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Abstract- The blind signature could be used in
electronic payment systems to achieve the properties
of unlinkability and anonymity. Unfortunately, this
characteristic may be used to pervert the ability of
the scheme. Accordingly, Lee and Kim proposed a
fair blind signature scheme with message recovery in
1999. However, the fairness of blind signature can
not be actually achieved in Lee and Kim’s scheme. In 
this paper, the proposed cryptosystems are first
constructed by using the pairing-based
cryptosystems instead of modular exponentiation,
and further integrating the identity-based
self-certified public key cryptosystems. Furthermore,
we employ the integrated cryptosystems to design a
fair blind signature scheme with message recovery to
improve the drawback on Lee and Kim's scheme, and
give security proofs on the proposed blind signature
scheme.

1. Introduction

Blind signature scheme, which was first
proposed by Chaum [1] in 1983, allows users to
achieve anonymous property in electronic voting
systems and electronic cash payment systems. With
the characteristic of blind signature scheme, a sender
can obtain a signature on a message from a signer,
but the signer knows nothing about the content of the
message, such that the signer cannot link the
signature and sender. Unfortunately, this
characteristic may be used to pervert the ability of
the scheme. Therefore, in 1999 Lee and Kim [8]
proposed the fair blind signature scheme with
message recovery to withstand the misapplication of
financial crime in electronic cash payment systems.
However, in 2000 Hsien et al. [6] proposed an attack
on Lee and Kim's scheme. They proved that the
sender can generate an untraceable signature, which
cannot be recovered by the system authority (the
trusted entity). In 2002, Chung [2] improved the
checking way of the revocation key in Lee and Kim's
scheme such that the sender cannot create a
pretended revocation key to satisfy the fair
requirement. Regrettably, Chung's proposed scheme,
which was based on modular exponentiation, is
inefficient.

In recent years, Zhang et al. [16, 17] proposed
several kinds of ID-based blind signature schemes
using the bilinear pairings. Although the ID-based

cryptosystems have the advantage of simple
procedure in managing the public key list, a secure
channel is required for the key generation center to
deliver private keys to corresponding users. Also, the
key generation center is a single point of failure in
the systems. If the private key of the key generation
center is compromised, the security of the entire
scheme will be removed. Moreover, a dishonest key
generation center may impersonate each user in the
systems, because each user’s private key is generated
by it. Thus there exist many drawbacks in
identity-based public key cryptosystems.

In 1991, the self-certified public key
cryptosystem, which can implicitly verify public
keys without accompanying additional certificates,
were proposed by Girault [4]. Self-certified public
key cryptosystems can allow a user generates the
secret key by himself/herself (i.e. the secret key
needn't be transmitted through a secure channel).
Thus the system authority cannot obtain the user's
secret key from communications with the user [18].
Moreover, the user and the system authority
cooperatively generate the user's public key, and the
user can verify the public key by himself/herself
when the system authority delivers the public key to
him/her. Consequently, the system authority cannot
impersonate any user by generating false guarantees,
and all frauds of the system authority are detectable.

In this paper, the proposed cryptosystems are
first constructed by using the pairing-based
cryptosystems instead of modular exponentiation,
and further integrating the identity-based
self-certified public key cryptosystems. Furthermore,
we employ the integrated cryptosystems to design a
fair blind signature scheme with message recovery to
improve the drawback on Lee and Kim's scheme,
and give security proofs on the proposed blind
signature scheme.

2. A Fair Blind Signature Scheme with
Message Recovery

In this section, we propose a public key
cryptosystem by integrating the pairing-based
cryptosystems with the identity-based self-certified
public key cryptosystems. In addition, we further
employ the integrated cryptosystems to design a fair
blind signature scheme with message recovery to
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efficiently achieve the essential properties of blind
signature. The proposed scheme is described as
follows.

2.1 Initialization

The entities in the system are a certification
authority (CA) and users (Ui). Assume that the
system authority CA is responsible for key
generation and user registration. We define notations
used in the proposed scheme as follows:

 3mE F : a supersingular elliptic curve

E:y2=x3-x+1(mod 3
m), where the

characteristic is 3, and the security
multiplier is 6.

G1 : an additive group of the elliptic curve E whose
order is a large prime q. We also write

*
1 1G G O  , and O is the point at infinity.

B : a base point of G1 whose order is q.
G2 : a multiplicative group of order q on the

elliptic curve E.
e : a bilinear pairing map where

1 1 2:e G G G  .

