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Abstract-In this paper, we propose a
reconfigurable floating-point unit architecture that
has higher performance and flexible than the
traditional integer and floating-point arithmetic
unit. It can perform 8-bit, 16-bit, 24-bit and 32-bit
signed/unsigned integer multiplication, and
perform 8-bit, 16-bit, 32-bit and 64-bit add/sub
adder. For floating-point operations, it can
perform IEEE standard single precision
floating-point add/sub/mul operations. For integer
operations, we use “single instruction multiple
data” (SIMD) technology to perform a lot of lower
bit width of operands at the same operation. The
proposed reconfigurable arithmetic unit can be
used as a co-processing unit or an arithmetic unit
in general-propose processors. The experimental
result indicated that the maximum operation
frequency of proposed reconfigurable arithmetic
unit is 309MHz.
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1. Introduction
The reconfigurable systems have both benefits

of ASIC and general-purpose processor. With a
reconfigurable system, we can overcome this
traditional trade-off and achieve both the
performance of ASICs and the flexibility of
general-purpose processor [1].

In digital signal processing, computer graphics,
mathematical model simulation, and image
processing applications, floating-point operations
is inevitable. Integer is not easy to represent
fractional values, and have a limited dynamic
range. For floating point arithmetic, it provides an
approximation to real arithmetic that overcomes
these two limitations.

But non-numerical applications usually have
very few floating-point operations. In this situation,
floating-point unit is always under idle mode. In
idle mode, the floating-point unit still consume
power and the die area is wasted. So we design a

reconfigurable floating-point unit that provide
integer and floating-point operations [2].

In the recent years, multimedia applications
may include video and audio that require to
process different operand word lengths. Typically
the video and graphics processing use 8-bit data
formats. 16-bit data format is used for audio
applications and keep full precision when
processing 8-bit data. In our design, we provide
various operand word lengths to support different
applications for integer operations .

For floating-point operations, we design
floating-point addition, subtraction, and
multiplication in reconfigurable floating-point unit.
All floating-point operations is followed by IEEE
standard single precision floating-point. The
proposed architecture is a pipeline design. The
floating-point addition/subtraction has 10 pipeline
cycles, and the floating-point multiplication has 12
pipeline cycles. Because of multiple pipelines the
maximum operation frequency is up to 309MHz.

For integer operations, we use single instruction
multiple data” (SIMD) technology to perform lots
of lower bit width of operands at the same
operation [3].

This paper is organized as follows. After
describing the proposed reconfigurable
floating-point unit in section 2, we will describe
the design concept of an 8-bit additive multiply
module (AMM). Then we describe our
reconfigurable AMM array in section 4. Section 5
shows the experimental results and finally a
conclusion with future work is given in section 6.

2. Proposed Reconfigurable Floating
Point Unit

In this section, we show the reconfigurable
floating-point unit. In order to reconfigure
floating-point unit, we use reconfigurable additive
multiply module (rAMM) array (described in
section 4) to provide integer operations. Because
floating-point unit needs various additions and
multiplication, we provide these operations by



rAMM array. Figure 1 shows the reconfigurable
floating-point unit. This unit consists of unpack
block, sign block, addSub_exponent block,
pre_module block, addMul block, post_shift block,
round_shift block, exp_adj block, pack block, and
rAMM array. The unpack block separates the
integer or floating-point operands, and decodes
Inst. signals. The sign block is used to determine
the final sign bit. In addSub_exponent block, it
adds two exponents for floating-point
multiplication, and subtracts two exponents for
floating-point addition. The pre_module is used to
align two significands for floating-point addition,
and bypass for floating-point multiplication. In this
block, it needs 24-bit subtraction to identify which
significand is larger when two exponents have
same value. So we use 32-bit subtraction in rAMM
array to provide this operation.

In addMul block, it performs 27-bit
addition/subtraction or 24-bit multiplication. We
also use 32-bit addition/subtraction and 24-bit
multiplication in rAMM array to provide these
operations. In post_shift block, Zero Leading
Counter (ZLC) and barrel shift are need to
normalize the significand.

Because round-to-nearest-even is the default
rounding scheme of the IEEE floating-point
standard [5], we use round-to-nearest-even
rounding scheme in round_shift block. It needs a
24-bit addition to perform rounding. We also use
32-bit addition in rAMM array to provide this
operation. The exp_adj block is used to adjust
exponent value. In pack block, it pack
floating-point and integer into output O.

Because reconfigurable floating-point unit can
provide integer and floating-point operations, the
input A and B is 256-bit width which is wider than
IEEE standard single precise floating-point needs
32-bit width. And output O also is 256-bit width.

The floating-point addition/subtraction has 10
pipeline cycles, and the floating-point
multiplication has 12 pipeline cycles. The integer
operations have various pipeline cycles, and will
describe in section 4.

2.1. The Field of Instruction Word
The instruction (Inst.) word controls the

operation of reconfigurable floating-point unit and
configuration of interconnection network. The Inst.
word is 6-bit and the fields of the Inst. word are
shown in figure 2.

