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Abstract- Most secret image sharing schemes 
produce shadows with an equal size including the 
well know Shamir’s and Thien-Lin’s approaches 
that are based upon polynomial interpolation. In 
this paper we utilize Chinese remainder theorem to 
design a novel threshold secret image scheme 
which produces shadows with different sizes. To 
share an image secretly among n participants, our 
scheme determines n relative prime moduli based 
upon which the image is encoded into n shadows 
which are distributed to the n participants such 
that every group of r participants could recover 
the image by using their shadows and moduli, 
while any group of less than r participants cannot. 
Since a shadow is a collection of the remainders of 
its corresponding modulus in our scheme, the size 
of the shadow is dependent on that of the modulus. 
Our scheme is more flexible then those in the 
literature due to the reason that by choosing a 
proper set of relative prime moduli the dealer is 
able to distribute shadows with different sizes to 
participants with different degrees of importance.  
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1. Introduction  

Secret sharing aims at protecting a secret by a 
group of participants where each participant owns 
a part of the secret called shadow which reveals 
nothing about the secret. To recover the secret, 
threshold secret sharing addresses that only when 
a certain number (called threshold) of participants 
can reconstruct the secret be using their shadows 
altogether, while any group of less than the 
threshold number of participants cannot. Consider 
a secret s and a set of participants P = {1, 2, … , n} 
sharing s. Any approach that achieves the 
requirements of secret sharing for s with a 
threshold r among the n participants in P is called 
an r out of n (or (r, n)) threshold secret sharing 

scheme.  
Shamir [1] and Blakley [2] independently 

proposed threshold secret sharing schemes in 1979. 
Shamir’s approach is based upon the polynomial 
interpolation in a two-dimensional space, while 
Blakley’s scheme originates from the intersections 
of some high-dimensional planes in a 
high-dimensional space. Shamir’s scheme is 
simple and easy to implement so that it has 
attracted many researchers’ attention [3-7]. We 
give a brief introduction to Shamir’s scheme in the 
following. 

Consider an r−1 degree polynomial: 
 f(x) = a0 + a1x1 + a2x2 + … + ar−1xr−1  

where all computations are perform in GF(p) in 
which p is a prime (or a power of 2 or a prime),   
1 ≤ ar−1 < p, 0 ≤ aw < p for 0 ≤ w ≤ r−2, and 1 ≤ x < 
p. Shamir’s (r, n) scheme apply this polynomial to 
share a secret s. The dealer sets s to be a0 and 
randomly chooses a1, a2, … , ar−1 to form f(x). 
Then, he/she chooses x1, x2, … , xn as keys based 
upon which f(x1), f(x2), … , f(xn) are computed as 
shadows. The n pairs of (f(xi), xi)’s, 1≤i≤n, are 
distributed to the n participants one by one. Since 
any group of r (or more) (f(xi), xi)’s is able to 
obtain (a0, a1, … , ar−1) by solving the r equations 
using polynomial interpolation, s (= a0) is thus 
recovered. None of any group of less than r 
participants can solve the r equations completely. 
We say that s is shared by n participants in an (r, n) 
threshold structure. 

Thien and Lin [8] in 2002 extended Shamir’s 
scheme so that the polynomial-based idea can be 
applied to share a secret image. Consider an image 
P with N pixels in total which is shared in an (r, n) 
threshold structure. Thien-Lin’s scheme first 
diffuses all N pixels in P and organizes them into 
N/r segments with r pixels each. Let the r pixels in 
segment t be denoted as (a0, a1, … , ar−1)t for 1 ≤ t 
≤ N/r. The values of these r pixels of segment t are 
assigned to be the r coefficients of the polynomial 
to form ft(x). Then, the dealer determines n keys x1, 
x2, … , xn, and computes ft(x1), ft(x2), … , ft(xn) for 



1 ≤ t ≤ N/r. After that, f1(xi), f2(xi), … , fN/r(xi) are 
merged into a shadow image Di for 1 ≤ i ≤ n. The 
dealer distributes (Di, xi) to participant i for 1 ≤ i ≤ 
n. It is not hard to see that r (or more) participants 
can recover (a0, a1, … , ar−1)t by their r pairs of 
keys and shadows with polynomial interpolation 
for all equations ft(x)’s, 1 ≤ t ≤ N/r. (a0, a1, … , 
ar−1)1, (a0, a1, … , ar−1)2, … , (a0, a1, … , ar−1)N/r are 
indeed the N pixels in P which have been diffused 
ever. After re-ordering all of the pixels, we 
reconstruct P. The shadow size of Thien-Lin’s 
approach is N/r, that is, each Di contains N/r pixels 
for 1 ≤ i ≤ n. If the original Shamir’s approach is 
directly applied to share the image, the size of each 
shadow is N. Therefore, Thien-Lin’s scheme 
reduces the size of the shadows as compared to 
Shamir’s. 

