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Abstract-Metering schemes were �rst suggested
by Naor and Pinkas in 1998 in order to decide
the advertisement charge for website server. They
can be applied widely in the measure of impact for
websites. Several popular portal sites usually charge
the advertising expense with its impact. So, secure
metering scheme should have a necessity of existence
in modern commercial for exhibiting impact accurately.
Up to now, most metering schemes may achieve the
measure of impact; however, they all have some
shortcomings, e.g. vulnerability for collusion attack,
and lack for veri�cation of shadow. In this work,
we endeavor to construct a scheme without the above
�aws, and propose a novel and secure metering scheme
in which there are several features worthy to notice:
security against collusion attack, veri�able shadow,
and shadow-self-update. We give a complete analysis
of security for the proposed scheme, including its re-
sistance to active attacks and passive attacks. Also the
evaluation of performance of our scheme is displayed.
From the viewpoint of security and convenience, our
proposed scheme is superior to the other existing ones.

Keywords: Metering Scheme, Modi�ed Weil Pairing,
Forward Security, Veri�able Secret Shadow.

1 Introduction

A metering scheme is a protocol which measures the
number of times that website is impacted by clients
(players). A website is popular if the number of times
visited by players is obviously more than other web-
sites. So the number of times of website impacted by
players should be an important reference index. In
many websites, the measurement of the number of the
visitor is usually designed and then displayed on the

homepage to emphasize its being popular among surf-
ing people. However, usually the measured count is not
objective and reasonable. The number of the visitor is
counted once again while the website is refreshed by
the player. Thus when the identical player refreshes
the website one hundred times, the number of visitors
of the speci�c website is added one hundred times. Al-
though such an unreasonable mechanism of measure-
ment has been improved by software technique, a lot
of non-impersonal processes about measuring the num-
ber of visitors still exist in many websites.
Certain commercial or entertaining behavior, e.g.,

voting for stars or goods, usually appears in several
websites. Such a behavior of voting need a impersonal
measurement more. It is better that each participant
only has one vote even if the participant votes many
times. To achieve the precise measurement, adopting
metering schemes is a workable way.

2 Previous work

Naor and Pinkas [11] introduced metering schemes
�rstly in 1998. Their proposed schemes are all based
on Shamir�s (t; n) secret sharing. When one player vis-
its certain website, he should give a secret share to the
speci�c website. Then, when the website has received
t secret shares from t distinct players, it is able to re-
construct the primary secret and prove that it has been
visited by t di¤erent visitors. After checking and con-
�rming this primary secret, the audit agency may be
asked to pay money corresponding to the t amount of
visitors to the website for advertisement fee. In their
schemes, the robustness has been considered. How-
ever, their method is ine¢ cient since the website is re-
quired to receive especially two veri�cation polynomi-
als A(x; S � �) and B(x; S � �) from the audit agency
at every period of time � , and exploit them in veri�-
cation phase. Their schemes are all one-time-pad. It
might bring the communication cost as entering the



