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Abstract- An n-dimensional bijective connection 
network (BC network), denoted by Xn, is an n-regular 
graph with 2n vertices and n2n-1 edges. The 
n-dimensional hypercube, crossed cube, twisted cube, 
and Möbius cube are some examples of the 
n-dimensional BC networks. In [5], Lai et al. introduced 
a novel measure of diagnosability, called conditional 
diagnosability, by adding an additional condition that 
any faulty set cannot contain all the neighbors of any 
vertex in a system. In this paper, we prove that the 
conditional diagnosability of Xn is 3(n-2)+1 under the 
comparison model, n≥5. As a corollary of this result, we 
obtain the conditional diagnosability of the hypercubes, 
crossed cubes, twisted cubes, and Möbius cubes. 
 
Keywords: comparison diagnosis model, diagnosability, 
conditional diagnosability, BC network. 
 
 
1. Introduction 
 

The problem of fault diagnosis in multiprocessor 
systems has gained increasing importance and has been 
widely studied in the literatures [2], [3], [5], [6], [11], 
[13]. In order to diagnose a multiprocessor system, 
several different models have been proposed [7], [9]. 
Throughout this paper, we base our diagnosability 
analysis on the comparison model. The comparison 
model deals with the faulty diagnosis by sending the 
same input (or task) from a vertex w to each pair of 
distinct neighbors, u and v, and then comparing their 
responses. The vertex w is called the comparator of 
vertices u and v. The result of the comparison is either the 
two responses agreed or two responses disagreed. Based 
on the results of all the comparisons, the system can 
decide the faulty or fault-free status of the vertices. 

Reviewing some previous papers [2], [3], [6], [11], 
the Hypercube Qn, the Crossed cube CQn, the Twisted 
cube TQn, and the Möbius cube MQn, all have 
diagnosability n under the comparison model. In classical  

measures of system-level diagnosability for 
multiprocessor systems, if all the neighbors of some 
processor v are faulty simultaneously, it is not possible to 
determine whether processor v is fault-free or faulty. As a 
consequence, the diagnosability of a system is limited by 
its minimum degree. Therefore, Lai et al. introduced a 
restricted diagnosability of multiprocessor systems 
called conditional diagnosability in [5]. Lai et al. 
considered a measure by restricting that, for each 
processor v in a system, not all the processors which are 
directly connected to v fail at the same time. In this paper, 
we prove that the conditional diagnosability of 
n-dimensional BC networks Xn is 3(n-2)+1 under the 
comparison model, n≥5. As a corollary of this result, we 
obtain the conditional diagnosability of the hypercubes, 
crossed cubes, twisted cubes, and Möbius cubes. 

 
 
2. Preliminaries 
 

For the graph definition and notation we follow [12]. 
A multiprocessor system can be modeled as a graph 
G(V,E), where the set of vertices V represents processors 
and the set of edges E represents communication links 
between processors. 

Let G(V,E) be a graph and v∈V(G) be a vertex. The 
neighborhood N(v) of vertex v is the set of all vertices 
that are adjacent to v. The cardinality |N(v)| is called the 
degree of v, denoted by degG(v) or simply deg(v). For a 
subset of vertices V'⊂V(G), the neighborhood set of the 
vertex set V' is defined as N(V')=

'

( ) '.
v V

N v V
∈

−∪  For a set 

of vertices(respectively, edges) S, we use the notation 
G – S to denote the graph obtained from G by removing 
all the vertices(respectively, edges) in S. The components 
of a graph G are its maximal connected subgraphs. A 
component is trivial if it has no edges; otherwise, it is 
nontrivial. The connectivity κ(G) of a graph G(V,E) is the 
minimum number of vertices whose removal results in a 
disconnected or a trivial graph. Let F1,F2⊆V(G) be two 
distinct sets. The symmetric difference of the two sets F1 
and F2 is defined as the set F1ΔF2 = (F1 – F2)∪(F2 – F1). 

The comparison model[7] is proposed by Malek and 
Maeng. In this model, a self-diagnosable system is often 
represented by a multigraph M(V,C), where V is the same 
vertex set defined in G and C is the labeled edge set. Let 
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(u,v)w be a labeled edge. If (u,v) is an edge labeled by w, 
then (u,v)w is said to belong to C, which implies that the 
vertex u and v are being compared by vertex w. The same 
pair of vertices may be compared by different 
comparators, so M is a multigraph. For (u,v)w∈C, we use 
r((u,v)w) to denote the result of comparing vertices u and 
v by w such that r((u,v)w)=0 if the outputs of u and v agree, 
and r((u,v)w)=1 if the outputs disagree. In this model, if  
r((u,v)w)=0 and w is fault-free, then both u and v are 
fault-free. If r((u,v)w)=1, then at least one of the three 
vertices u, v, w must be faulty. If the comparator w is 
faulty, then the result of comparison is unreliable that 
means both r((u,v)w)=0 and r((u,v)w)=1 are possible 
outputs, and it outputs only one of these two possibilities. 