However, the sizes of all shadow images are the 
same in either Thien-Lin’s or Shamir’s approach. 
In real-world applications, this might not always 
be an advantage. For instance, a particular 
participant (the boss, some secret agent, etc.) 
would like to carry a shadow with a smaller size 
(than others) for reducing the cost, burden or other 
concerns. Our interest in this paper is thus to 
design a secret image sharing scheme with various 
shadow sizes. Since the dealer could define the 
degrees of importance of the participants and 
distribute the different-sized shadows to the 
participants in terms of their degrees. Essentially, 
the proposed scheme is based upon the Chinese 
remainder theorem. 

The rest of the paper is organized as follows. 
We introduce Chinese remainder theorem and how 
to apply CRT to accomplish secret sharing in 
Section 2. Our threshold scheme for sharing 
images is proposed in Section 3. Some 
experiments results and related discussions are 
reported in Section 4. Section 5 gives some 
concluding remarks. 
 
2. Previous Studies 
2.1 Chinese reminder theorem  

Consider a secret value x and m ≥ 2 positive 
relatively prime moduli, namely q1, q2, … , qm. Let 
Q = q1 × q2 × … × qm and si be the remainder of x 
modulo qi for 1 ≤ i ≤ m. The Chinese remainder 
theorem (CRT) asserts that the following system 
has a unique solution x in ZQ [9, 10]:  

 x ≡ s1 (mod q1) 
 x ≡ s2 (mod q2) 
   … 
 x ≡ sm (mod qm) 

Give a number x and m positive relatively 

prime moduli q1, q2, … , qm where x∈ZQ, the above 
system is described as: 

(s1,s2,…, sm) = CRT_remainders(x,m,q1,q2,…,qm). 
The solution x∈ZQ can be obtained by many 

ways. One of the popular approaches is to compute 
Mi and its multiple inverse ci (under modulus qi) 
for all moduli qi, 1 ≤ i ≤ m [10] first as follows:  

 Mi = Q / qi; 
 ci Mi = 1 mod qi. 

Then x can be obtained by 

 x = (∑
=

m

i
iii Mcs

1

) mod Q. 

To ease the following applications of finding a 
solution based upon CRT, we organize these 
operations as a procedure:  

 x = CRT_solution(m,q1,q2,…,qm,s1,s2,…,sm)  
where x ≡ si (mod qi) for 1 ≤ i ≤ m.  
 
2.2 Threshold secret sharing by CRT 

Let x be a secret value and q1, q2, … , qm be m 
positive relatively prime moduli where Q = q1 × q2 

× … × qm and x ∈ ZQ. Since (s1, s2, … , sm) = 
CRT_remainder(x, m, q1, q2,…, qm), a naïve idea for 
applying CRT for sharing x among the m 
participants may be using si as the shadow for 
participant i, 1≤i≤m. (This was adopted by Meher 
and Patra in their secret image sharing scheme in 
2006 [11].) For instance, assume that m = 3 and (q1, 
q2, q3) = (3, 5, 7). Consider a secret x = 97 sharing 
by the 3 (=m) participants. Since (s1, s2 s3) = (1, 2, 
6) (= CRT_remainder(97, 3, 3, 5, 7)), i.e. 

 97 ≡ 1 mod 3 
 97 ≡ 2 mod 5 
 97 ≡ 6 mod 7 

(si, qi) might be distributed to participant i for i = 1, 
2, 3. Then, only when all three participants 
contribute their information can they compute x = 
97; while any group of less than two participants 
cannot.  

Yet, we give an example to illustrate that such 
naïve application is incorrect in some cases. 
Consider the same scenario except for x = 18. We 
have (s1, s2 s3) = (0, 3, 4) (= CRT_remainder(18, 3, 
3, 5, 7)): 

 18 ≡ 0 mod 3 
 18 ≡ 3 mod 5 
 18 ≡ 4 mod 7 

Indeed, all three participants can obtain 18 (18 = 
CRT_solution(3, 3, 5, 7, 0, 3, 4). However, 
participants 1 and 3 (or 2 and 3) can do so by using 
their (0, 3) and (4, 7) (or (3, 5) and (4, 7)) (18 = 
CRT_solution(2, 3, 7, 0, 4) = CRT_solution(2, 5, 7, 



3, 4)) too. Thus, it is not a (3, 3) scheme, let alone 
a threshold scheme. This naïve application of CRT 
cannot establish a threshold secret sharing scheme. 