next period of time. Moreover, the websites in Naor
and Pinkas�schemes incline to su¤er from collusion at-
tack, where the fact is pointed out by W. Ogata and
K. Kurosawa [12]. To ameliorate the weakness, W.
Ogata and K. Kurosawa proposed a new unconditional-
security metering scheme in 2000 [12]. Their scheme is
similar to Naor and Pinkas�schemes, but adopts three-
dimensional polynomial for key polynomial rather than
two-dimensional polynomial. Their scheme can prevent
any two players from collusion attack. However it still
happens to have one serious shortcoming that a col-
lusion between one player and one website is possible.
In 2000, C. Blundo, A. D. Bonis and B. Masucci in-
troduced the concept of multi-pricing [3]. They de�ne
metering scheme with pricing in teams of entropy, and
give three requirements for metering system. They also
derive a lower bound for the size of players�information
and websites�information respectively. Their proposed
scheme satis�es the three requirements for metering
system. However, a serious drawback exists in their
scheme: While the player Ci visits the website Sj dur-
ing the period of time � , he will send to the website h�l
points Pl+1(i; j � �); :::; Ph(i; j � �). Since the authenti-
cation of these points is not carried out, the website Sj
might be cheated and receives a fake subsecret from the
player Ci. Thus, the website Sj will fail to reconstruct
the primary secret during the current period of time.
In 2001, C. Blundo, A. D. Bonis, B. Masucci and D. R.
Stinson proposed another scheme[2] similar to the prior
one. The scheme provides the mechanism of dynamic
multi-pricing. According to their proposition, the web-
site Sj has to receive several �xed points Q(x; j � �)
evaluated at h � h�j points other than x = 1; 2; 3; :::; n
in advance at the beginning of the period of time � . The
idea does not seem to be wise because of the di¢ culty
of the prediction of the number of points sent to the
speci�c website Sj . Moreover, the problem for the au-
thentication on the subsecrets received by the website
still exists in this scheme. Later, B. Masucci and D. R.
Stinson rewrite the metering scheme with pricing [10]
which integrates their prior papers [3] and [2]. In the
rewritten metering scheme, the foundation of dynamic
multi-pricing is rearranged. During the end of the pe-
riod of time � , if the website has received r points from
the players, where r < h, h represents the least num-
ber of points to reconstruct the primary secret, then
he will ask the audit agency for help and request h� r
points, evaluated at points other than x = 1; 2; 3; :::; n.
With the original r points, the website can recover the
primary secret at the current period of time. This way
is cleverer than the prior one. However, the authenti-
cation is still not solved.

In the paper, we propose a novel metering scheme

with veri�able secret shadow, shadow-self-refreshing,
veri�able fragment-proof, and security against collu-
sion attack. These features do not exist simultaneously
in well-known metering schemes.

3 Our scenario and model

� Our scenario:
Suppose there exists a community with numer-
ous players and there are many websites in the
community. Popular websites have o¤ered a best
�eld of advertisements and their advertising bene-
�t is relatively large. In general, the advertisement
fee is charged according to the amount of visitors
by which website is visited during certain period
of time. To count the number of visitors accu-
rately, appropriate metering scheme is necessary.
Recently there are metering schemes designed by
means of software technique. However they are not
secure perfectly and vulnerable to replay attack.

� Our model:
The framework of our model is illustrated in Fig.
1. Each player Ui ; i = 1; 2; :::; n is equiped with
a distinct shadow by the Trusted Audit Agency
(TAA) in advance. While visiting a website,
he/she utilizes his/her shadow to sign the website
(in fact, to sign the ID, say wl, of the website).
The signature signed by each player may be veri-
�ed. In addition, each player can refresh his/her
shadow with itself while being at the end of certain
period of time.

Trusted Audit AgencyTrusted Audit Agency

w1 w2 w3

U1 U2 U3 U4 U5 Un

websites

players

visit visitvisit

Fig. 1 Our framework of model

� Collusion attack is always a concern in metering
schemes. Our proposed scheme is able to prevent
the following two kinds of collusion attacks, and
has the feature of forward security.

�Collusion Attack Type I: The collusion
behavior happens in the situation that two



or more websites collaborate to derive the
primary proof with their less fragment-proofs
obtained from players (visitors).

�Collusion Attack Type II: The collusion
behavior happens in the situation that play-
ers (visitors) and websites collaborate to de-
rive the primary proof.

�Forward Security: Websites can not de-
rive the primary proof regarding the current
period of time with the help of the previous
fragment-proofs or primary proofs.

4 Proposed scheme

We propose a veri�able secure metering scheme.
Our metering scheme possesses four features simul-
taneously, which do not ever exist in known me-
tering schemes: veri�able secret shadow, shadow-
self-refreshing, veri�able fragment-proof, and security
against collusion attack [10].