Bit 5 and Bit 4 is used to switch integer and
floating-point mode. From Bit 3 to Bit 0 is used to
switch integer operations.
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Fig. 1 The Reconfigurable Floating-Point Unit
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Fig. 2 The Fields of Instruction Word

3. An 8-bit Additive Multiply Module
An 8-bit additive multiply module (AMM) is a

basic component for rAMM array. The AMM can
receive additional addends and add them to the
product of the input multiplicand and multiplier [6].
The architecture of 8-bit AMM is shown as figure
3, including a multiple-forming circuit, a partial
products reduction tree, and a redundant-to-binary
converter. The multiple-forming circuit is a
collection of AND gates (binary multiplier). The
partial products reduction tree adds all partial
products and additional addends, and then
generates carry and sum for each bit operation in
redundant form. Finally the redundant result is
converted to standard binary output at the bottom.
An 8-bit AMM can perform the arithmetic
operation such as Sum = A x B + C + W. Here A



and B are a 8-bit multiplicand and multiplier
respectively, and C and W are 8-bit addend and
16-bit addend respectively. in order to perform
8-bit multiply-accumulate (MAC) operation, we
extend the bit width of W from 8 bits to 16 bits.
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Fig. 3 The Basic Architecture of 8-bit Additive
Multiply Module

4. Proposed Reconfigurable AMM
Array

In this section, we show the reconfigurable
AMM array. The reconfigurable additive multiply
module array architecture is shown in figure 4. It
consists of sixteen reconfigurable additive multiply
modules (rAMMs), a data input, a output switch,
the additive modules, and an interconnection
network.
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Fig. 4 The Reconfigurable AMM array

A rAMM can be configured to form a two
pipeline stages 8-bit multiply-add, or one 16-bit
adder or two 8-bit adders. Two rAMMs can be
configured to form one 32-bit add/subtract with
two pipeline stages. Four rAMMs can be
configurable to form a five pipeline stage 16-bit
multiply-adder or a four pipeline stage 64-bit
adder/subtract. Nine rAMMs can be configurable
to form a eight pipeline stage 24-bit multiply for
floating-point multiply. The whole sixteen rAMMs
can be configurable to form a 10 pipeline stage
32-bit multiply. Figure 5 shows the operations and
the latency of reconfigurable AMM array can
support.

The data input partitions the A and B into 16-bit
for each rAMM. The additive module is used to
add the higher sum and carry for multiply. Figure
6 shows the traditional 16-bit AMM multiply.
There is horizontal signal propagation in
traditional AMM multiply. That will cause
pipeline hazard (data hazard). Figure 7 shows the
modified 16-bit AMM multiply. We solve the
problem by adding additional additive modules.
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Fig. 5 The operations of reconfigurable
AMM array
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Fig. 6 The Traditional 16-bit AMM Multiply
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Fig. 7 The Modified 16-bit AMM Multiply

4.1. Reconfigurable AMM Cells
Figure 8 shows the reconfigurable AMM cells

architecture. The AMM consists of
FunDecoder(Function Decoder), CSA(Carry Save
Adders block), and a 16-bit rFA(Reconfigurable
Fast Adders). The register support dynamic
pipeline stages for different functions.

Each rAMM has five inputs from
interconnection network or data input, and three
outputs are connected to interconnection network.
The multiple-forming circuit generate partial
product terms (PPts) of input A and B for
multiplication. The rFA can be configured as a
16-bit adder or two 8-bit adders respectively.
Therefore, when the rAMM don’t perform
multiply operation, it can be configured to perform
one 16-bit adder or two 8-bit adders. Each rAMM
has unique FunDecoder. It decodes Inst. for
generating control signals.
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Fig. 8 The Reconfigurable AMM Cells

4.2. The SIMD Design
The single instruction multiple data (SIMD)

capabilities to the multimedia applications can
provide a significant boost in performance. In our
design, the rAMM array can provide SIMD
capabilities to lower bits width of integer
operations. In order to deal with lots of operands,
we design 256-bit width for inputs of A and B, and
256-bit width for output of O. Table I shows the
max numbers of operations at the same time.

TABLE I
THE MAX NUMBERS OF OPERATIONS

Multiplication

Operation
Max

numbers
Latency

Unsigned/Signed
8-bit MUL&MAC

16
2 pipeline

cycles
Unsigned/Signed

16-bit MUL
4

5 pipeline
cycles

Unsigned/Signed
24-bit MUL

1
8 pipeline

cycles
Unsigned/Signed

32-bit MUL
1

10 pipeline
cycles

Addition

Operation
Max

numbers
Latency

8-bit ADD/SUB 32
1 pipeline

cycle

16-bit ADD/SUB 16
1 pipeline

cycle

32-bit ADD/SUB 8
2 pipeline

cycles

64-bit ADD/SUB 4
4 pipeline

cycles

5. Experiment Results
The architecture was described in Verilog HDL,

and synthesized/proved within ISE 6.3i Xilinx
environment, using VIRTEX II xc2v3000-4ff1152
FPGA device. Furthermore, we also synthesized,
placed, and routed in TMSC 0.18nm silicon
technology. Synopsys Design Compiler (DC) was
used for synthesis. Synopsys Astro was used for
placement and routing.

Table II show the maximum operation
frequency and area in FPGA environment and
TSMC 0.18um environment. Figure 9 shows the
layout of reconfigurable floating-point unit by
Astro.

TABLE II
THE MAX OPERATIONS FREQUENCY AND AREA

TSMC 0.18um environment
Max frequency Area

309MHz 538062 2um

Xilinx environment using VIRTEX II
xc2c3000-4ff1152 FPGA

Max frequency Area
61.4MHz 6473 LUTs



Fig. 9 The Layout of Reconfigure
Floating-Point Unit

6. Conclusion
A reconfigurable floating-point unit architecture

was proposed. It can provide floating-point and
integer operations. Because the proposed
reconfigurable floating-point unit supports 21
kinds of function, the area overhead is large than a
normal single precision floating-point unit. In the
future, the first thing is concentrated on reducing
the functions of rarely used for reducing the cost
and improves a systematic design methodology for
arithmetic unit with reconfigurability.
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