. Relational constraints:
They are constraints dealing with multiple
variables and relations among these variables.
Such constraints include relations among data,
process variables, device states, and expected
responses in normal system operation. Examples
of process variables include temperature, pressure,
water level, etc. for a control system. Conflict
actions controlling the same device are also
checked. Dependencies among process variables
and devices can be expressed in constraints so that
expected system behavior can be checked.
Moreover, expected operational behavior should
also be expressed by relational constraints for run
time checking.
4. Global constraints:
They are constraints independent of process/device
states. Global constraints may include
conservation rules such as energy conservation and
mass conservation, which should always hold for
software variables which are images of
states/variable in the physical world, in a
computer-controlled system. Global constraints
also include pragmatic concerns such as
limitations, requirement, or set points for size,
power, thresholds, etc.

Based on our error types, these constraints are
further categorized into key-in, display, message,
and shared resources related constraints. Mode
confusion errors can be detected by global or
relational constraints. As an example, the
constraints for key in data are given in Table 1.
Constraints at the variable level and global level
are pretty similar. Thus, Table 2 and 3 only show

parts of the constraints for message and display
categories.

Table 1 Constraints for key in data

Levels Key in
Variable

Level
1. input data value
2. input data ranges
3. input data hazardous values
4. input data hazardous ranges
5. input types
6. Minimum value variation

between two inputs
7. maximum value variation

between two inputs
Temporal 1. data key in duration

(input waiting time)
2. minimum time between two

inputs
3. maximum time between two

inputs
4. input data age

Relational 1. input data destination and source
2. relation between input data and

internal variables
3. temporal dependency between

input data and process variables
4. relations between input control

and device states
5. feedback message after input
6. check for conflicts of concurrent

processes controlling the same
device

Global 1. mass conservation rules
2. energy conservation rules
3. pragmatic constraints

Table 2 Part of constraints for message

Level Messages
temporal 1. message data age

2. message passing time
3. reply time
4. message passing frequency

relational 1. message data destination and
source

2. relation among process variables
and device states in messages

3. system reaction after message
passing

4. feedback after message passing

Table 2 Part of constraints for display
Level Display Output

Relational 1. operator reaction after display
2. relation among display data,

process variables, and device
states

The proposed constraints focus on process

interactions. Thus, expected states, expected
operations, and responses can be checked using
these constraints to detect potential interaction
problems. For example, for global mass
conservation rule, we may have the following
constraint checking:
if(PUMP_state == OPEN)

if(WATER_Level_NOW !=
WATER_Level_beofre+Time_interval*Throughput)

Warning();
The expected operation can also be checked
according to operation rules:
If (State == INITIALIZATION)

if(VALVE_STATE != OPEN ||
STEAM_BOILER_STATE != TURN_OFF ||
PUMP_STATE != OFF)

Warning();

4.2. Fault injection testing
 To verify the effectiveness of these constraints,
fault injections using two test cases (a steam boiler
simulator and a simple air traffic controller [8])
have been performed. The steam boiler case
considers a steam boiler with water pump and
release valve as well as water level sensor. The air
traffic controller will schedule planes’ take off and
landing; the controller will key in such information
as direction, velocity, and height for planes to
follow.
 For example, the following two tests have been
performed to test how constraints can solve mode
confusion situation. Case 1 tested lack of
feedback errors. The original scenario without
constraint checking is as follows:
1) The system is at normal operation with an open

pump.
2) An error occurs, and the system stop updating

display; while the current water level is high.
3) The operator is unaware of the high water level.
4) Water level exceeds the safe level, which leads

to an emergency stop
The constraint that can be used to prevent such an
incident is the “reply time limit” check:

Display(iWaterLevel);
While(!GetInput())
{

ReplyWaitingTimer(5);
}

Case 2 injected interface interpretation errors. The
original scenario may be like:
1) The operator at the control center was

supposed to key in direction, velocity, and
height; but he mistakenly keyed in direction,
height, and velocity.

2) The plane interpreted them as height ,
velocity as velocity and height.

3) The plane lost control and crashed.
The potential useful constraint will be “input data
hazardous ranges”：

If (INPUT_HEIGHT in
HAZARDOUS_HEIGHT_RANGES)

Warning();
These experiments show that injected mode

confusion errors can be successfully detected by
proposed constraints. Our experience yields such

Display Error

Value Error Value Range
Error

Value Is
Hazardous

Min Data
In/Decrement

Error

Max Data
In/Decrement

Error

Value
Computation

Relation
Error

Timing Error
Conflict Of

Conservation
Rules

Violate
Duration Of
Complete
Display

Violate
Min Time
Between
Updates

Violate
Max Time
Between
Updates

Violate
Reply Time
Limit After

Display

Fig. 5 Constraints as basic events

Blackout

Interaction Error

Action errors Intention errors

Display errors

(Stopped
info-update)

violate max time
between updates

…

…….

Fig. 6 814 blackout fault tree

conclusions as:
1. Multiple constraints may be needed for more

complicated cases
2. Temporal constraints are widely useful since

feedback checking in real time systems is
critical.