H1: a one-way hash function, where H1:{0,1}*→ *
1G .

H2: a one-way hash function, where H2:{0,1}*→ *
qZ .

H3: a one-way hash function H3:G2→{0,1}*, where
n N denotes the size of message.

H4: a one-way hash function, where H2:{0,1}n→ *
qZ .

2.2 The Proposed Public Key Cryptosystems

The operational procedure of the proposed
public key cryptosystems is divided into two phases:
system setup and key generation.

[System Setup]
CA creates a system public key and some

public parameters in this phase, and then SA releases
these parameters.

CA randomly chooses a number *
CA qS Z and

keeps it secret. Then CA computes the system public
key

CA CAP S B  . Accordingly, the public parameters
in the system are <E,q,G1,G2,e,B,PCA, H1, H2, H3, H4>,
and the private key of CA is SCA.
[Key Generation]

Suppose that a user Ui wants to generate keys
with CA, he/she performs the following steps to
register to CA, and obtains the corresponding public
key. He/She also computes his/her private key in this
phase.
Setp1. Ui chooses a random number *

i qk Z . Then

he/she computes
i iK k B  , and transmits

his/her own iK and identity  *0,1iID  to

the CA.
Step2. After receiving IDi and Ki, CA calculates

  *
1 1i iQ H ID G  , and randomly chooses an

integer *
i qx Z to compute

i iX x B  . Then

CA generates Ui's Public key Pi=Ki+Xi and
the witness of the public key
Wi=SCA(Pi+Xi)+xi(PCA+Qi). Finally, CA sends
{Pi , Wi} to Ui.

Step3. Upon receiving {Pi , Wi}, Ui calculates his/her
own private key Si=Wi+kiQi, and he/she can
verify the public key by performing the
following formula:

    , , ,i i CA i ie S B e P P e Q P

If the result is correct, then iU 's private key

is
iS ; otherwise, it means that the public key

iP is altered in the transmission.

2.3 The Proposed Scheme

In this section, we will present a fair
self-certified blind signature scheme with message
recovery. Our proposed scheme is constructed based
on bilinear pairings instead of modular
exponentiation for the consideration of efficiency.
We define notations used in the proposed scheme as
follows:
[Notations]
SCA: CA's secret key, where *

CA qS Z .

PCA: CA 's public key, where CA CAP S B  .
h(): a one-way hash function that accepts

variable-length input and produces a
fixed-length output value, and its length is
160bits.

x(P): the x-coordinate value of point P.
M: message.
|| : a symbol denoting concatenation.

R : a symbol denoting the uniform random
selection.
 : bitwise exclusive-or operator
[Registration]

In this phase, user Ui registers to derive the
revocation keysαandβfrom CA.
Step1. Requesting for registration:

User Ui computes B  , where *
qZ

is a random number. Ui submitsΛand his/her
identity information

iUID to CA under a

secret channel.
Step2. Registering:

After receiving Λand
iUID , CA generates the

revocation keys *, qZ , where αand βare

prime. Then, CA randomly chooses *
qZ

and computes F B  . He/She uses a
one-way hash function h() to compute

   || ||g h x x x F    and generates

CAd S g   . CA returns   , , ,x x d g  
to Ui. Moreover, CA computes H=H1(g) and
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D B  . At last, CA saves

 , , , ,
iUID H D in CA's database.

Step3. Verifying registration:
After receiving   , , ,x x d g   sent from

CA, user computes '
CAF d B g P   and

    ' '|| ||g h x x x F    , and verifies

'g g . If 'g is equal to g , we can confirm
that the message   , , ,x x d g   sent

from SA is correct.
[Blind Signature Issuing Protocol]

In this phase, user Ui wants to get a blind
signature from the signer (sg), and verifies the
message recovery blind signature.
Step1. Initial oblivious transformation:

First Ui computes H=H1(g), B   and
' H B    . Then Ui submits  and '

to the signer.
Step2. Generating fair blind factors:

The signer computes 'H    by using the

message '( , ) from user, and checks
whether the value H has been stored in CA's
database. If H is CA's database, the signer
obtains the values D from CA's database and
verify  = D furthermore. Right after that,
the signer Randomly chooses *

qrZ , and

computes
sgU r P  and r  , where Psg

is the signer's public key. Finally, he/she sends
the blind factors (U,δ) to Ui.

