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Abstract-In this paper, we proposed the first fail-
stop blind signature scheme based on the integer 
factorization to obtain unforgeability and anonymity 
properties.  It can be applied in more critical system 
like electronic payment systems which need higher 
security against more powerful forger and can 
preserve participants’ anonymity. 
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1. Introduction 
 

A digital signature can provide analogous to 
ordinary hand-written signature for achieving non-
repudiation property.  Diffie and Hellman [4] 
introduced the concept of digital signature in 1976, 
and then Rivest, Shamir, and Adleman [7] proposed 
the first digital signature scheme in 1978.  RSA 
public-key cryptosystem is based on the integer 
factoring problem and the security of the 
cryptosystem relies on that computational 
assumption.  However, such signatures are only 
computationally secure for the signer because a 
forger may forge a signature with unlimited 
computational power.  This means that there is no 
mechanism to protect a signer against a forged 
signature which has succeeded in signature 
verification.  Namely, if a signed message succeeds 
in signature verification it is assumed to be generated 
by the owner of the private key. 

To overcome this kind of attack, Waidner and 
Pfitzmann [9] proposed the first fail-stop signature.  

Fail-stop signature can protect a signer against a 
forger even with unlimited computational power 
because the possibility of finding the signer’s right 
private key in the fail-stop signature is negligible.  
The signer can use “proof of forgery” algorithm to 
prove the signature is forgery.  It achieves “proof of 
forgery” by showing that the underlying 
computational assumption has been broken.  The 
signer can stop the system if a forgery occurs – 
hence named fail-stop signature scheme.  The signer 
is unconditionally secure and the recipient is 
cryptographically secure in the fail-stop signature 
scheme. One important application of the fail-stop 
signature is electronic payment system [6].  The 
anonymity of participants is very important in 
electronic payment systems.  However, it cannot be 
achieved in the fail-stop signature. 

Chaum [3] introduced the concept of a blind 
signature scheme which can protect the anonymity of 
participants.  The blind signature scheme allows a 
user to obtain a message signed by the signer 
without revealing message and the signer cannot link 
any message-signature pair later.  The blind 
signature scheme can be used in electronic payment 
systems to preserve participants’ anonymity. 

In this paper, we propose the first fail-stop blind 
signature scheme which is based on  RSA-based fail-
stop signature scheme presented by Susilo, Safavi-
Naini and Pieprzyk [8].  Our scheme can provide 
“proof of forgery” for signers and guarantee 
“anonymity” for participants.  We will give 
sufficient proof to show that the proposed scheme 
satisfies the conditions of fail-stop signature and 
blind signature.   It can provide more secure 
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cryptographic primitive for applying in electronic 
payment systems. 

This paper is organized as follows. RSA-based 
fail-stop signature scheme will be reviewed in 
Section 2.  In Section 3, we propose a fail-stop blind 
signature scheme based on the integer factorization 
problem.  In Section 4, we show that the proposed 
scheme satisfies the conditions of fail-stop signature 
and blind signature.  Finally, we give brief 
conclusions in Section 5. 
 
2. RSA-based Fail-Stop Signature 
 

Susilo, Safavi-Naini and Pieprzyk [8] presented 
two RSA-based fail-stop signature schemes (with or 
without a trusted dealer).  We only consider the 
scheme with trusted dealer here for simplicity.  
Actually, the signer and the receiver can instead of 
trusted dealer to perform the initialization phase by 
using Boneh-Franklin’s algorithm [2].  There are 
three kinds of participants, which are the trusted 
dealer, the sender and the receiver in the Susilo et 
al.’s scheme with trusted dealer.  A forged signature 
can be proved by using Miller’s [5] and Bach’s [1] 
methods to reveal non-trivial factors for the signer.  
The detailed scheme is described as follows. 

(1) Initialization phase : The two large prime 
numbers p  and q  are chosen by D , such that 

1'2 += pp  and 1'2 += qq , where 'p  and 'q  are 
also prime [2].  Then, D  computes pqn =  and 

)1)(1()( −−= qpnφ .  Next, D  selects Dd  as 
her/his private key and computes 

)(mod1 nde DD φ−= , where 

1))(,( =ndGCD D φ . Then, D  selects a random 

number *
nZ∈α  and computes nDd modαβ = .  

Finally, D  publishes his public key ),( nα  and 

sends ),( βDe  to S  securely.  
(2) Key generation phase : S  selects four random 

numbers, which are 1k , 2k , 3k  and 4k  as the private 

key, where *
ni Zk ∈ , 41 ≤≤ i .  Next, S  

computes nkk mod34
1 βαβ = , 

nkk mod13
11 βαα =  and nkk mod24

12 βαα = .  

