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Abstract-Recently, a reversible VQ-based data
embedding scheme which emphasizes that the original
VQ compressed codes can be recovered after data
extracting was presented by Chang et al. In their
scheme, a sorted VQ codebook is divided into

32 1B  clusters and indexes located in the front one-
third clusters are used to embed secret data, where B
denotes the size of secret data embedded into each VQ
index. In this paper, a new reversible VQ-based
hiding scheme is proposed. In our scheme, a sorted
VQ codebook is divided into B2 clusters and half of
clusters are used to embed secret data. Strategies of
priorities, indicators, and index exchanging are
proposed to improve our scheme further. Under the
same sorted VQ codebook, experimental results
demonstrate that our data hiding algorithm has
higher capacity and better compression rate.

Keywords: Data hiding, Reversible embedding,
Vector quantization, Data clustering.

1. Introduction
As multimedia and the Internet are popular, the

problem of protecting transmitted media becomes
more and more important. In order to enhance the
safety of transmission, technologies based on data
hiding [1] have attracted great attention. Data hiding
usually embeds secret data into media, such as images
and videos, for the purpose of secret transmission or
copyright protection. In this paper, images are used as
the embedded media. Images before and after data
hiding are called cover images and stego-images,
respectively.

In recent years, many hiding technologies have
been developed based on the VQ (Vector
Quantization) [2-4], and some of them have the
character of reversibility [5-11]. The reversible data
hiding based on VQ generally refers to owning the
ability of extracting hidden data and recovering the
images into original VQ coding or SMVQ coding.

According to the developed reversible data hiding
technologies based on VQ, we put them into three
categories by the characters of outputs as follows.
(1) Images as outputs:

After data hiding, some approaches are limited to
producing images as outputs [5, 7]. Literature [5]
presents a reversible data hiding scheme based on side
match vector quantization (SMVQ). Another

literature [7] presents a reversible information hiding
scheme based on VQ.
(2) Legitimate VQ coding or SMVQ coding as

outputs:
After data hiding, a formal VQ coding or SMVQ

coding is created as outputs [6, 8]. Generally speaking,
approaches in this category require more skills.
Literature [6] proposes a reversible embedding
scheme for VQ-compressed images that is based on
side matching and relocation. Also, in literature [8], a
reversible data-hiding scheme based on a modified
side match vector quantization (SMVQ) technique is
proposed.
(3) VQ coding or SMVQ coding with additional

control messages as outputs:
Approaches in this category add control messages

into the formal VQ coding or SMVQ coding as
outputs [9-11]. Therefore, these approaches usually
increase the lengths of coding results. Moreover,
because the results are not general VQ codes or
SMVQ codes, they are easy to cause attentions and
expose the fact of data hiding.

In this paper, a new hiding approach of the third
category is proposed. Our approaches can not only
recovery the original VQ coding, but also flexibility
adjusts the embedding capacity. Compared to Chang
et al.’s method [11], our approach has larger capacity.
The remainder of this paper is as follows. Chang et
al.'s method is introduced in Section 2. Section 3
describes the details of our proposed scheme, and
Section 4 shows some experimental results. Finally,
some conclusions are given in Section 5.

2. Past Work by Chang et al.
In 2007, Chang et al. provided a VQ-based

embedding method which can losslessly recover the
VQ index table [11]. In their method, a codebook is
partitioned into some clusters and some indexes of the
codebook are reserved for acting as indicators. Data
are embedded into the VQ index table by transferring
index values from one cluster to another cluster and
sometimes index values are led by indicators. For a
traditional codebook Ψ with N codewords, the
codebook is redesigned as codebook Ψ with
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denotes the size of secret data embedded into each
VQ index. Also, the surplus 12 B index values are
used as the indicators. Some standard images have
been used to train the codebook Ψin their paper and



codewords in Ψwere sorted by the referred counts
in descending order. Then, codebook Ψ is
partitioned into 32 1 B clusters with the same size
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. The front one-third clusters with

highest referred counts are used to embed secret data.

