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Abstract- Among the new failure modes 
introduced by computer-controlled systems, 
process interaction error is the most unpredictable 
and serious one that may cause disastrous 
consequences. This paper proposes a fault tree 
approach to analyze such a failure mode, and a 
constraint-based approach to detect such failures 
at run time. The former provides a template 
focusing on interaction conflicts; the latter 
developed a range of interaction-oriented 
constraints for checking. Insights dealing with 
process interaction errors are also presented.  
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1. Introduction  

Computer has been increasingly incorporated 
into safety-critical domains, such as aviation, 
transportation, nuclear, and medicine. Accidents 
occur during operating systems in these domains 
may result in disasters. New failure modes have 
been introduced by the incorporation of computer 
into such systems. Among the new failure modes, 
“process interaction error” is the most serious one.  
Here we use “process” to refer to the processes 
executed by computer software, hardware systems, 
as well as human operators. Traditional safety 
analysis focuses on equipment failure.  However, 
current accidents of digital systems involve 
problems of interaction among equipment, 
computer, and humans. Interaction errors can be 
defined as unexpected situations during interaction 
between human-machine or hardware/software 
processes.  

This paper presents a new fault tree method 
focusing on process interaction errors. It considers 
intention errors with conflicting pre-/post- 
conditions among processes.  This approach 
makes the fault tree analysis systematic, repeatable, 
and visible. We have applied this fault tree 
template to successfully analyzing several past 
accidents. It can also be used in before-hand 
analysis.  However, interaction error is an 
undecidable problem [1]; thus, analysis in advance 
cannot be complete. Run-time constraints should 

also be used to monitor process interaction and 
detect possible problems in time so as to prevent 
potential accidents. A set of interaction-oriented 
constraints is presented in the paper. Among them, 
temporal and relational constraints are widely 
useful and effective. They can be used to check 
expected system states, responses, and human 
operations.  Some empirical metrics of 
constraints are also addressed. With the proposed 
analysis and detection, the number of potential 
interaction errors can be effectively reduced. 
 
2. Background  

Fault tree analysis is a safety analysis technique 
widely used in nuclear, aerospace, and electronics 
industries. It uses a backward approach to analyze 
the causes of hazards. It uses AND/OR gates to 
describe the combination of causes for an 
undesired top event.  Hardware fault trees 
terminate at the component failure events.  
Software fault tree (SFT) analysis [4] consists of a 
set of templates for different language constructs 
such as statement parts as failure causes. None of 
current fault tree methods focusing on interaction 
problems.  

 Mode confusion refers to the state when the 
operator has confused concepts of the current 
system working modes. It plays a major part in 
process interaction errors. Leveson [3] has 
classified mode confusion into the following six 
categories: interface interpretation error, 
inconsistent behavior, indirect mode changes, 
unintended side effects, lack of appropriate 
feedback, and operator authority limits. 

  Fault injection refers to the technique to 
introduce faults on purpose to test the system’s 
behavior so that its survivability or robustness can 
be observed. Fault injection was used in this 
research to check the effect of the presented 
constraints. 

Constraints play a major role in Leveson’s new 
safety model STAMP [4]. SpecTRM-RL [7] is 
Leveson’s specification language with a set of 
constraints around 60 constraints with double 
counting. Most of them belong to variable level 
constraints dealing with input, output, or command. 



This research extended SpecTRM-RL approach 
with more relational level and interaction oriented 
constraints.  
 
3. Analysis Approach 
3.1. Analysis model and error classification   

From studying past interaction accidents, we 
then propose the following interaction error 
classification: 
1. input errors 
2. display errors 
3. message errors  
4. timing errors 
5. shared resource errors  
6. conflicting actions due to mode confusion 

 Note that these categories are not independent. 
Timing errors may occur in the cases of input, 
display, or message errors; while, mode confusion 
usually happens due to display errors. Fig. 1 shows 
interaction in a computer controlled system with 
the above error types labeled with numbers in the 
figure to provide visual interpretation. 
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Fig. 1. Process interaction model 

