
Design of System Resource Manager of Reconfigurable Architecture

Chih-Tung Lin Shi-Jinn Horng Chao-Jang Hwang Yi-Shu Hung
National Taiwan

University of Science
and Technology

National Taiwan
University of Science

and Technology

Yuan Ze
University

Yuan Ze
University

jdung23@yahoo.
com.tw

horngsj@yahoo.
com.tw

cschwang@saturn.
yzu.edu.tw

drung0418@gmail.
com

Abstract-This paper is mainly to propose a

resource manager for the dynamic reconfigurable

computing architecture. In order to make the system

to replace the module accurately, the resource

manager must thoroughly possess resource indices to

present current status of hardware. By these resource

indices, the system determines whether the module is

reconfigurable or not. We evaluate the system

resource by retrieving, monitoring, and supervising.

The system can be effectively cut apart based on the

complexity of the application program. The system

can be implemented by hardware to increase and

accelerate the efficiency of operation.

Keywords: reconfigurable architecture, system

resource manager, resource index.

1. Introduction
Nowadays, reconfigurable architecture can be

applied in many applications, for instance, Digital

Signal Processing (DSP), Finite Impulse Response

Filter (FIR), and Fast Fourier Transform (FFT). On

the one hand, it provides the flexibility that

Application Specific Integrated Circuit (ASIC) lacks.

On the other hand, it can increase the system

performance and decrease the developing cost. If

hardware resource information of reconfigurable

architecture cannot be handled well, it cannot be

manipulated extensively.

In the traditional computer architecture, the

processing is mainly executed by CPU; the system

can be applied to different applications by different

software. In order to increase the efficiency of system

processing, we can use co-processor. Because many

different functions are to be processed, we need

different co-processor to execute the functions. How

to support the flexibility of co-processor in system,

reconfigurable architecture can configure different

co-processors according to different functions in the

system [1].

Simultaneously, the system can be configured

into different architectures according to distinct

specification. For example, Broadband wireless

communication, it may need different bandwidth

which can be dynamically configured into different

hardware. In the same way, the digital filter may

need to dynamically configure different hardware for

different pass band frequency of the signal.

Reconfigurable architecture possesses the function

unit more flexibly and efficiently.

Before the system being reconfigured, we need to

consider the status of hardware resource. But how to

manage hardware resource effectively is an important

thing, so we propose a system resource manager

(SRM) to manage hardware resource.

In this paper, we define SRM mechanism to

determine whether the system can be configurable or

not.

Figure 1. Flexibility and Performance

Figure 1. shows the clear illustration of the

efficiency in reconfigurable architecture.[2] It can

obviously be seen that the efficiency is nearly fit in

with the circuit of ASIC while using reconfigurable

hardware. Moreover, with extreme flexibility,

reconfigurable architecture can make hardware

possess a wide variety of functions to enhance the

flexibility of hardware. When current circuit is



limited, it can take reconfigurable architecture as a

means to make the circuit possess distinct functions;

meanwhile, the efficiency can massively exceed the

function of instruction set.

2. Resource Manager
2.1. Background Statement

As reconfigurable architecture utilizes the logic

element of FPGA, we must understand the current

situation of FPGA. The resource manager can control

the reconfiguration or replace the module’s function.

The resource information of the system can be

captured, monitored and supervised to offer the

system as a reference. Thus we build a resource

manager for the system to manage the system

resource.

2.2. Resource Manager Information

According to the current situation of FPGA, it can

be divided into four kinds of components: Slice, IOB

(Input/ Output Block), LUT (Look Up Table), and

TBUF (Tri-state Buffer). In general, we can check

the situation of these four elements to form a basis

for the Logic Gate and to take the used count as

resource information. After the resource information

is interpreted by the system resource manager, we

can exactly and clearly understand the current

situation of FPGA. Basically, the component of Slice

is mainly composed of two LUT elements. As for

IOB, it generally includes three D Type Flip-Flops,

one Input Buffer, one Output Buffer, and one

Tri-state Buffer.