3. Relational constraints are important to check
expected operation and responses.

4. Resilient design is highly desirable.

5. Combining Constraints and the Fault

Tree
The proposed constraints can also be

combined with previous fault tree template (Fig. 2)
as the bottom basic event for the “action error”
branch. Thus, the proposed analysis can consider
constraint-level details. Fig. 5 shows the
expansion of display error node with relevant
constraint violation. This combination makes the

consideration of constraint violation be done
before hand or after accidents occur. Fig. 6 is the
fraction of the fault tree using the combined
approach for the North America August 14, 2003
blackout [9]. The root cause was that the monitor
could not be updated to indicate equipment failure;
while this display fault was triggered by a previous
race problem causing the EMS system in a
deadlock state. This case apparently violated the
maximum time between update constraint, as
shown in Fig. 6.

6. Constraint Metrics

The number of proposed constraints is large.
Then constraints’ effectiveness and sufficiency are
issues. To estimate the cost-effectiveness of the
proposed constraints, such metrics like constraint
priority, coverage, effectiveness and sufficiency
are designed and explained below:
(1) Constraint Priority: the degree of importance

among a set of constraints.
This can be done by using the combined fault

tree approach stated in Section 5. The priority
can be determined by counting the number of
occurrences of the examined constraint in the
leaves of concerned major fault trees. Details may
refer to a similar approach in our previous work
dealing with general constraints [2].
(2) Constraint Coverage: the portion of

instructions covered by a specific constraint.
For a constraint i, checked at the point of

interest P, its coverage includes those instructions
affecting the values of variables in i at P and those
are affected by variables in i. The former can be
computed using program slicing technique [10].
The latter refer to the use of these variables after P
and before they are first updated. For example,
constraint i is a relation of variables X, Y, and Z;
i.e., i =R(X, Y, Z). Its coverage include the

program slices for X, Y, Z at point P; the number
of these instructions is represented as Ib . The
number of instructions using X, Y, Z after P and
before these variables are updated is called If.
Then,

Coverage i = (If + Ib) / Iall
where Iall is the number of all instructions.

The wider the coverage of a constraint is, the more
powerful it will be.
(3) Constraint Effectiveness: the probability to

detect potential interaction errors.
We use fault injection experiments to calculate this
metrics for constraint i. It is defined as

Effectiveness i = Di / F
Di is the number of detected faults
F is the number of injected faults

(4) Constraint Sufficiency: the adequacy of a
given set of constraints to detect the potential
accidents or faults.

Results from fault tree analyses or fault injection
tests can be used for calculation. Assuming N
hazardous top events or N injected faults. The
sufficiency of the set of constraints C refers to the
ratio of these top events or injected faults that can
be detected by C.

Sufficiency(N, C) = Fd / N

where Fd is the number of detected top
events or faults

The last three metrics have values between 0

to 1; while value 1 is the best case.
These metrics provide quantitative information.

But at the current stage, they are descriptive based
on experiments. More prescriptive metrics should
be developed in the future.

7. Conclusion

Human-computer interaction has been proven
to be undecidable [1] In spite the undecidability,
we should still make an effort to reduce potential
interaction errors in advance, and to detect
interaction errors in time once they occur. For
preventive approach, designs should reduce
interactive complexity and subsystem coupling;
the analysis using the proposed template focusing
on interaction errors may also work. For the
detection approach, run-time monitoring using
constraints is a promising approach. If we add
sufficient and effective safety constraints to limit
and check process interaction, this undecidable
problem may then be monitored and controlled.
Thus, it is a critical issue worth further
investigation to design and determine the effective

and sufficient constraints.

Acknowledgement
This work was supported in part by National Science

Council grant no. NSC 96-2221-E-155-047.

References

[1] P. Bottoni, S. Levialdi, and G. Paun (1998),
“Successful Visual Human-computer
Interaction is Undecidable,” Information
Processing Letter, 67 (1), pp. 13-19.

[2] C. F. Fan and C. Chen, “Constraint-based
Software Specifications and Verification
Using UML,” IEICE Trans. Information &
System, Vol. E89-D, No. 6, June, 2006, pp.
1914-1922.

[3] N. G. Leveson, Safeware, Addison-Wesley,
1995.

[4] N. G. Leveson, “Systems-Theoretic Approach
to Safety in Software-Intensive Systems,”
IEEE Trans. on Dependable and Secure
Computing, January 2005.

[5] N. G. Leveson et al. “Analyzing Software
Specifications for Mode Confusion Potential,”
Proceedings of the Workshop on Human Error
and System Development, Glascow, March
1997.

[6] H. Sogame and P. Ladkin, “Aircraft accident
investigation report 96-5: China airlines,
Airbus Industrie A300B4-622R, B1816,
Nagoya Airport, April 26, 1994,”
http://sunnyday.mit.edu/accidents/nag-content
s.html.

[7] Software Engineering Corporation, “SpecTRM
user manual,” www.software-eng.com.

[8] S. Tsai, “Constraint-based Approach to Process
Interaction Errors,” Master’s thesis, Computer
Engineering and Science Dept., Yuan-Ze. U.,
July, 2008. (in Chinese)

[9] U.S.-Canada Power System Outage Task Force,
“Final report on the August 14, 2003 blackout
in the United States and Canada: causes and
recommendations,” April 2004.

[10] M. Weiser, “Program slicing". Proceedings of
the 5th International Conference on Software
Engineering, pages 439–449, IEEE Computer
Society Press, March 1981.