 
3.2. Proposed fault tree approach 

Most contemporary fault trees are 
constructed subjectively and do not focus on 
process interaction errors. We propose a fault tree 
template focusing on interaction errors, as shown 
in Fig. 2. We consider action errors and intention 
errors are two major reasons of interaction errors.  
The above error categories are considered as the 
root causes of the node “action errors”; they are 
message errors, input errors, display errors, and 
shared resources errors.  Timing errors will be 
considered underneath them. In this paper, 
intention errors mainly consider mode confusion. 
In such cases, there must exist 
assumptions/conditions conflicts between related 
processes. Thus, under the node “intention errors”, 
conflicting pre- post-conditions between processes 
are identified as the basic reasons.  Use of this 
fault tree template requires the following steps: 

1. Draw state diagrams of each process with 
pre- and post-conditions for each state. 

2. Identify the involved processes and their 
related states for the examined fault tree top 
event. 

3. Find their conflicting pre- and post- 
conditions. 

The advantage of this fault tree approach is that it 
is systematic, repeatable and transparent.  
 
3.3. Case study  

To demonstrate the use of the fault tree 
template, the Nagoya accident [7] was used as a 
case study. On April 26, 1994, a China Airline 
aircraft crashed at Nagoya Airport just before 
landing. The cause of this accident was due to the 
competing actions in landing between the pilot and 
the autopilot system. The fact that the autopilot 
was set was unaware of by the pilots.  The state 
diagrams of the pilot and the autopilot are shown 
in Fig. 3. Note that the precondition of pilot’s 
manual mode is that “related system 
(object=autopilot; status= ┐control the plane)”; on 
the other hand, the post-condition of autopilot’s 
auto mode is that “object=autopilot; status=control 
the plane)”.  When the pilot is at the manual 
mode and the autopilot is at the auto mode, a 
conflict occurs. A similar situation occurs when 
both the pilot and autopilot are idle. These two 
situations are shown in Fig. 7. The former situation 
led to Nagoya accident. This kind of conflicts due 
to intention errors can be identified algorithmically 
by checking preconditions and post-conditions 
among interactive/related processes to find 
conflicting pairs.  Thus, by paring conflicting pre- 
and post-conditions, some irrational and unlikely 
interaction scenarios can even be identified in 
advance. 
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Fig. 2. Fault tree for process interaction errors 
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Fig. 3 Nagoya state diagrams 
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Fig. 4. Nagoya accident fault tree 

 
4. Detection Approach  
4.1.  Proposed constraints 

 
The above fault tree approach can successfully 

explain causes of interaction errors in past 
accidents; moreover, it can be used for analysis 
before hand. However, it is impossible to identify 
all kinds of potential interaction problems in 

advance. Then, run-time monitoring using 
constraints can be used. It is an effective approach 
to dynamically detect possible interaction errors. 
Moreover, the pre- and post- conditions used in the 
above fault tree template can be viewed as 
constraints as well.  
  We extend SpecTRM-RL constraints and 
propose the following four levels of constraints. 
SpecTRM-RL constraints contain mainly the first 
two levels of constraints. 
1. Variable level constraints:  
They are local level constraints concerning a single 
variable. They include variable types, values, 
ranges checking, as well as hazardous values, and 
ranges checking. Data variations between two 
consecutive inputs/outputs are also considered.  
2. Temporal constraints:  
Since timing is important for interaction problems, 
temporal constraints are grouped into a distinct 
category.  Temporal checking includes expected 
duration, age, and minimum/maximum time 
between two inputs/updates/messages. 
3. Relational constraints:  
They are constraints dealing with multiple 
variables and relations among these variables.   
Such constraints include relations among data, 
process variables, device states, and expected 
responses in normal system operation. Examples 
of process variables include temperature, pressure, 
water level, etc. for a control system.  Conflict 
actions controlling the same device are also 
checked. Dependencies among process variables 
and devices can be expressed in constraints so that 
expected system behavior can be checked. 
Moreover, expected operational behavior should 
also be expressed by relational constraints for run 
time checking. 
4. Global constraints:  
They are constraints independent of process/device 
states. Global constraints may include 
conservation rules such as energy conservation and 
mass conservation, which should always hold for 
software variables which are images of 
states/variable in the physical world, in a 
computer-controlled system.  Global constraints 
also include pragmatic concerns such as 
limitations, requirement, or set points for size, 
power, thresholds, etc. 