To share a secret by using CRT is not a new 
topic, Mignotte [12] and Asmuth-Bloom [13] 
proposed (r, n) threshold secret sharing schemes in 
1983 individually. Some following studies can be 
found in [14-17]. Our scheme is based upon 
Mignotte’s idea that is introduced as follows. 

Consider n relatively positive prime moduli q1 
< q2 < … < qn. Let α = qn−r+2 × qn−r+3 × … × qn (the 
product of maximal r−1 moduli) and β = q1 × q2 

× … × qr (the product of the minimal r moduli). 
Let secret x satisfy α < x < β. The dealer 
distributes (si, qi) to participant i for 1 ≤ i ≤ n 
where (s1, s2, … , sn) = CRT_remainder(x, n, q1, 
q2, … , qn) so as to accomplish sharing x among 
the n participants in an (r, n) structure. Assume 
that any group of r−1 participants, say {i1, i2, … , 
ir−1}, compute as follows with their shadows and 
moduli: 

y = CRT_solution(r−1,qi1,qi2,…,qir−1,si1,si2,…,sir−1). 

They can only retain a solution y in ZQ' where Q' = 
qi1 × qi2 × … × qir−1 ≤ α (= qn−r+2 × qn−r+3 × … × qn) 
according to CRT. Since y ≤ α < x, y ≠ x. On the 
other hand, when r participants, say i1, i2, … , ir, 
compute as follows with all their shadows and 
moduli, they can recover x: 

x = CRT_solution(r,qi1,qi2,…,qir,si1,si2,…,sir). 
Therefor the (r, n) threshold property holds. 
 
3. The Proposed Scheme  

Consider an h×w secret image I with M bits in 
total and a set of n participants sharing I. Our 
encoding process first chooses n relatively prime 
moduli q1 < q2 < … < qn, and compute α = qn−r+2 × 
qn−r+3 × … × qn and β = q1 × q2 × … × qr. We 
regard secret image I as a series of l blocks with 
d-bit each (i.e. l = ⎡M/d⎤) and take each block, say 
Ik, as an encoding unit for 1 ≤ k ≤ l. Let xk denote 
the decimal value of the d-bit of block Ik, 0 ≤ xk ≤ 
2d−1.  

To cope with the cases like natural images 
which comprise blocks of similar or even same 
colors, we simply introduce a series of random 
numbers, namely random()’s, in range [0, 2d−1] 
with an initial seed e and perform xk⊕random() for 
all blocks in order to diffuse the values of all 

blocks where ⊕ is the “xor” operation. (Note that 
it would be shown later that the seed e is also 
shared among the n participants in the (r, n) 
structure.) 

To maintain the (r, n) threshold property, we 
adjust the diffused value xk to be xk' to assure that 
the constraint α < xk' < β is met. This is done by 
adding a pre-determined offset p to the diffused 
value xk where α < p < β−2d. 

Formally, we set e as the seed of the random 
sequence, i.e.  

 random_ seed(e), 
and set the range of the random numbers generated 
as 
 random_range(0:2d−1); 
then perform 
 xk' = (xk ⊕ random()) + p 
for all Ik’s, 1 ≤ k ≤ l where random() returns a 
random number which is a member of a random 
sequence seeded by e. Note that we deliberately set 
p as the seed e, i.e. e = p in our implementation. 
Then, xk' is shared among the n participants in an 
(r, n) structure by using CRT for all Ik’s: 

(sk,1,sk,2,...,sk,n)=CRT_remainder(xk',n,q1,q2,…,qn) 
where 0 ≤ sk,i < qi. We take zi = ⎡log2qi⎤ bits to 
store sk,i for 1 ≤ k ≤ l and 1 ≤ i ≤ n. All zi-bit 
remainders are merged zi-bit by zi-bit to form 
shadow Si, i.e.  