Step3. Blinding the message:
After receiving (U, δ ), Ui verifies the
following formula:

   , ,sge U B e P  

If it is valid, Ui computes '
sgU U P  

and   '' '
3 , CA sgU H e U P Q M   . Then, Ui

generates  1 ''
4h H U   . Finally, Ui

submits h to the signer.
Step4. Generating a blind signature:

The signer sends back V, where  sgV r h S  .

And, Ui computes 'V V , and outputs

 '' ', ,M U V . Then  '' ',U V is the blind

signature of message M.
[Verifying the Fair Blind Signature with Message
recovery]

Accept the signature when the following
equation holds:

    ''
4' ''

3 , ,
H U

sg CA sgM H e V B e P P Q U
    

 
.

If the check is correct, then '' '( , )U V is the
blind signature of message M.

3. Security Proofs

3.1 Blindness Property

To prove the blindness, we show that given a
valid signature  '' ', ,M U V and any view '( , ,U ,

, , , )h V , there always exists a unique pair of blind
factors *, qZ . Since the blind factors *, qZ
are chosen randomly, the blindness of the signature
scheme are naturally satisfied.

Given a valid signature  '' ', ,M U V and any

view ', , , , ,U h V  , then the following equations

must hold for *, qZ :
'

sgU U P   (1)

  '' '
3 , CA sgU H e U P Q M   (2)

 1 ''
4h H U   (3)

'V V (4)
It is obvious that *

qZ exists uniquely from

Eq.(4) denoted by 'logV V . So we can get

   1' ''
4logVh V H U


  from Eq.(3), and it is

unique in *
qZ . Furthermore, we show that such α 

and β satisfy Eq.(1). Apparently, due to the
non-degenerate of the bilinear pairing, we have

   ' ' , ,sg CA sg CAU U P e U P e U P P       

Just we need to show that suchα andβsatisfy
   ' , ,CA sg sg CA sge U P Q e U P P Q     . (5)

We have
 

    

     
     
 

1' ' ' ''
4

1' ' '

1' ' '

'

,

log log log

,

log , , ,

log , , ,

,

sg CA sg

V V V sg

CA sg

V sg CA sg CA sg

V CA sg

CA sg

e U P P Q

V U V h V H U P
e

P Q

e V r h P P Q e V B e U P Q

e V V B e V B e U P Q

e U P Q

 







 

     
   

    

  

 

Since α and βsatisfy Eq.(5), we can show that
such α and βalso satisfy Eq.(2).Thus there always
exist the blind factors to lead to the same relation
defined in the blind signature issuing protocol.

3.2 Non-forgeability

Let A be the attacker who controls the sender. A
can forge valid blind signatures once gets the signer's
secret key. We consider four lemmas as follows.
Lemma 1 The advantage of A in revealing the
signer's secret key Ssg from e(Psg, PCA–Qsg) = e(Ssg, B)
by interacting the signer's ID is negligible.
Proof:

The proof of this case is by contradiction. We
assume that A successful produces a valid
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message-signature pair  , ( )m m with a

non-negligible probability ε. Then the attacker A
constructs a simulator S to solve the Computational
Diffie-Hellman (CDH) problem. In other words, S
successful solve the CDH-problem with a
non-negligible probability ε.

Let qH be the maximum number of queries
asked from A to S, it is limited by a polynomial in k.
The attacker A gets public parameters PARAMS(G1,
G2, q, e, B, PCA, Qsg) and wants to find

1sgS G
from e(Psg, PCA–Qsg) = e(Ssg, B). We describe the
process of simulator S as follows:
1. The simulator S randomly chooses

{1, , }HI q  .

2. For A’si-th query to S, if i I , the attacker A
randomly chooses *

sg qk Z , and sends

 ,sg sg sgK k B ID  to the simulator S. The

simulator S outputs sgP .

3. If i I , A randomly chooses a number
*
qrZ and outputs r to the simulator S. The

simulator S outputs
sgU r P  .

4. The simulator S returns {Psg, U} to A, then A
outputs a valid message-signature pair
 , ( )m m .

Now A wants to use
sgP (from S) to get

sgS from

e(Psg, PCA–Qsg) = e(Ssg, B).
Let  1sg sgQ H ID s B   , where *

qsZ , then

     , , sg sg CAk x S s
sg CA sge P P Q e B B    (6)

Let

*, where ,sg sg
q

CA

t k x
t u

u S s

  
 

Z .