1 5

1
2
3
4
5

21
22
23
24
25

11
12
13
14
15

3 2 6

6
7
8
9

10

26
27
28
29
30

16
17
18
19
20

4

2I 2I

011I

001I

0100 10 11
101I

111I

12
18

1
24 9

63
5

21
15 8

26 2
4||0

Secret data

14||31
18||31

0110110001

Index table T

Index table T

Figure 1.Example of Change et al.’s 
method for embedding two-bit secret data.

Figure 1 shows an example of Chang et al.’s 
proposed method for embedding two-bit secret data
into each index value in 1cluster or 2cluster ( 2B ).
The original codebook Ψ consists of 32 codewords
( 32N ) and the new sorted codebook Ψhas 30
codewords ( 30N ). The new codebook Ψis
partitioned into six clusters, each of them has the
same number of codewords ( 5m ). In the case that
2-bit secret data is embedded into each index, two
indicators are used. Indicator 2I , valued 0, is carried
ahead for an index belonging to 5cluster or 6cluster .
The other indicator 1I , valued 31, is carried ahead
when an index in 1cluster is embedded 2-bit secret
data (10)2 or (11)2 and an index in 2cluster is
embedded 2-bit secret data (00)2 or (01)2.

For example, the second index 3 in the left table
belongs to 1cluster , and the 2-bit secret data is (10)2.
Therefore, index 3 is transformed into index 18 in

4cluster , and indicator 31 is added in front of the
index 18. In Figure 1, the underlined value is the one
with no secret data embedded. In this case, to
represent an index value, indicator 0, or indicator 31
needs  N2log bits, except that the length of the

index value following indicator 0 is  m2log2 bits.

3. Our Proposed Method
In this section, a new reversible hiding method

based on VQ is proposed.Compared to Chang et al.’s 
method which uses the front one-third of codebook
Ψto embed secret data, our method uses the front
half of codebook Ψto embed secret data for the
purpose of raising embedding capacity. Firstly, some
drawbacks of Chang et al.’s method and their 

improvements are pointed out. Then, our proposed
method is introduced by showing its data embedding
procedure. Finally, the strategies of using indicators
flexibly and fully are discussed, and a skill of
exchanging indexes in the sorted codebook is
proposed to improve embedding results further.

3.1. Simple improvements for Chang et al.’s 
method

In this subsection, some drawbacks of Chang et
al.’s method are pointed out and improved. In Figure
2, the left diagram shows part of transformation
strategies of Chang et al.’s for 2B , where the
embedded data and used indicator 1I are depicted. In
Chang et al.’s method,indexes in 1cluster and

2cluster are transferred to 4cluster when the
embedded data are (10)2, and indicator 1I is used in
the transfer from 1cluster to 4cluster . However, the
indexes in 1cluster containing higher referred counts
should own higher priorities. Indicator 1I added to
indexes of 1cluster will create more overhead than
added to indexes of 2cluster . Therefore, indicator 1I
should be assigned to the transfer from 2cluster to

4cluster as shown in the right diagram of Figure 2.
Similarly, as shown in the bottom of Figure 2,
assigning indicator 1I to the transfer from 2cluster to

6cluster is better than assigning to the transfer from

1cluster to 6cluster .

Figure 2. Change the indicator for Chang
et al.’s methodof B = 2.

Table 1 shows some common codebook sizes N
and their corresponding codebook sizes Nfor 1B
and 2B . Another drawback of Chang et al.’s 
method is that they do not utilize indicators fully.
When 1B and  512128,N  , there is one index
value unused. Similarly, when 2B and

 1024256,N  , there are two index values unused.
However, these unused index values can be used as
extra indicators to reduce code length further. Figure
3 shows an example of using an extra indicator 2I for

1B . If 126N codewords are divided into
332 11  clusters, each cluster has 42m

codewords. In Change et al.’s method, only indicator 
1I is used. Therefore, it needs   6log2 m bits to



represent the index value following indicator 1I .

However, it needs only 





2
log2

m
5 bits if both

indicators 1I and 2I are used like the strategy shown
in Figure 3.

Table 1. Some common codebook sizes N
and their N’: (a) B = 1and 1 indicator;

(b) B = 2 and 2 indicators.
(a)

N 128 256 512 1024
N 126 255 510 1023

(b)
N 128 256 512 1024
N 126 252 510 1020

Figure 3. Indicator is used in full for B = 1.