 Si = s1,i || s2,i || ... || sl,i 
where || denotes the concatenation operation. Thus, 
the bit-length (size) of Si is zi × l (= ⎡log2qi⎤× 
⎡M/d⎤).  
Further, p is shared among the n participants in the 
(r, n) structure by using CRT, too; that is, 

(a1,a2,...,an) = CRT_remainder(p,n,q1,q2,…,qn). 
The dealer thus distributes (Si, ai, qi) to 

participant i for 1 ≤ i ≤ n. Since q1 < q2 < ... < qn, 
we have | z1 | ≤ | z2 | ≤ ... ≤ | zn |, and consequently,  
| S1 | ≤ | S2 | ≤ ... ≤ | Sn |. That means the sizes of the 
shadows are different (which depend on those of 
the moduli). Or, each participant receives a part of 
information whose size is related to his/her degree 
of importance.  

The encoding algorithm is formally illustrated 
as follows.  

 
Encoding algorithm 
Input: a secret image I with M bits in total, a set of participants P = {1, 2, …, n} with various degrees of 

importance, threshold r (2 ≤ r ≤ n), and parameter d 



Output: shadows Si and ai, and modulus qi for 1≤ i ≤ n 
1. Choose {q1, q2, … , qn | (qi, qj) = 1, 2 ≤ q1 < q2 < … < qn < 2d} according to the degrees of 

importance in P 
2. α = qn−r+2 × qn−r+3 × … × qn; β = q1 × q2 × … × qr 
3. Choose seed p randomly with α < p < β−2d 
4. random_seed(p); random_range(0:2d−1) 
 // set p as the seed of the random sequence ranging from 0 to 2d 
5. Partition I into l (= ⎡M/d⎤) segments: I1, I2, … , Il    // Ik is with d bits, 1 ≤ k ≤ l 
6. for (each Ik, 1 ≤ k ≤ l) do 
6.1  { xk = the decimal representation of Ik 
6.2   xk' = (xk ⊕ random()) + p 
6.3   for (each i, 1 ≤ i ≤ n) do sk,i = xk' mod qi // | sk,i | = ⎡log2qi⎤ 
 } 
7. for (each i, 1 ≤ i ≤ n) do 
7.1 { Si = ∅ 
7.2  for (each k, 1 ≤ k ≤ l) do Si = Si ∪ {sk,i} // Append sk,i (| sk,i | = ⎡log2qi⎤) after Si (Si = Si || sk,i) 
  } 
8. for (each i, 1 ≤ i ≤ n) do ai = p mod qi 
9. Output(S1, S2, … , Sn, a1, a2, … , an, q1, q2, … , qn) 
  // the dealer distributes (Si, ai, qi) to participant i  
 

Participant i gets (Si, ai, qi) from the dealer 
for 1 ≤ i ≤ n. It is noticed that the size of shadow Si 
is ⎡log2qi⎤×⎡M/d⎤ for 1 ≤ i ≤ n. Thus the sizes of S1, 
S2, … , Sn are determined by those of q1, q2, … , qn 
which are defined according to the degrees of 

importance of the participants. This offers a 
flexible decision about which participant is 
more/less important at the dealer’s convenience. 

The decoding algorithm is shown in the 
following. 

 
Decoding algorithm 
Input: r participants i1, i2, ... , ir ∈ P and the corresponding moduli qi1 < qi2 < ... < qir, shadows Si1, Si2, ... , Sir 

and ai1, ai2, ... , air, and parameter d 
Output: the secret image I 
1.  p = CRT_solution(r, ai1, ai2, … , air, qi1, qi2, … , qir) 
2.  for (1 ≤ j ≤ r) zj = ⎡log2qij⎤ 
3.  random_seed(p); random_range(0:2d−1) 
4.  I = ∅ 
5.  l = | S1 | / z1   // l is the number of blocks; each shadow has the same l 
6.  for (each k, 1 ≤ k ≤ l) do 
6.1 { for (each Sij, 1 ≤ j ≤ r) do 
  { sk,j = the first zj bits of Sij  
   Sij = Sij−{sk,j}    // delete the first zj bits from Sij 
  } 
6.2  yk = CRT_solution(r, sk,1, sk,2, … , sk,r, qi1, qi2, … , qir) 
6.3  xk = (yk − p) ⊕ random() 
6.4  make xk to be d-bit long 
6.5  I = I ∪ {xk}    // Append xk after I by d-bit concatenation (I = I || xk) 
  } 
7.  Output(I) 
 
4. Experimental Results  

We report the implementation results of our 
scheme for testing a simple (3, 4) case in this 
section. Our program was coded in Microsoft C# 

and run in a PC with Windows. A 256×256 
gray-level Lena image was regarded as the secret 
image I as shown in Figure 1 which is shared by 
four participants 1, 2, 3 and 4 with the degrees of 



importance 4 < 3 < 2 < 1. We assume that the 
dealer would like to produce four shadows S1, S2, 
S3 and S4 for participants 1, 2, 3 and 4 respectively 
with | S1 | ≤ | S2 | ≤ | S3 | ≤ | S4 | so that the most 
important participant 1 gets the smallest shadow. 
(Of course, this is the dealer’s decision about who 
gets the smallest shadow.) 