4.1 Preliminaries

Suppose E(Fp) is a supersingular elliptic curve de�ned
by the Weierstrass equation y2 = x3+1 over Fp, where
p = 2mod 3 and p = 6q � 1 for some large prime
q > 3. With the assumptions in [4], E(Fp) will form
a cyclic group of order p + 1. From Lagrange�s The-
orem, the group E(Fp) should contain order-q points,
which forms a cyclic subgroup G1 of order-q. For the
prime q, the extension �eld Fp2 also has the multiplica-
tive subgroup of order-q. We denote the multiplicative
subgroup as G2. Refer to [4], a modi�ed Weil paring is
de�ned as a map:

ê : G1 �G1 �! G2:

The modi�ed Weil paring possesses the following prop-
erties:

� Bilinearity: ê(P;Q + R) = ê(P;Q)ê(P;R) and
ê(Q + R;P ) = ê(Q;P )ê(R;P ) for any P; Q; R 2
G1nfOg:

� Non-degeneracy: If G is a generator of G1, then
ê(G;G) is a generator of G2.

� Commutativity: ê(P;Q) = ê(Q;P ) for any P; Q 2
G1nfOg.

� E¢ cient computation: For all P; Q 2 G1nfOg,
there exists a e¢ cient algorithm for ê(P;Q).

4.2 Scheme

The proposed scheme consists of the following
steps: key-generation, shadow-refreshing, visit, proof-
combination, and proof-veri�cation.

� Key-Generation Phase: Suppose TAA pos-
sesses a pair of private/public keys: private key
kTA and public key QTA = kTAG, and its public
key is known by all websites and players.

(a). Based on Shamir�s (t; n) secret sharing, TAA
randomly chooses r and aj 2 Z�q ; 1 � j �
t � 1; and computes R = rG and Aj = ajG.
With r and aj ; 1 � j � t � 1; TAA con-
structs a polynomial of degree t� 1: f� (x) =
kTA+(� �1)r+ �

Pt�1
j=1 ajx

j mod q, in which
� ; 1 � � � �max; represents certain pe-
riod of time in the entire game. Next, he
computes s(1)i = f1(i)mod q and �i = r +Pt�1

j=1 aji
j mod q for i = 1; 2; :::; n, where s(1)i

is the secret shadow of player Ui at the �rst
period of time and �i is the update parameter
for player Ui. The primary proof is de�ned as
Sign

(�)
l = f� (0)H(wl) for a speci�c website

wl during the period of time � , where wl 2
Z�q denotes the ID of the l-th website and
H(�) is a one-way hash function from f0; 1g�
to G1nfOg.

(b). TAA keeps r and aj 2 Z�q ; 1 � j � t � 1,
secret and publishes the system parameters R
and Aj ; 1 � j � t�1. Before the start of the
game, TAA commits the secret shadow s

(1)
i

and the update parameter �i to player Ui; 1 �
i � n; respectively via a secure channel. Each
player Ui might check the soundness of s

(1)
i

and �i by means of the following relations,
referring to A.1 and A.2:

s
(1)
i G

?
= QTA +

t�1P
j=1

ijAj ; (1)

�iG
?
= R+

t�1P
j=1

ijAj : (2)

If one of the above relations does not hold,
the player Ui can request TAA to recommit
s
(1)
i and �i.

� Shadow-Refreshing Phase: Whenever being at
the end of the current period of time � , the player
Ui can refresh his/her shadow without interaction
by the old shadow s(�)i and the update parameter
�i:

s
(�+1)
i = s

(�)
i + �i; 1 � � � �max, (3)



where s(�+1)i denotes the new shadow owned by
the player Ui at the period of time � + 1.

� Visit Phase:

(a). During the period of time � + 1, while the
player Ui visits the website wl, in which wl 2
Z�q denotes the ID of the l-th website, he/she
processes the following operation:

Sign
(�+1)
il = s

(�+1)
i H(wl); (4)

where Sign(�+1)il is called a fragment-proof.

Next, he/she transmits fSign(�+1)il ; wl; Uig to
the website wl for legal entering.

(b). When receiving fSign(�+1)il ; wl; Uig from the
player Ui, the validity of the fragment-proof
Sign

(�+1)
il is veri�ed as follows, referring to

A.3:

ê(Sign
(�+1)
il ;G) ?