In order to be more familiar with FPGA, resource

information can specifically be subdivided into LUT,

Tri-state Buffer, Register and D Type Flip-Flop.

These components can be represented as for resource

index. This resource information can represent

current used count of logic gate. From Table 1, we

can recognize the maximum used count for each

component, and the correlation between these

components and the sum of logic gate can be referred

to Table 2.The first row of Table 2 shows the basic

logic element and the first column indicates the

different kinds of components of FPGA. Due to each

Slice is composed of two LUT elements, its sum of

usage seems to be seen a half of amount in LUT. In

Table 1, three LUT are used; relatively, it can be

regarded as one and half usages in Slice, and two

slices are used in this table. Hence, as we can see,

analyzing the utility rate of basic logic element can

merely take down the utility rate of LUT.

Table 1. The Usage of Module Component

Logic Element The Number of Total

Num. of occupied Slices 2 out of 2,352

Num. of bonded IOBs 14 out of 284

Num. of 4 input LUTs 3 out of 4,704

Num. of TBUFs 16 out of 2,464

Table 2. The Sum Usage of Basic Component

Logic element

Component
LUT TBUF Buff D-FF

Slices 8 - - -

IOBs - - 568 284

TBUFs - 2464 - -

2.3. The Design of Resource Index Access

Each data has 24 bits, first 8 bits stand for current

locations that can be used to differentiate initiation

and the place of each basic component and the rest of

16 bits indicate current logic element counts of

usage.

Each group of resource information includes six

groups of basic logic components; at the same time,

we also define AA and EE as the beginning and the

end indexes to represent the initiation of the data. If

there is no resource being used in the recording

column, it can be administered 16 Bits (FFFF) to

express this column has no resource be utilized. As a

result, each group of information is totally composed

of six sets data; four sets of information indicate

basic logic components, and two sets of information

present the initial and the terminal. Among each set

of information, the column of using count is 16 Bits

and the information section is 8 bits; each set of

information will need 24 Bits. For each sub module,

the resource information will take 144 Bits.

Eventually, the sum of usage in each set of resource

information will represent with Hexadecimal as

Table 3.



Table 3. The Definition of Resource Index

Logic Element Index Total (Hex)

LUT F1 1260

Tri-State F2 09A0

Buffer F3 0238

D Flip-Flop F4 011C

Start AA FFFF

End EE FFFF

2.4. The Capturing Architecture of System

Resource Information

With the establishment of resource index and the

location of information, we need to take great action

to put resource index and sub module separately. The

main purpose is to decrease the using space in sub

module based on the working performance of sub

module. Thus, we get further to subdivide the

reconfigurable architecture from the primary and

then take sub module from the reconfigurable district

to extra add the segment code for representing sub

module sector. Meanwhile, this situation we are

so-called Sub Module Segment Value (Sub-SV). In

addition, we try to reduce the bits of segment code in

order to cut down the application of sub module’s

space. Based on the reason above, we use three bits

to express sub module sector and they can represent

eight different groups of sub module in the intact

system. Figure 2 is the architecture of sub module.

Figure 2. Sub Module Architecture

As for the portion of the fixed module, we modify

the prime reconfigurable architecture and also add

three parts into this system: Memory Unit, Control

Unit and UART. Memory Unit is the storage agent

for RAM, which store sub module in resource

information. Next, Control Core is mainly

responsible for four kinds of situations, including

receiving request signal from the system, receiving

transmitting segment code from sub module, reading

the resource information of current stage of sub

module from Memory Unit, and installing Buffer in

UART and being conveyed by UART after receiving

information. Then, UART conveys the resource

information from Buffer to the system. Figure 3 is

the specific architecture of the whole fixed module.

Figure 3. Fixed Module Architecture

In the unit of Control Core, the sequence of

control is based on Finite State Machine (FSM) as

Figure 4 ; it is mainly in charge of transmitting and

receiving the signal in all unit of the fixed module.