Based on our error types, these constraints are 
further categorized into key-in, display, message, 
and shared resources related constraints. Mode 
confusion errors can be detected by global or 
relational constraints. As an example, the 
constraints for key in data are given in Table 1. 
Constraints at the variable level and global level 
are pretty similar. Thus, Table 2 and 3 only show 



parts of the constraints for message and display 
categories.  

 
Table 1  Constraints for key in data 

Levels Key in 
Variable 

Level  
1. input data value 
2. input data ranges 
3. input data hazardous values 
4. input data hazardous ranges 
5. input types 
6. Minimum value variation 

between two inputs 
7. maximum value variation 

between two inputs 
Temporal  1. data key in duration  

(input waiting time) 
2. minimum time between two 

inputs 
3. maximum time between two 

inputs 
4. input data age 

Relational 1. input data destination and source 
2. relation between input data and 

internal variables 
3. temporal dependency between 

input data and process variables 
4. relations between input control 

and device states 
5. feedback message after input 
6. check for conflicts of concurrent 

processes controlling the same 
device 

Global  1. mass conservation rules 
2. energy conservation rules 
3. pragmatic constraints 

 
Table 2 Part of constraints for message 

Level Messages 
temporal 1. message data age 

2. message passing time 
3. reply time 
4. message passing frequency 

relational 1. message data destination and 
source 

2. relation among process variables 
and device states in messages 

3. system reaction after message 
passing 

4. feedback after message passing 
 

Table 2 Part of constraints for display 
Level Display Output 

Relational 1. operator reaction after display 
2. relation among display data, 

process variables, and device 
states 

 
The proposed constraints focus on process 

interactions.  Thus, expected states, expected 
operations, and responses can be checked using 
these constraints to detect potential interaction 
problems.  For example, for global mass 
conservation rule, we may have the following 
constraint checking:  
if(PUMP_state == OPEN) 

if(WATER_Level_NOW != 
WATER_Level_beofre+Time_interval*Throughput) 

Warning(); 
The expected operation can also be checked 
according to operation rules: 
If (State == INITIALIZATION) 

if(VALVE_STATE != OPEN || 
STEAM_BOILER_STATE != TURN_OFF || 
PUMP_STATE != OFF) 

Warning(); 
 

4.2. Fault injection testing 
  To verify the effectiveness of these constraints, 
fault injections using two test cases (a steam boiler 
simulator and a simple air traffic controller [8]) 
have been performed.  The steam boiler case 
considers a steam boiler with water pump and 
release valve as well as water level sensor. The air 
traffic controller will schedule planes’ take off and 
landing; the controller will key in such information 
as direction, velocity, and height for planes to 
follow.  
  For example, the following two tests have been 
performed to test how constraints can solve mode 
confusion situation.  Case 1 tested lack of 
feedback errors. The original scenario without 
constraint checking  is as follows:  
1) The system is at normal operation with an open 

pump. 
2) An error occurs, and the system stop updating 

display; while the current water level is high. 
3) The operator is unaware of the high water level. 
4) Water level exceeds the safe level, which leads 

to an emergency stop 
The constraint that can be used to prevent such an 
incident is the “reply time limit” check: 

Display(iWaterLevel); 
While(!GetInput()) 
{ 

ReplyWaitingTimer(5); 
} 

Case 2 injected interface interpretation errors. The 
original scenario may be like: 
1) The operator at the control center was 

supposed to key in direction, velocity, and 
height; but he mistakenly keyed in direction, 
height, and velocity. 

2) The plane interpreted them as height , 
velocity as velocity and height.   

3) The plane lost control and crashed. 
The potential useful constraint will be “input data 
hazardous ranges”： 

If (INPUT_HEIGHT in 
HAZARDOUS_HEIGHT_RANGES) 

Warning(); 
These experiments show that injected mode 

confusion errors can be successfully detected by 
proposed constraints. Our experience yields such  
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Fig. 5  Constraints as basic events 
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conclusions as: 
1. Multiple constraints may be needed for more 

complicated cases 
2. Temporal constraints are widely useful since 

feedback checking in real time systems is 
critical. 