= ê(H(wl); QTA)

�ê(H(wl); �R) � ê(H(wl); (� + 1)
t�1P
j=1

ijAj):

(5)

If the above holds, the website wl accepts the
fragment-proof and let the player Ui login.
Otherwise, refuse the fragment-proof and the
player Ui.

� Proof-Combination Phase:

(a). When the amount of fragment-proofs re-
ceived by the website wl exceeds t during the
period of time � +1, the website wl processes
the operation of proof-combination to obtain
the primary proof. The website wl picks ar-
bitrary t fragment-proofs, without loss gener-
ality, say Sign(�+1)il ; 1 � i � t; collected by
the website wl, and performs the following
computation:

Sign
(�+1)
l =

tP
i=1

h
Sign

(�+1)
il ci

i
: (6)

where ci =
Q
1�j�t;j 6=i

j
j�i . The Equation

(6) refers to A.4. The compound proof
Sign

(�+1)
l might be veri�ed using the follow-

ing check, referring to A.5:

ê(Sign
(�+1)
l ;G) ?

= ê(H(wl); QTA)ê(H(wl); �R):
(7)

Finally, the website wl sends fSign(�+1)l ; wlg
to request payment according to their prior
contract.

(b). If the number r of fragment-proofs received
by the website wl is less than t at the end of
the period of time � + 1, then the website wl
sends TAA the message �I (website wl) have
received r fragment-proofs from players dur-
ing the period of time � + 1�[10]. TAA will
send the website wl other (t � r) fragment-
proofs, which are generated by means of new
(t � r) shadows di¤erent from s

(�+1)
i , i =

1; 2; 3; :::; n. When the website wl receives
these extra fragment-proofs, with the origi-
nal r fragment-proofs, it is able to derive the
primary proof Sign(�+1)l . Finally, the website

wl sends fSign(�+1)l ; wlg to TAA for request-
ing payment.

� Proof-Veri�cation Phase:
When TAA receives fSign(�+1)l ; wlg from the web-
site wl, he veri�es the correctness of the fragment-
proof Sign(�+1)l by the same procedure as (7). If
it holds, TAA approves that i). at least t players
have visited the website wl during the period of
time � + 1 or ii). only r players visit the website
wl if the website wl has ever requested TAA to
assist generating the primary proof in Proof Com-
bination Phase. Thus, pay the money of t amount
or r amount to the website wl according to the
prior contract.

5 Analysis of security

Theorem 1 (Existential Unforgeability against
Adaptive Chosen Message Attack). In the ran-
dom oracle model, the fragment-proof of our scheme
is existentially unforgeable against the adaptive chosen
message attack.
Proof. In the random oracle model, suppose an at-

tacker (forger) F has the following capacity: being ca-
pable of forging the valid fragment-proof of our scheme
with success probability �F in time cost �F after query-
ing the hashing random oracle qH times and the signing
random oracle qsig times. A simulator (reductionor)
R attempts to utilize the capacity of such a forger to
break a computationally hard problem - CDH problem:
given sG and h0G 2 G1nfOg, �nd h0sG 2 G1nfOg,
where h0 and s are random numbers in Z�q . Without
loss of generality, we omit the superscript � and sub-
script i of s(�)i . We will derive the relation between �F
and �R, where �F and �R denote the success proba-
bilities of forger F and reductionor R respectively. In
the proof of reduction under random oracle model, R
must simulate the key generation, the hashing random



oracle HR, the signing random oracle SR and the ver-
ifying random oracle VR. Their distributions have to
be indistinguishable from the ones which the forger F
expects.
While the forger F queries the signing random or-

acle with w, the reductionor R simulates the signing
random oracle SR and the hashing random oracle HR
in the following manner [6]: First, R is given Q(= sG)
and H 0(= h0G) 2 G1nfOg by simulating the key gener-
ation, and sends Q(�)i to the forger F . Next, for j = 1
to qH + qsig + 1, do
(i) If the query w happens in the past, R returns the

same hash value and the same signature as the answers
of querying the hashing random oracle and the signing
random oracle respectively.
(ii) Otherwise, R chooses l randomly from [1; qH +

qsig + 1].