Therefore

       , , ,sg sg CAk x S s tu
sge B B e B B e S B

 
  .

From Eq.(6) We can know that the advantage of
A in getting sgS from e(Psg, PCA–Qsg) = e(Ssg, B)

is

1,

*

, ,
1

,Adv Pr

: ,
G

R q

B tB
uB tuP

t u



  
  

   
  

A

A

Z

.

By the CDH assumption, for every probabilistic,
polynomial-time, 0/1-valued algorithm A,

1

CDH
,Adv GA

is negligible. This is a contradiction, because the
advantage of A in solving CDH problem in G1 is
negligible. In other words, the success probability of
the forgery in this attack is negligible.
Theorem 1 An attacker can not reveal the signer's
secret key Ssg from e(Psg, PCA–Qsg) = e(Ssg, B) by
interacting the signer's ID.
Proof:

By Lemma 1, we have completed the proof.

Lemma 2: The advantage of A in revealing the
signer's secret key Ssg from

  
''

4 ( )' ''
3 , ,

H U

sg CA sgM H e V B e P P Q U
    

 
by interacting

the signer's ID is negligible.
Proof:

Assuming that A successful produces a valid
message-signature pair (m, σ (m)) with a
non-negligible probability ε. Then the attacker A
constructs a simulator S to solve the Computational
Diffie-Hellman (CDH) problem. In other words, S
successful solve the CDH-problem with a
non-negligible probability ε.

Let qH be the maximum number of queries
asked from A to S, it is limited by a polynomial in k.
The attacker A gets public parameters PARAMS(G1,
G2, q, e, B, PCA, Qsg) and wants to find

1sgS G from

  
''

4 ( )' ''
3 , ,

H U

sg CA sgM H e V B e P P Q U
    

 
. The process of

simulator S is the same with the simulator in Lemma
1. And now, A wants to use Psg to get Ssg from

  
''

4 ( )' ''
3 , ,

H U

sg CA sgM H e V B e P P Q U
    

 
.

Since

  
''

4 ( )' ''
3 , ,

H U

sg CA sgH e V B e P P Q U
   

 

     ' '
3 3, ,CA sg CA sgH e U P Q M H e U P Q    

A reveals Ssg from  ' , CA sge U P Q . and

 '
sg sgU U P P r       , we can get

    ' , ,
r

CA sg sg CA sge U P Q e P P Q
 

   (7)

According to Lemma 1, the advantage of A in
revealing the signer's secret key Ssg from Eq.(7) by
interacting the signer's ID is negligible. In other
words, the success probability of the forgery in this
attack is negligible.
Theorem 2: An attacker can not reveal the signer's
secret key Ssg from

  
''

4 ( )' ''
3 , ,

H U

sg CA sgM H e V B e P P Q U
    

 
by interacting

the signer's ID.
Proof:

By Lemma 2, we have completed the proof.
Lemma 3: The advantage of A in revealing the
signer's secret key Ssg by using the generic parallel
attack is negligible.

In 2001, Schnorr [12] proposed a new attack,
called generic parallel attack, on Schnorr's blind
signature scheme. We prove that our scheme is
secure against the generic parallel attack under the
assumption of the ROS problem in the following.

First, we describe how A uses the generic
parallel attack to forge l+1 valid blind signatures in
ours scheme. Let qH be the maximum number of
queries 3H from A.
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Step1. The signer sends commitments

1 1 2 2 3 3, , , .sg sg sgU r P U r P U r P  

Step2. A randomly selects ,1 ,2 ,, , ,k k k l qa a a  Z
and messages

1 2, , , tm m m . Then A

computes
,

1

,
l

k k i i CA sg
i

f e a U P Q


 
  

 
 and

  ''
3 k kH f U for 1,2, ,k t  ; Ht q .

Step3. A solves Eq.(1) in the unknown 1 2, , , lh h h

over qZ :

 ''
4 ,

1

l

k k j j
j

H U a h


 for 1,2, ,k t  (8)

Step4. A sends those solutions h1,h2…,hl to the
signer.

Step5. The signer computes i i sg i sgV h S r S  for

1,2, ,i l  and returns iV to A.

Step6. A can get valid signatures  '' ', ,k k km U V by

setting  ''
4 ,

1

l

k k j j
j

H U a h


 and '
,

1

l

k k j j
j

V a V


 .