Finally, he publishes his public key ),,( 211 ααβ . 
(3) Signature generation phase : S  computes 

211 kxky +=  and 432 kxky += , where 
*

nZx∈  is a message.  Then, he publishes the 

signature ),( 21 yy  on message x . 
(4) Signature verification phase : R  can verify 

the signature by checking the formula 

nxyy mod211
12 ααβα = .  If it is true, this 

signature is a valid one. 
(5) Proof of forgery phase : If a forged signature 

)','( 21 yy  on message x  succeeds in signature 
verification phase, S  can prove that a forgery has 
occurred by executing the following steps. 
1. To construct the right signature ),( 21 yy  on 

message x . 

2. To compute )'( 111 yyZ −=  and 

)'( 222 yyZ −= . 

3. To compute 

)()( 13142 ncZkZkZeD φγ =−−=  

4. To find non-trivial factors of n  by using Miller’s 

[5] and Bach’s [1] methods. 

5. The non-trivial factors of n  is the proof of 

forgery. 

 
3. Fail-Stop Blind Signature Scheme 
 

The fail-stop blind signature scheme combines 
the advantages of both fail-stop signature and blind 
signature.  Our proposed scheme is a modification of 
Susilo et al.’s scheme with trusted dealer.  There are 
seven phases (1) Initialization, (2) Key generation, 
(3) Blinding, (4) Signing, (5) Unblinding, (6) 
Verification and (7) Proof of forgery in the fail-stop 
blind signature scheme.  The three kinds of 
participants in our scheme are the same as the 
section 2.  The detailed scheme is described bellow. 

(1) Initialization phase : Initially, the trusted 
dealer D  chooses two large primes p  and q  such 
that 1'2 += pp  and 1'2 += qq , where 'p  and 

'q  are also prime.  D  computes pqn =  and 

)1)(1()( −−= qpnφ .  Next, De  and Dd  are 
chosen by the trusted dealer such that 

)(mod1 nde DD φ≡ .  Then, D  chooses a integer 
*

nZ∈α  randomly and computes 

nDd modαβ = .  Finally, D  publishes his public 

key ),( nα , keeps his private key Dd  secretly and 

sends ),( βDe  to S  via secure channel.  
(2) Key generation phase : The signer S  

randomly chooses his private key ( 1k , 2k , 3k , 4k ), 

where *
ni Zk ∈  and computes 

nkk mod34
1 βαβ = , nkk mod13

11 βαα =  and 
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nkk mod24
12 βαα = .  Finally, S  publishes 

his(her) public key ),,( 211 ααβ  and a one-way 
hash function H . 

(3) Blinding phase : For a message m , the 

receiver R  selects a random numbers r  in *
nZ .   

R  computes nmrHm mod)(~ =  with a blinding 
factor r , where )(mH  is the hashed value of 
message m .  Then, R  sends the blinded message 
m~  and nrHx mod)(=  to S . 

(4) Signing phase : In this phase, S  computes 
)(~~

211 kxkms +=  and )(~~
432 kxkms += .  S  

sends the blinded signature )~,~( 21 ss  on blinded 
message m~  to R . 

(5) Unblinding phase : After R  obtains the 
blinded signature )~,~( 21 ss , he(she) performs the 

unblinding operation by computing 1
1

1
~srs −=  and 

2
1

2
~srs −= .  Then, ),( 21 ss  is the signature on 

hashed message )(mH . 
(6) Verification phase : Anyone can verify the 

message-signature ),,),(( 21 ssxmH  by checking 

if nmHss mod2
)(

11
12 ααβα = . 

(7) Proof of forgery phase : This phase is similar 
to Susilo et al.’s scheme in section 2.  The signer can 
prove that a forgery has occurred by revealing the 
non-trivial factors of n . 

 
 
4. Security Analysis 
 

A secure fail-stop blind signature scheme must 
satisfy four conditions as follows. 

(1) The forger is nearly impossible to forge a 
signature even with unlimited computational power. 

(2) The signer can use a polynomial-time 
algorithm to prove that a forgery has occurred. 

(3) The polynomial-bounded signer cannot forge 
a signature and prove it a forgery later. 

(4) The signer is computationally infeasible to 
link the message he actually signed and the 
corresponding signature for verification later. 

 
Lemma 1: There equally like exists 2)(nφ  

matching private keys for each public key, such that 
different private key generate different signature on 
the same message. 

 
Lemma 2: The signer can prove that a forgery 

has occurred by factorizing n  if a forged signature 
)','( 21 ss  on a message m  succeeds in verification 

phase. 

 
Lemma 3: The signer can prove that a forgery 

has occurred by the probability  
)(

1)(
n

n
φ

φ −
. 

 
The detailed proofs of Lemma 1, 2 and 3 are 

described in Susilo et al. [8].  The second condition 
of a secure fail-stop blind signature is satisfied by 
Lemma 2.  Theorem 1 shows that a forger even 
with unlimited computational power, still there exists 

)(nφ  possible private keys for that signature. 
 