- If l 6= j, pick hj 2 Z�q at random and let H(w) =
hjG and Signj = hj � sG =hjsG. Update the
hashing and signing database with the new tuple
(w;Signj ; hjG; hj), and return the new Signj as
the answer of querying the signing random oracle.

- If l = j, then assume H(w) is equal to h0G, and
let Signj be ?, which will fail in the veri�cation.
Update the hashing and signing database with the
new tuple (w;?; h0G;?), and R aborts the query-
ing this time.

At each simulation of SR, the signature created
by reductionor R will fail in the veri�cation with
the probability 1=(qH + qsig + 1). So, after querying
the signing random oracle qsig times, Pr[R fails] =
qsig=(qH + qsig + 1). Therefore, Pr[R succeeds] =
1� qsig=(qH + qsig + 1).
While the forger F queries the verifying random or-

acle with (w�; Sign�j ), the reductionor R simulates the
verifying random oracle VR as follows: check whether
(w�; Sign�j ) is a valid signature employing the veri�ca-
tion equation (5). If so and H(w�) = h0G, then return
�veri�cation successful� and Sign�j (= h0sG). The re-
ductionor R outputs the result Sign�j of CDH problem:
given sG and h0G 2 G1nfOg, �nd h0sG 2 G1nfOg.
To sum up, R succeeds in solving CDH problem with

the probability �R = (1 � qsig=(qH + qsig + 1)) � �F �
(1=(qH + 1)) = �F=(qH + qsig + 1) in the time cost
�R = �F+(qH+qsig+1)�f2[pm]g, where [pm] denotes
the time cost of point multiplication. Thus, we obtain
an upper bound of success that our scheme is attacked:

SucOurs(w; qH ; qsig; �F ) � (qH+qsig+1)SucCDH(w; �R);

where �R = �F + (qH + qsig + 1) � f2[pm]g. �

Assumption 2 (BDL problem is hard). By a
suitable choice on the size p of an elliptic curve, the
Bilinear Discrete Logarithm problem on supersingular
curves should remain hard. For such a curve E(Fp),
the complexity to solve the problem can be expressed
as sub_exp(pc) for c � 6 [8]. The sub_exp(�) denotes a
subexponential function which grows much slower than
exponentials but much faster than polynomials.
Theorem 3 (Security against Collusion Attack

Type I). Two or more websites can not collaborate to
derive the primary proof with their less fragment-proofs
obtained from visitors respectively.
Proof. Suppose wa derives the primary proof

Sign
(�)
a by collaborating with wb at the period of time

� . For wa and wb, we assume that they have re-
ceived the fragment-proofs fSign(�)ia j1 � i � ug and
fSign(�)ib ju + 1 � i � tg respectively at the end of
the period of time � . To derive Sign(�)a , from (6)
the number of Sign(�)ia must be at least t. However
website wa only has the account u for Sign

(�)
ia so far.

To complement the vacancies, website wa collaborates
with wb to derive fSign(�)ia ju + 1 � i � tg from
fSign(�)ib ju + 1 � i � tg. But the derivation fails due
to

Sign
(�)
ia = f� (i)H(wa) = (kTA+�r�r+�

t�1P
j=1

aji
j)H(wa)

and

Sign
(�)
ib = f� (i)H(wb) = (kTA+�r�r+�

t�1P
j=1

aji
j)H(wb):

Unless we can solve the hard problem of Bilinear
Discrete Logarithm (BDL) to get f� (i)(= s

(�)
i ) from

Sign
(�)
ib , it is impossible to derive fSign

(�)
ia ju+1 � i �

tg from fSign(�)ib ju+ 1 � i � tg. So two or more web-
sites can not collaborate to derive the primary proof
with their less fragment-proofs obtained from visitors
respectively. �
Theorem 4 (Security against Collusion Attack