Control Core is required to execute signal receiving

from the segment code, convey memory address, get

resource information from Memory Unit and transmit

register value to UART. In order to do the work

accurately above, we attempt to produce the

following regulations to collocate the execution of

Finite State Machine and achieve the expected goal.

If the system wants to get usage information of

FPGA which have reconfigured, it needs to send a

request signal first. After the control core receives a

request signal, it will send a request signal to sub

module for getting current Sub-SV reconfigured.

When the sub module receives a request signal, it

will send current Sub-SV to control core back. Then

the control core receives the signal from sub module,

it will call the case number buffer to send case 1

signal. After the case 1 is sent, the control core

executes select case.

Case 1: Count the value of start address in

memory. Resource index include six basic

components usage data and each sub module

resource index has its own address. Address counter

has to count each start address, and send it to

memory for getting correct address. After finishing

count of start address, the address counter will send a

signal to case number buffer proceeding next case.

Case 2: After getting start address, the receive

counter will store and integrate resource index data

into buffer. Then send complete signal to case

number buffer proceeding next case.



Case3: When the control core finished case1and

case2, it will send resource index data through UART

to system.

Each case includes its own repeated state, so we

adopt select case model design to execute each case.

When the current case is finished, the next case

would be executed.

The control core finishes the above three case, it

would not execute case until the next request signal

coming.

Figure 4. Finite State Machine

2.5. The Unit of System Resource Manager

Before the system starts to run the application

program, we need to consider the priority of utilize

hardware (FPGA) or software (general purpose

processor) to do execution. When the system

determines using hardware to run the program via

algorithm, System Resource Manager (SRM) will

make diagnosis of hardware resource index. From

these hardware resource indexes, we can recognize

that whether hardware resource is enough or not. If

hardware resource is enough to execute the program,

SRM can configure a function unit. However, if

hardware resource is not sufficient, the application

will be executed by software. The operational

function work can refer to figure 5.

3. System Implementation
3.1. System Architecture

Due to the ordinary application program is mainly

administrated by general purpose processor, if some

complicated algorithm being partitioned and

switched to hardware (FPGA) executing. The

efficiency of the whole system can be enhanced

[3][4][5]. In order to advance the executive efficiency

of the whole system, we design some rules to

determine whether the work is done by hardware or

software .The whole system architecture is shown in

figure 6.

If the system to execute the application program,

it gives MicroBlaze[6][7][8] to implement the whole

application source code; the system resource

manager (SRM) gauge whether the segment should

be separated from the complicated application

program. If the segment is separated, it will be

implemented by reconfigurable module. Based on the

current situation of reconfigurable module, system

resource manager (SRM) can determine either a new

module which is being reconfigured, or the system be

continually operated by the software. If the function

unit be used by few times which can be replaced by a

new function unit. Meanwhile, system resource

manager (SRM) needs to take reconfigurable priority

into consideration so as to replace the new function

unit. And the utility rate of the memory can show that

how much space can be occupied by hardware as

well as how much percentage LUTs (Look Up

Table)is taken in the program. The resource

information above can be the reference for system

resource manager (SRM) to do judgment.

Figure 5. System Flow Chart



Figure 6. System Architecture

On the other hand, when the system works on

reconfigurable processing, it needs to consider how

much times the reconfigure will take. Because the

reconfigurable motion takes too much time, the

executive efficiency of system will be worse. In order

to improve this problem, we use external memory

system (System ACE) to leave the module which is

being configured before; also, this System ACE not

only can store the function unit that is designed by

the user, but also can save eight function unit in one

time. Therefore, when doing reconfiguration, the

system search for previous function unit whether it

has configured or not in the System ACE. If it has

configured, it can be execute straight in

reconfigurable module; on the contrary, if it has not

configured, we have to survey the condition for

reconfiguration and to determine whether it should be

reconfigurable or it still return to software. By this

way, it can shorten the time to do reconfiguration and

let the system be more efficient.