The collection of all comparison results, defined as a 
function σ: C→{0,1}, is called the syndrome of the 
diagnosis. A subset F⊂V is said to be compatible with a 
syndrome σ if σ can arise from the circumstance that all 
vertices in F are faulty and all vertices in V–F are 
fault-free. A system is said to be diagnosable if, for every 
syndrome σ, there is a unique F⊂V that is compatible 
with σ. In [10], a system is called a t-diagnosable system 
if the system is diagnosable as long as the number of 
faulty vertices does not exceed t. The maximum number 
of faulty vertices that the system G can guarantee to 
identify is called the diagnosability of G, written as t(G). 
Let σF={σ | σ is compatible with F}. Two distinct sets 
F1,F2⊂V are said to be indistinguishable if and only if 
σF1∩σF2≠∅; otherwise, F1,F2 are said to be 
distinguishable. The following theorem given by 
Sengupta and Dahbura [10] is a necessary and sufficient 
condition for ensuring distinguishability. 
 
Theorem 1. [10] Let G(V,E) be a graph. For any two 
distinct sets F1,F2⊂V, (F1,F2) is a distinguishable pair if 
and only if at least one of the following conditions is 
satisfied (see Figure 1): 
 
1. ∃u,w∈V–F1–F2 and ∃v∈F1ΔF2 such that (u,v)w∈C, 

 
2. ∃u,v∈F1–F2 and ∃w∈V–F1–F2 such that (u,v)w∈C, 

or 
 

3. ∃u,v∈F2–F1 and ∃w∈V–F1–F2 such that (u,v)w∈C 
 
 

 
 

  Figure 1: Description of distinguishability for 
Theorem 1. 

 
An n-dimensional bijective connection network (BC 

network), denoted by Xn, is an n-regular graph with 2n 
vertices and n2n-1 edges. The set of all the n-dimensional 
BC networks is called the family of the n-dimensional 

BC networks, denoted by Ln. Xn and Ln may be 
recursively defined as below [4]. 

 
Definition 1. The 1-dimensional BC graph X1 is a 
complete graph with two vertices. The family of the 
1-dimensional BC graph is defined as L1 = {X1}. Let G 
be a graph. G is an n-dimensional BC graph, denoted by 
Xn, if there exist V0, V1⊂V(G) such that the following 
two conditions hold: 
 
1. V(G) = V0∪V1, V0≠∅, V1≠∅, V0∩V1=∅; and 

 
2. There exists an edge set M⊂E(G) such that M is a 

perfect matching between V0 and V1, G(V0)∈Ln-1 
and G(V1)∈Ln-1. 

 
Before studying the conditional diagnosability of 

the BC networks, we need some definitions for further 
discussion. Let G(V,E) be a graph. For any set of 
vertices U⊆V(G), G[U] denotes the subgraph of G 
induced by the vertex subset U. Let H be a subgraph of 
G and v be a vertex in H. We use V(H;3)={v∈V(H) | 
degH(v)≥3} to represent the set of vertices which has 
degree 3 or more in H. Let F1,F2⊆V(G) be two distinct 
sets and S=F1∩F2. We use CF1ΔF2,S to denote the 
subgraph induced by the vertex subset (F1ΔF2)∪{u |  
there exists a vertex v∈ F1ΔF2 such that u and v are 
connected in G–S}. The following result is a useful 
sufficient condition for checking whether (F1,F2) is a 
distinguishable pair. 

 
Theorem 2. Let G(V,E) be a graph. For any two distinct 
sets F1,F2⊂V with |Fi| ≤ t, i=1,2, and S=F1∩F2. (F1,F2) is 
distinguishable if, the subgraph CF1ΔF2,S of G–S contains 
at least 2(t-|S|)+1 vertices having degree 3 or more. 
 
Proof. 

Given any pair of distinct sets of vertices F1,F2⊂V 
with |Fi| ≤ t, i=1,2. Let S=F1∩F2, then 0 ≤ |S| ≤ t–1, and 
|F1ΔF2| ≤ 2(t–|S|). Consider the subgraph CF1ΔF2,S, the 
number of vertices having degree 3 or more is at least 
2(t-|S|)+1 in CF1ΔF2,S, the subgraph CF1ΔF2,S contains at 
least 2(t-|S|)+1 vertices. There is at least one vertex with 
degree 3 or more lying in CF1ΔF2,S–F1ΔF2. Let u be one 
of such vertices with degree 3 or more. Let i, j, and k be 
three distinct vertices linked to u. If one of i, j, and k lies 
in CF1ΔF2,S–F1ΔF2, condition 1 of Theorem 1 holds 
obviously. Suppose all these three vertices belong to 
F1ΔF2. Without loss of generality, assume i lies in F1-F2, 
one of the two cases will happen: 1) if j lies in F1-F2, 
condition 2 of Theorem 1 holds; or, 2) if j lies in F2-F1, 
wherever k lies in F1-F2 or F2-F1, condition 2 or 3 of 
Theorem 1 holds. So (F1,F2) is a distinguishable pair 
and the proof is complete.                       � 
 