3.2. Our proposed method and the data
embedding procedure

Given a codebook Ψ with size N , a sorted

codebook Ψwith size N 
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created and is divided into B2 clusters, where B
denotes the number of secret bits embedded into each
VQ index. All clusters have the same size
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. In our approach, half of indexes in

Ψwill be used to embed secret data and at least
12 B indexes are used as indicators. For an image H ,

each block iH is encoded into index iT by traditional
VQ coding. Then, iT is transformed into iT, where

iTis the corresponding index in some cluster and
sometimes includes an indicator. In order to describe
our approach easily, a function )( ij Ttrans is used to

represent the transformation where index iT is
transformed into the corresponding index in jcluster .

Also, if an indicator is carried ahead, )( ij Ttrans is
encoded.

Our method and Chang et al.’s method for 
embedding 2-bit secret data into a block are shown in
Figure 4, where our method is in the right side. In our
method, 2-bit secret data is embedded when iT is in

1cluster or 2cluster . If iT is in 1cluster , iT is

transferred to 1cluster , 2cluster , 3cluster , and

4cluster when embedded 2-bit secret data is (00)2,
(01)2, (10)2, and (11)2, respectively. The above
operations will set iTto be )(1 iTtrans , )(2 iTtrans ,

)(3 iTtrans , and )(4 iTtrans , respectively. The
operations of iT in 2cluster are similar to iT in

1cluster , expect that indicator 1I is additionally
carried ahead. If iT is in 3cluster or 4cluster , no
secret data is embedded and iT is transferred to the
cluster of itself with an indicator 2I . Here, the
encoded size of )(3 iTtrans or )(4 iTtrans is  m2log2 .

Figure 4. Our proposed method for B = 2
compared with Chang et al.’s method.
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Figure 5. Example of our proposed method
for embedding two-bit secret data.

Figure 5 shows an example of our proposed
method for embedding two-bit secret data into each
index belonging to 1cluster or 2cluster ( 2B ). This
example has the same VQ codebook and index table
as the example shown in Figure 1. The original VQ
codebook Ψ consists of 32 codewords ( 32N ) and
the new sorted codebook Ψhas 28 codewords
( 28N ). The new codebook Ψis partitioned into
four clusters, each of them has the same number of
codewords ( 7m ). For simplicity, only indicators 1I
and 2I are used in this example despite the fact that
four indexes can be used as indicators. Indicator 1I is
carried ahead when an index in 2cluster is embedded
secret data. Indicator 2I is carried ahead for an index
belonging to 3cluster or 4cluster . Due to our



proposed method using the front half of the sorted
codebook Ψto embed secret data, more indexes can
be used for embedding secret data. For example, the
forth index 12 in Figure 1 is not embedded secret data,
but in Figure 5 is embedded the 2-bit secret data (11)2.
Therefore, under the same codebook and index table,
our proposed method can embed more secret data.

In Figure 5, the underlined value is the one with
no secret data embedded. The above two-bit
embedding example shows that the length of the
index value following indicator 1I is   54log2 m
bits and the length of the index value following
indicator 2I is   42log2 m bits.

3.3. Strategies of using indicators flexibly and
fully

As mentioned in Subsection 3.1, extra indicators
can be used to reduce the coding length. Therefore, in
our approach, all unused index values are used as
extra indicators. That is, our approach uses indicators
fully. Figure 6 shows some examples of using an
extra indicator to reduce the coding length. In Figure
6 (a), an extra indicator 1Iis used in the transforming

rule of 2cluster when 1B . Then, the length of

)(2 iTtrans is reduced from  m2log bits to 





2
log2

m

bits, where m is the size of a cluster. When 2B ,
Figure 6 (b) shows the case that an extra indicator 1I

is used in the transforming rule of 2cluster . Similarly,
the length of )( ij Ttrans , 432j ,,,1 , is reduced from

 m4log2 bits to  m2log2 bits. Finally, the case in
Figure 6 (c) reduces the length of )(3 iTtrans and

)(4 iTtrans from  m2log2 bits to  m2log bits.