Type II). Players (visitors), the account of which is
less than the threshold t, and websites can not collab-
orate to derive the primary proof.
Proof. Suppose a speci�c website wl would like to

collude with numerous players less than the number of
t to extract the primary proof Sign(�)l at the period of
time � . Each player only provides one fragment-proof
at every period of time anyway and can not give other
evidences bene�cial for the derivation of the primary
proof. Thus the website wl can not derive the primary
proof as long as the number of players colluded with is



Table 1. Evaluation of performance of our scheme

Evaluation of performance
compu. cost for TAA
during Key-Gen. Phase

� nt[m]

compu. cost per player
during Key-Gen. Phase

� t[pm]

commu. cost for TAA
during Key-Gen. Phase

� 2njqj

compu. cost per player
during Visit Phase

� 3[pm] + 4[w]

compu. cost per website
during Proof-Comb. Phase

� t[pm] + (t� 1)[pa] + [w]

n: # of players participating the game.
[m]: modular multiplication, [w]: modi�ed Weil pairing.
[pa]: point addition, [pm]: point multiplication.

less than the threshold t. So Players (visitors), the ac-
count of which is less than the threshold t, and websites
can not collaborate to derive the primary proof. �
Theorem 5 (Forward Security). Website can not

derive the primary proof regarding the current period
of time from the previous primary proof or fragment-
proofs.
Proof. (a). Suppose a speci�c website wl obtains

the primary proof Sign(�)l during the period of time
� . At the next period of time � + 1, the website at-
tempts to derive the primary proof Sign(�+1)l with the

help of Sign(�)l . From the de�nition of the primary

proof Sign(�)l , we have Sign(�)l = (kTA+�r�r)H(wl).
Parsing Sign(�+1)l , we infer the following relation:

Sign
(�+1)
l = f�+1(0)H(wl)

= (kTA + �r)H(wl)

= (kTA + �r � r)H(wl) + rH(wl)
= Sign

(�)
l + rH(wl):

So, it is infeasible obviously to attempt to derive
Sign

(�+1)
l with the previous primary proof Sign(�)l be-

cause of unknown r. (b). Similarly, it is hard to at-
tempt to derive Sign(�+1)l with the previous fragment-

proofs Sign(�)il ; 1 � i � t; due to the same cause. �

6 Evaluation of performance

In our scheme, each player Ui (1 � i � n) is assigned
a secret shadow s(1)i and an updated parameter �i by
TAA via a secure channel before the start of the game.
The assignment procedure happens once only through-
out the game.

During Key-Generation Phase, TAA needs to com-
pute n(t + 1) � nt modular multiplications in order
to obtain s(1)i and �i (1 � i � n), and each player
Ui needs to compute (t + 1) point multiplications to
check the soundness of s(1)i and �i come from TAA.
The communication cost is about 2njqj bits during
the phase. During Shadow-Refreshing Phase, player
Ui can refresh his secret shadow easily with modu-
lar addition, where the computation cost is ignored
while compared with modular multiplication. During
Visit Phase, each player Ui needs to compute one point
multiplication to obtain Sign(�+1)il while visiting the
website wl. In the meanwhile, to verify the fragment-
proof Sign(�+1)il , player Uj needs to compute two point
multiplications � � R and (� + 1) �

Pt�1
j=1 i

jAj and four

modi�ed Weil pairings ê(Sign(�+1)il ;G); ê(H(wl); QTA);
ê(H(wl); �R) and ê(H(wl); (� + 1)

Pt�1
j=1 i

jAj). Dur-
ing Proof-Combination Phase, the website wl needs to
compute t point multiplications and t � 1 point addi-
tions in order to extract the primary proof Sign(�+1)l .
In addition, he also needs to compute one modi�edWeil
pairing ê(Sign(�+1)l ;G) for verifying the primary proof
Sign

(�+1)
l . We summarize the above inferences about

performance in Table 1.