In our implementation, we set d as 29 and (q1, 
q2, q3, q4) = (1009, 2026, 5095, 31651); thus, α = 
5095 × 31651 = 161261845 and β = 1009 × 2026 × 
5095 = 10415372230. The secret image is treated 
as a one dimensional array with M = 256×256×8 = 
524288 bit (since one gray pixel takes 8 bits 
specifying the gray scales in a Windows 
environment). The number of blocks in our 
experiment is l = ⎡M/d⎤ = 18079. Note that we 
simply append white pixels in the last block to 
make the number of pixels within it to be 29. 

Figure 2 shows the four shares S1, S2, S3 and S4 
produced by our encoding algorithm with pixels 
89×256, 98×256, 115×256 and 133×256 
respectively which meet the requirement of | S1 | ≤  
| S2 | ≤ | S3 | ≤ | S4 |. Let us explain why the pixels of 
S1 is 89×256. Each remainder of a 29-bit block 
under modulus q1 (= 1009) is less than 1009 and is 
stored by using ⎡log2q1⎤ = ⎡log21009⎤ = 10 bits. 
Thus, after encoding all l blocks, there are 
18079×10 = 180790 encoded bits which constitute 
S1. The bit-lengths of the other shadows are 
determined in the same way. For the display and 
comparison purposes, we took these consecutive 
bits as a series of 8-bit gray pixels which constitute 
a gray-level image with a height of 256. Since 
⎡(180790/8)/256⎤ = 89, thus the width and height 
of S1 become 89 and 256 respectively. 

Figure 3 illustrates the reconstructed images 
from our decoding algorithm by various groups of 
participants where (a)-(g) are reconstructed results 
by {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 
2, 3} respectively. Note that the results obtained by 
{1, 2, 4}, {1, 3, 4}. {2, 3, 4} and {1, 2, 3, 4} are 
exactly the same as Figure 3 (g), which is the same 
as the original Lena image; therefore, we just omit 
them here. Besides, the pixels (width×height) of 
these resultant images are all 256×256. This is due 
to our assumption that the groups of more than one 
participant knew d (the block size), l (the number 
of blocks) and the decoding algorithm so that they 
applied CRT to recover the 29-bit secret blocks by 
using their information and displayed their result 
as a 8-bit based gray-level image. 
 

 
Figure 1. Secret image to be shared. 

     
(a)    (b)     (c)   (d) 

Figure 2. Shadows produced by the encoding 
algorithm: (a) S1, (b) S2, (c) S3, (d) S4. 

  
(a)    (b) 

  
(c)    (d) 

  
(e)    (f) 

 
(g) 

Figure 3. Reconstructed results from the decoding 
algorithm by various groups of participants: (a) {1, 
2}, (b) {1, 3}, (c) {1, 4}, (d) {2, 3}, (e) {2, 4}, (f) 



{3, 4}, (g) {1, 2, 3}. 
 

It is easily seen from Figure 3 that any group of 
less than three participants cannot recover I, while 
all groups of three or more participants can. The 
attractive feature is that | S1 | ≤ | S2 | ≤ | S3 | ≤ | S4 | 
whose sizes are determined by the values of the 
chosen moduli which define the degrees of 
importance of the participants. These results 
demonstrated the feasibility and applicability of 
our scheme. 
 
5. Concluding Remarks 

We propose and implement a novel threshold 
secret image sharing scheme that produce shadows 
with different sizes by using CRT in this paper. 
The shadow sizes produced by our scheme are 
correlated with the degrees of importance of the 
participants. As compared to the conventional 
Shamir’s and the recent Thien-Lin’s approaches 
which produce shadows with the same size, our 
scheme is more flexible so that it can be applied to 
some practical situations that the parts of 
information given to different participants are with 
different sizes in terms of their degrees of 
importance. 

It is lucid that our scheme can be easily 
applied to secretly share a color image in a 
threshold structure. In the near future, we shall 
analyze the secrecy of our scheme. In the decoding 
and encoding algorithms, d is designed to be an 
input parameter and the seed e is the same as p. To 
increase the level of secrecy, d and e might be 
shared among the n participants in an (r, n) 
structure.  
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