Remention that codebook Ψdivided into B2

clusters has N 






  

B

BN
2

2 1
B2 codewords and

each cluster has m 






  

B

BN
2

2 1

codewords. At least

12 B indicators are needed in our approach. Although
the number of indicators can be flexibly adjusted in
order to reduce the coding length further, it will
reduce the number of codewords in codebook Ψand
result in a poor image quality. Therefore, our
approach doesn't consider the strategy of flexibly
adjusting the number of indicators.

(a)

(b)

(c)
Figure 6. Some cases of using extra

indicators. (a) Using extra indicator 1Ifor

2cluster when B = 1. (b) Using extra indicator

1Iwhen B = 2. (c) Using extra indicator 2I
when B = 2.

3.4. Strategies of exchanging indexes in the
sorted codebook

In this section, we proposed the strategies of
exchanging indexes in the sorted codebook. Note that
the sorted codebook Ψis predesigned from some
training images and is fixed for all cover images.
Therefore, for any processed cover image H , it
would occur the phenomenon that some lower
referred count codewords are in the front half
codebook and some higher referred count codewords
are in the behind half codebook. In our approach, it is
better that higher referred count codewords are
located in the front half codebook. So, we exchange
the lower referred count codewords in the front half
codebook with the higher referred count codewords in
the behind half codebook. The exchanging process is
silently included in the whole embedding procedure,
where the sorted codebook Ψis not physically
modified and the overhead keeping the exchanging
information is embedded too. By the strategies of
exchanging indexes in the sorted codebook, we not
only increase the capacity, but also decrease the total
transformed bits.

Figure 7 shows an exchanging example, where the
size of sorted codebook Ψis assumed to be 256 for
simple explanation. Firstly, the codeword with the
minimum referred count 5 is codeword 0C in the
front half of codebook and the codeword with the
maximum referred count 162 is codeword 130C in the
behind half of codebook. Then, codeword 0C is
exchanged with codeword 130C . Ideally, this
exchange increases the capacity 1575162  bits.
Also, the overhead of recording the exchanging
information  130,0 is 14 bits
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1477  ). Similarly,

 1542 ,CC is the next exchange. The numbers of
exchanges also need to be recorded. These exchanges
are worth if the increased capacity is larger enough
than overhead. In our approach, the overhead is
embedded using codebook Ψfirstly. Then, a dummy
codebook Ψ, which is the exchanging result of
codebook Ψ, is used to embed secret data W into
the unprocessed blocks of cover image H .
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Figure 7. Exchanging indexes in codebook
according to referred counts.

Embedding procedure is as follows:
Input: Cover image H , secret data W , codebook Ψ
Output: Transformed index table T
Step1: Encode cover image H by sorted codebook

Ψto produce index table T .
Step2: Exchange some indexes in codebook Ψto

form a dummy codebook Ψand get the
overhead.

Step3: Embed the overhead into index table T by the
sorted codebook Ψ.

Step4: Continue to embed secret data W into index
table T by the dummy codebook Ψ to
produce transformed index table T.

Extraction procedure is as follows:
Input: Transformed index table T, codebook Ψ
Output: Recovered index table T , secret data W
Step1: Extract the overhead from transformed index

table Tby the sorted codebook Ψ.
Step2: Use the overhead to transform the sorted

codebook Ψinto the dummy codebook Ψ.
Step3: Continue to extract secret data W from index

table Tby the dummy codebook Ψ, and
recover index table T from index table T.

4. Simulation and Experimental Results
In this section, some experimental results are

demonstrated to show the capacity and VQ rate of
Chang et al.’s method and our proposed method.

Before starting the test experiments, four kinds of
codebooks with sizes of 128, 256, 512, and 1024
codewords were all acquired by the LBG training
algorithm, and each codeword was a 16-dimensional
vector. The five standard images, ‘Lena’, ‘Jet’, ‘Boat’, 
‘Sailboat’, and ‘Toys’, involved in the above-
mentioned training process are called inside images.
To be applied to the experiments of our proposed
method, these four codebooks were trained again to
generate the appropriate numbers of codewords, such
as “124, 252, 508, 1020” for 2B , and were sorted
according to the referred counts of codewords on the
prior five inside images. These derived codebooks
were used in the following experiments.