Theorem 1: The forger even with unlimited 

computational power still existing )(nφ  possible 

private keys for that blinded signature )~,~( 21 ss  on 
the blinded message m~  together with corresponding 
public key. 

Proof: To Assume the forged blinded signature on 
the blinded message m~  is )'~,'~( 21 ss  and the public 

key of the signer is ),,( 211 ααβ .  If a forger with 
unlimited computational power can solve the 
discrete logarithm and factorization problem 
successfully, he can obtain these equations as 
follows. 

)(mod~)('~
211 nmkxks φ+=  

)(mod~)('~
432 nmkxks φ+=  

)(mod)( 131 nwkkc φ+=  

)(mod)( 242 nwkkc φ+=  

Where )(~ mrHm = , *
21,, nZccx ∈  and 

341log kdkw D+== βα .  Then, a forger can 
rewrite these equations by using matrix 
representation. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

1

2

1

4

3

2

1

'~
'~

100
010

~~00
00~~

c
c
s
s

k
k
k
k

w
w

mmx
mmx

 

The above matrix’s rank is 3 because 
0~~

4213 =+−− rmrwrrmx , where ir  is the i-th 

row of the matrix.  There are )(nφ  possible private 
keys for that blinded signature since the solutions of 
equations are )(nφ .                                       □ 

 
Lemma 4: The forger even with unlimited 

computational power cannot generate the blinded 
signature on a new message. 
 

Theorem 2: The polynomial-bounded signer 
cannot generate a valid signature and prove it a 
forgery later. 
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Proof: The polynomial-bounded signer must have 
another private key )',',','( 4321 kkkk  which can 

match the corresponding public key ),,( 211 ααβ  to 
deny a generated valid signature, such that 

nkk mod'
1

'
1

13 βαα =  and 

nkk mod'
1

'
2

24 βαα = .  The difficulty to find 

another private key )',',','( 4321 kkkk  is  
equivalent to solve the discrete logarithm problem.  
Moreover, it is difficult to find Dd  without knowing 

)(nφ  since the difficulty of integer factorization.  
Hence, the proposed scheme satisfies the third 
condition of a secure fail-stop blind signature by 
Theorem 2.                                                     □ 

 
Theorem 3: There exists a unique private key 

corresponding to the public key, the blinded 
signature )~,~( 21 ss  on the blinded message m~  and a 

valid blinded signature )'~,'~( 21 ss  on the blinded 
message '~m , where '~~ mm ≠ . 

Proof: From Theorem 1, the forger even with 
unlimited computational power still existing )(nφ  
possible private keys for the blinded signature on the 
blinded message corresponding the public key.  The 
signer can organize these equations as follows. 

)(mod~)(~
211 nmkxks φ+=  

)(mod~)(~
432 nmkxks φ+=  

)(mod'~)('~
211 nmkxks φ+=  

)'(mod'~)('~
432 nmkxks φ+=  

)(mod)( 131 nwkkc φ+=  

)(mod)( 242 nwkkc φ+=  

Where )(~ mrHm = , *
21,, nZccx ∈  and 

341log kdkw D+== βα . The matrix 
representation of above equations can rewrite as 
follows. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

1

2

1

2

1

4

3

2

1

'~
'~

~
~

100
010

'~'~00
00'~'~
~~00
00~~

c
c
s
s
s
s

k
k
k
k

w
w

mmx
mmx

mmx
mmx

 

Since '~~ mm ≠ , The above coefficient matrix’s 
rank is 4.  Hence, the private key is unique 
corresponding to the public key.  We prove that the 
first condition of a secure fail-stop blind signature is 
satisfied from Theorem 3.                                       □ 

 

Theorem 4: The signer computationally cannot 
link the blinded message m~  he actually signed and 
the corresponding signature ),( 21 ss  for 
verification later. 

Proof: In the signing phase, the signer can obtain 
the blinded message )(~ mrHm =  and 

nrHx mod)(= .  The signer can obtain the 

signature ),( 21 ss  in the verification phase, where 

)()(~
211

1
1 mHkxksrs +== −  

)()(~
432

1
2 mHkxksrs +== −  

The signer is computationally infeasible to link 
the blinded message and the signature for 
verification later since a blinding factor is chosen 
randomly by the receiver.  The last condition of a 
secure fail-stop blind signature is satisfied by 
Theorem 4.          □ 
 
5. Conclusions 
 

Waidner and Pfitzmann presented the first fail-
stop signature that can provide a signer to prove the 
signature is forgery.  In this paper, we propose the 
first fail-stop blind signature scheme and give 
sufficient proof to prove that it satisfies the 
conditions of fail-stop signature and blind signature.  
It is suitable to be applied in untraceable electronic 
payment systems which need higher security against 
an unlimited forger and can preserve the anonymity 
of participants. 
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