3. Relational constraints are important to check 
expected operation and responses. 

4. Resilient design is highly desirable.  
 
5. Combining Constraints and the Fault 

Tree 
The proposed constraints can also be 

combined with previous fault tree template (Fig. 2) 
as the bottom basic event for the “action error” 
branch. Thus, the proposed analysis can consider 
constraint-level details.  Fig. 5 shows the 
expansion of display error node with relevant 
constraint violation.  This combination makes the 

consideration of constraint violation be done 
before hand or after accidents occur.  Fig. 6 is the 
fraction of the fault tree using the combined 
approach for the North America August 14, 2003 
blackout [9].  The root cause was that the monitor 
could not be updated to indicate equipment failure; 
while this display fault was triggered by a previous 
race problem causing the EMS system in a 
deadlock state. This case apparently violated the 
maximum time between update constraint, as 
shown in Fig. 6. 
 
6. Constraint Metrics 

The number of proposed constraints is large. 
Then constraints’ effectiveness and sufficiency are 
issues.  To estimate the cost-effectiveness of the 
proposed constraints, such metrics like constraint 
priority, coverage, effectiveness and sufficiency 
are designed and explained below: 
(1) Constraint Priority: the degree of importance 

among a set of constraints.   
This can be done by using the combined fault 

tree approach stated in Section 5.  The priority 
can be determined by counting the number of 
occurrences of the examined constraint in the 
leaves of concerned major fault trees. Details may 
refer to a similar approach in our previous work 
dealing with general constraints [2].  
(2) Constraint Coverage: the portion of 

instructions covered by a specific constraint. 
For a constraint i, checked at the point of 

interest P, its coverage includes those instructions 
affecting the values of variables in i at P and those 
are affected by variables in i. The former can be 
computed using program slicing technique [10]. 
The latter refer to the use of these variables after P 
and before they are first updated.  For example, 
constraint i  is a relation of variables X, Y, and Z; 
i.e., i =R(X, Y, Z).  Its coverage include the 



program slices for X, Y, Z at point P; the number 
of these instructions is represented as Ib . The 
number of instructions using X, Y, Z after P and 
before these variables are updated is called If. 
Then,   

Coverage i = (If + Ib) / Iall  
where Iall is the number of all instructions.   

The wider the coverage of a constraint is, the more 
powerful it will be.  
(3) Constraint Effectiveness: the probability to 

detect potential interaction errors.  
We use fault injection experiments to calculate this 
metrics for constraint i. It is defined as 

Effectiveness i = Di / F 
Di  is the number of detected faults  
F  is the number of injected faults 
 

(4) Constraint Sufficiency: the adequacy of a 
given set of constraints to detect the potential 
accidents or faults.   

Results from fault tree analyses or fault injection 
tests can be used for calculation. Assuming N 
hazardous top events or N injected faults.  The 
sufficiency of the set of constraints C refers to the 
ratio of these top events or injected faults that can 
be detected by C.  

Sufficiency(N, C) = Fd / N 

where Fd is the number of detected top 
events or faults 

 
The last three metrics have values between 0 

to 1; while value 1 is the best case.  
These metrics provide quantitative information. 

But at the current stage, they are descriptive based 
on experiments. More prescriptive metrics should 
be developed in the future.  

 
7. Conclusion 

Human-computer interaction has been proven 
to be undecidable [1] In spite the undecidability, 
we should still make an effort to reduce potential 
interaction errors in advance, and to detect 
interaction errors in time once they occur.  For 
preventive approach, designs should reduce 
interactive complexity and subsystem coupling; 
the analysis using the proposed template focusing 
on interaction errors may also work.  For the 
detection approach, run-time monitoring using 
constraints is a promising approach.  If we add 
sufficient and effective safety constraints to limit 
and check process interaction, this undecidable 
problem may then be monitored and controlled. 
Thus, it is a critical issue worth further 
investigation to design and determine the effective 

and sufficient constraints. 
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