Six popular 512×512 images, Lena, Jet, Toys,
Pepper, GoldHill and Zelda, are used as the testing
images. By using Chang et al.’s method and our 
proposed method on these six testing images, Table 2
shows the embedding capacity and VQ rate for 2B .
Due to the codebook divided into six clusters in
Chang et al.’s method for 2B , 1cluster and

2cluster have 50% probability to add a  N2log -bit
indicator. Due to the codebook divided into four
clusters in our proposed method, 1cluster , which
contains higher referred count indexes, doesn't add
any indicator. As shown in Table 2, our proposed
method for 2B has lower VQ rate.

Table 3 shows the experimental results for
strategies of exchanging indexes in the sorted
codebook. When sorted codebook Ψis divided into
four clusters for 2B , each index in 1cluster needs

 m4log2 bits and each index in 2cluster needs

   mN 2loglog 22  bits, both of them can embed a
2-bit secret data. Also, each index in 3cluster or

4cluster needs    mN 22 loglog  bits and cannot
embed any secret data. Due to exchanging some lower
referred count codewords in front half of codebook
Ψwith some higher referred count codewords in
behind half of codebook Ψ, indexes in 3cluster or

4cluster may be exchanged with those in 1cluster or

2cluster . Hence, our exchange method raises up the
embedding capacity, but has the probability of
increasing or decreasing the VQ rate as shown in
Table 3.

5. Conclusions
Under the same sorted codebook Ψ, this paper

presented the strategies of using indicators flexibly
and fully and proposed strategies of exchanging
indexes in the sorted codebook. Experimental results
reveal that our proposed method by using front half of
sorted codebook Ψto embed data can raise the
embedding capacity than that of Chang et al.’s. Also,
the strategies of exchanging indexes in the sorted
codebook can enhance the sorted codebook Ψto
even more raise the embedding capacity, especially in
outside images.



Table 2. Results of the 2-bit hiding by using different initial codebook sizes 128 and 256
Codebook sizes: 128 (VQ: 0.4375 bpp) 256 (VQ: 0.5 bpp)
126 (Chang et al.'s

method)
124

(Our method)
252 (Chang et al.'s

method)
252

(Our method)Images
Capacity

(bits)
Rate
(bpp)

Capacity
(bits)

Rate
(bpp)

Capacity
(bits)

Rate
(bpp)

Capacity
(bits)

Rate
(bpp)

Lena 27164 0.58 29596 0.52 23884 0.67 26980 0.65
Jet 27684 0.58 29964 0.51 26170 0.67 28840 0.59Inside

images
Toys 30202 0.59 30838 0.47 28606 0.68 30692 0.57
Pepper 28372 0.58 29468 0.51 26284 0.67 28818 0.61
GoldHill 21928 0.59 25302 0.58 19420 0.68 23594 0.70

Outside
images

Zelda 27258 0.58 29772 0.53 23754 0.67 27304 0.65
average 27101 0.58 29157 0.52 24686 0.67 27705 0.63

Table 3. Results of the 2-bit hiding for the strategy of exchanging indexes in codebook Ψ
Codebook sizes: 128 (VQ: 0.4375 bpp) 256 (VQ: 0.5 bpp)

124
(Our method)

124 (Our swap
method)

252
(Our method)

252 (Our swap
method)Images

Capacity
(bits)

Rate
(bpp)

Increasing
(bits)

Rate
(bpp)

Capacity
(bits)

Rate
(bpp)

Increasing
(bits)

Rate
(bpp)

Lena 29596 0.52 1010 0.52 26980 0.65 2574 0.64
Jet 29964 0.51 726 0.50 28840 0.59 1782 0.59

Inside
images

Toys 30838 0.47 982 0.47 30692 0.57 804 0.57
Pepper 29468 0.51 1240 0.50 28818 0.61 1088 0.61
GoldHill 25302 0.58 4278 0.58 23594 0.70 4694 0.69Outside

images
Zelda 29772 0.53 2062 0.52 27304 0.65 4344 0.62

average 29157 0.52 1716 0.52 27705 0.63 2548 0.62
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