Step7. A outputs 1l  signatures  '' ', ,k k km U V for

1,2, , 1k l  .
In the above step, it's easy to see that the forged

signature is valid. According to Eq.(8), we have:

  

 

''
4

''
4

''
4,

1

( )'

( )

,
1

( )

,
1

,
1

, ,

, ,

,,
,

,

k

k

l

kk j j
j

H U

k sg CA sg

l H U

k j j sg CA sg
j

l H Ua h
sgsg k j j sg

j
CA sg

l

k j j CA sg k
j

e V B e P P Q

e a V B e P P Q

PS a r S
e e e

P QB
B

e a U P Q f

















 
  

 

                
 

 
   

 







and   ''
3 k k kH f U M 

The essence of the above attack is to solve the
ROS-problem, which is shown as follows:
ROS-problem: Giving an oracle access to a random
function : l

q qF Z Z , find co-efficient ,k i qa Z
and a solvable system of 1l  distinct equations in
the unknowns

1 2, , , lh h h over
qZ :

,1 1 , ,1 ,( , , )k k l l k k la h a h F a a    for 1, 2, ,k t  .

Depending on the difficulty of ROS-problem,
we prove that our blind signature scheme is secure
against the generic parallel attack.
Theorem 3: An attacker tries to reveal the signer's
secret key Ssg by using the generic parallel attack.
Proof:

By Lemma 3, we have completed the proof.

4. Performance Evaluation

In this section, we discuss both computational
complexity and communicational cost of the

proposed fair blind signature scheme with message
recovery (FBSMR).

4.1 Computational complexity

The following notations are used for measuring
the performance of the proposed systems.
TMM/TEXP/TMA: the time for computing a modular

multiplication/exponentiation/addition
TINV: the time for computing modular inversion
TEM: the time for computing the multiplication of a

number and an elliptic curve point
TEA: the time for computing the addition of two

points on an elliptic curve
TH: the time for computing the one-way has function

h
According to the paper proposed by Koblitz et

al. [7], the above time complexities have the
following relationship:

29EM MMT T ; 0.12EA MMT T ; 240EXP MMT T ; MAT
and HT are negligible as compared to the above
complexities measures.

In Table 1, we can see that our proposed
scheme is more efficient than Lee-Kim's [8] in
computational complexity. Although our scheme is
one

EMT more than Tsaur-Chou's scheme in the
steps of verifying the fair blind signature with
message recovery, the computational complexity in
the step of generating fair blind factors is half of
Tsaur-Chou's [14] scheme.

4.2 Communicational Cost

In the following, we will analyze the
communicational cost of the proposed schemes. To
evaluate the communicational cost, the following
notations are defined:
|G1|: the size of the elements in the group G1.
|ID|: the size of user's identity.
|x(P)|: the size of x(P), where

1P G .
|q|: the size of a prime q.
|p'| 、 |q| ： denoting the bit-length of p' and q,

respectively. In Lee-Kim’s scheme[8],
p' is 512 bits and q is 160 bits.

|p| 、 |n| ： denoting the bit-length of p and n,
respectively. In ECC, p and n all are 160
bits.

|| h ：the bit-length of output value of one-way hash
function h.

According to Table 2, it is obvious that we have
improved the performance of communicational cost
as compared with previous schemes [8, 14]
successfully.

5. Conclusions
In this paper, we propose a public key

cryptosystem by integrating the paring-based
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cryptosystems with the ID-based self-certified public
key cryptosystems, and further employ the integrated
cryptosystems to design a fair blind signature scheme
with message recovery. Based on the proposed
security proofs and performance evaluation, we
affirm that we not only improve the efficiency of Lee
and Kim’s scheme, but also achieve the essential
properties of blind signature with provable security.
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Table 1. The comparison of computational complexity.
Phase Lee-Kim's scheme [8] Tsaur-Chou's scheme [14] The proposed FBSMR

Registration 962 TMM + TINV 147.12 TMM 145.12 TMM

Signature 2837 TMM + 5TINV 471.36 TMM 435.72 TMM

Table 2. The comparison of communicational cost
Phase Lee-Kim's scheme [8] Tsaur-Chou's scheme [14] The proposed FBSMR

Registration 3|p'|+2|q|+|h| |p|+4|n|+|h| 2|p|+3|n|+|h|
Signature 6|p'|+2|q| 6|p|+2|n| 5|p|+|h|
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