7 Discussion and conclusion

We exhibited some advantages of our scheme in the
paper. Our scheme is able to prevent two kinds of col-
lusion attacks: Collusion Attack Type I and Col-
lusion Attack Type II, and is equipped with veri-
�able secret shadow, shadow-self-refreshing, veri�able
fragment-proof and forward security. Up to now, no se-



cure metering scheme with all the above features exists
at the same time.
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Appendix:

A.1

From f� (x) = kTA + (� � 1)r + �
Pt�1

j=1 ajx
j mod q,

letting 1  � and i  x, we have f1(i) = kTA +Pt�1
j=1 aji

j mod q for i = 1; 2; :::; n, i.e., s(1)i = kTA +Pt�1
j=1 aji

j mod q. So it is obvious that s(1)i G = QTA +Pt�1
j=1 i

jAj .

A.2

By the de�nition �i = r +
Pt�1

j=1 aji
j mod q, multi-

plying the two sides of the equation with G, (2) may be
acquired e¤ortlessly.

A.3

From f� (x) = kTA + (� � 1)r + �
Pt�1

j=1 ajx
j mod q,

setting 1  x and � + 1  � , we obtain the relation
s
(�+1)
i = f�+1(i) = kTA+ �r+(� +1)

Pt�1
j=1 aji

j mod q.
According to (4), the signature for H(wl) by the secret
shadow s(�+1)i may be rewritten as follows:

Sign
(�+1)
il

= s
(�+1)
i H(wl)

= kTAH(wl) + �rH(wl) + (� + 1)
t�1P
j=1

aji
jH(wl):

Substituting the signature into the following modi�ed
Weil pairing, we have (5):

ê(Sign
(�+1)
il ;G)

= ê(kTAH(wl) + �rH(wl) + (� + 1)
t�1P
j=1

aji
jH(wl);G)

= ê(kTAH(wl);G)ê(�rH(wl);G)ê((� + 1)
t�1P
j=1

aji
jH(wl);G)

= ê(H(wl); QTA)ê(H(wl); �R)ê(H(wl); (� + 1)
t�1P
j=1

ijAj)

A.4

According to Shamir-SS, while known arbitrary t-
pair shadows (i; f(i)), i = 1; 2; :::; t, the polynomial
chosen formerly to generate the n-pair shadows can be
recovered as the following.

f�+1(x) =
tX
i=1

24f�+1(i) Y
1�j�t;j 6=i

x� j
i� j

35mod q:
Because that the master secret kTA+ �r regarding the
period of time � is placed in the position of constant

coe¢ cient of polynomial. We can extract it by setting
x = 0 for the above polynomial.

kTA+�r = f�+1(0) =
tX
i=1

24f�+1(i) Y
1�j�t;j 6=i

j

j � i

35mod q:
For convenience, we de�ne ci =

Q
1�j�t;j 6=i

j
j�i and

s
(�+1)
i = f�+1(i). Thus, an useful equation will be
obtained as follows.

f�+1(0) =
tX
i=1

s
(�+1)
i cimod q:

The above equation implies that the master secret
f�+1(0) may be recovered from summing arbitrary t
shadows s(�+1)i multiplied by their corresponding con-
stants ci.
Multiply the two sides of the above equation with

H(wl), we can derive (6):

Sign
(�+1)
l =

tP
i=1

h
Sign

(�+1)
il ci

i
;

where Sign(�+1)l = f�+1(0)H(wl) and Sign
(�+1)
il =

s
(�+1)
i H(wl).

A.5

Since the master secret of TAA is kTA + �r during
the period of time � , the signature of H(wl) signed
by the master secret is Sign(�+1) = (kTA + �r)H(wl).
Substituting Sign(�+1) into the modi�ed Weil pairing,
we acquire (7):

ê(Sign
(�+1)
l ;G) = ê((kTA + �r)H(wl);G)

= ê((kTAH(wl) + �rH(wl));G)
= ê(kTAH(wl);G)ê(�rH(wl);G)
= ê(H(wl); QTA)ê(H(wl); �R):