3.2. Implement

In this paper, system resource manager (SRM) is

implemented in Xilinx Vertex II Pro FPGA.We have

configured two kinds of function units: Incremeter

and MyRegister. We designed a DCT function unit to

provide the reconfiguration in the system operation.

The utility rate of these three function units is

illustrated in Table 4 and Table 5.The DCT

experiment data is shown in Figure 7, it can inquire

the current information of hardware resource from

system resource manager (SRM).

Table 4. Utility rate

Function unit Memory Usage gate count LUT Slice

DCT 118 MB 2,168,576 1694 1074

Incrementer 95MB 96 8 11

MyRegister 93MB 115 15 12

Table 5. Utility rate

Logic UtilizationFunction Unit

Flip Flops Total Number 4

input LUTs

Shift

Registers

Block RAMs

DCT 922（9%） 1,694（17%） 153 32（72%）

MyRegister 8（1%） 8（1 %）

Incrementer 15（1%）



Figure 7. experiment data

4. Conclusion
Reconfigurable architecture provides system the

flexible of hardware space as well as increase the

executive efficiency in the system. However, when

implementing reconfigurable architecture, the first

thing is to judge which module should be

reconfigured in current hardware, and then to

achieve superior efficiency in the whole system. If

the system lacks the mechanism in diagnosis and

further proceeds to do reconfiguration directly, it

can lead the executive efficiency worse and

consume hardware resource.

Hence, this paper brings up an idea about the

design of system resource manager for

reconfigurable architecture, which can judge

whether system hardware resource has capability to

do configuring or reconfiguring. The condition of

hardware resource is considered by this mechanism

and that can be extremely exact. The mechanism

will firstly take original information of hardware

resource within the system to analysis one by one

in each data and to determine whether it should be

reconfigured or not. During the period of

diagnosing, if we hypothesize that there is one of

the conditions of hardware which cannot be quite

enough to do reconfiguration, it will return to

software and to be executed by software. The SRM

can help system decrease the reconfigure time

indeed. In this paper we presented two major

contributions: 1. Design of reconfigurable

architecture operating system structures. 2. Judging

mechanism of hardware resource in reconfigurable

architecture operating system. These research

results have important contribution to reconfiguring

architecture system.

References
[1] Y. X. Deng, C. J. Hwang, D. C. Lou, “An

object-oriented cryptosystem based on

two-level reconfigurable computing

architecture,” Journal Systems and Software,

vol. 79, no. 4, pp. 466-479, April, 2006.

[2] R. Tessier, W. Burleson, “Reconfigurable

Computing for Digital Signal Processing: A

Survey,” Journal of VLSI Signal Processing,

vol. 28, no. 1-2, pp. 07-27, May, 2001.

[3] R. L. Lysecky, F. Vahid, “A Study of the

Speedups and Competitiveness of FPGA Soft

Processor Cores using Dynamic

Hardware/Software Partitioning,” Proceedings

of the conference on Design, Automation and

Test in Europe, IEEE Computer Society, vol.

1, pp. 18-23, 2005.

[4] J. Henkel, Y. Li, “Energy-conscious

HW/SW-partitioning of embedded system: A

case Study on an MPEG-2 Encoder,”

Proceedings of Sixth International Workshop

on Hardware/Software Co-design, IEEE

Computer Society, pp. 23-27, Mar, 1998.

[5] J. Henkel, “A low power hardware/software

partitioning approach for core-based

embedded system,” Annual ACM IEEE

Design Automation Conference, ACM, pp.

122-127, 1999.

[6] Xilinx, EDK MicroBlaze Tutorial, Jan, 2004.

[7] CIC, 2003 XUP Microblaze SOC on Xilinx’s

FPGA, National Chip Implementation Center,

Jul, 2003.

[8] Xilinx, MicroBlaze Processor Reference

Guide, Dec, 2000.