By Theorem 2, we now propose a sufficient 
condition to verify whether a system is t-diagnosable 
under the comparison model. 
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Corollary 1. Let G(V,E) be a graph. G is t-diagnosable 
if, for each set of vertices S⊂V with |S| = p, 0≤ p ≤ t-1, 
every connected component C of G–S contains at least 
2(t-p)+1 vertices having degree at least three. More 
precisely, |V(C;3)| ≥ 2(t-p)+1. 
 
3. Conditional Diagnosability of BC 
Networks Xn 
 

In classical measures of diagnosability for 
multiprocessor systems under the comparison model, if 
all the neighbors of some processor v are faulty 
simultaneously, it is not possible to determine whether 
processor v is fault-free or faulty. So the diagnosability of 
a system is limited by its minimum vertex degree. 

In an n-dimensional Hypercube Qn, Qn has 2n

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

vertex subsets of size n, among which there are only 2n 
vertex subsets which contains all the neighbors of some 
vertex. Since the ratio 2n/ 2n

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is very small for large n, 

the probability of a faulty set containing all the neighbors 
of any vertex is very low. For this reason, Lai et al. 
introduced a new restricted diagnosability of 
multiprocessor systems called conditional diagnosability 
in [5]. They consider the situation that any faulty set 
cannot contain all the neighbors of any vertex in a system. 
In the following, we need some terms to define the 
conditional diagnosability formally. A faulty set F⊂V is 
called a conditional faulty set if N(v)⊄F for every vertex 
v∈V. A system G(V,E) is said to be conditionally 
t-diagnosable if F1 and F2 are distinguishable, for each 
pair of conditional faulty sets F1,F2⊂V, and F1≠F2, with 
|F1| ≤ t and |F2| ≤ t. The maximum value of t such that G 
is conditionally t-diagnosable is called the conditional 
diagnosability of G, written as tc(G). It is trivial that  
tc(G) ≥ t(G). 

 
Lemma 1. Let G be a multiprocessor system. Then,  
tc(G) ≥ t(G). 
 

Now, we give an example to show that the 
conditional diagnosability of the BC graph Xn is no 
greater than 3(n-2)+2, n ≥ 5. As shown in Figure 2, we 
take a cycle of length four in Xn. Let {v1,v2,v3,v4} be the 
four consecutive vertices on this cycle, and let 
F1=N({v1,v3,v4})∪{v1} and F2=N({v1,v3,v4})∪{v3}, then 
|F1|=|F2|=3(n-2)+2. It is straightforward to check that F1 
and F2 are two conditional faulty sets, and F1 and F2 are 
indistinguishable by Theorem 1. Note that the BC graph 
Xn has no cycle of length 3 and any two vertices have at 
most two common neighbors. As we can see, 
|F1-F2|=|F2-F1|=1 and |F1∩F2|=3(n-2)+1. Therefore, Xn is 
not conditionally (3(n-2)+2)-diagnosable and 
tc(Xn)≤3(n-2)+1, n ≥ 3. Then, we shall show that Xn is 
conditionally t-diagnosable, where t=3(n-2)+1. 

 
Lemma 2. tc(Xn) ≤ 3(n-2)+1 for n ≥ 3. 

 

 
 

Figure 2: An indistinguishable conditional-pair (F1,F2), 
where |F1|=|F2|=3(n-2)+2. 

 
Let F be a set of vertices F⊂V(Xn) and C be a 

connected component of Xn-F. We need some results on 
the cardinalities of F and V(C) under some restricted 
conditions. The results are listed in Lemma 3 and 4. In 
Lemma 3, Zhu proved that deleting at most 2(n-1)-1 
vertices from Xn, the incomplete BC graph Xn has one 
connected component containing at least 2n-|F|-1 
vertices. We expand this result further. In Lemma 4, we 
show that deleting at most 3n-6 vertices from Xn, the 
incomplete BC graph Xn has one connected component 
containing at least 2n-|F|-2 vertices. 
 
Lemma 3. [14] ∀Xn∈Ln (n ≥ 3), let F be a set of vertices 
F⊂V(Xn) with n ≤ |F| ≤ 2(n-1)-1. Suppose that Xn-F is 
disconnected. Then Xn-F has exactly two components, 
one is trivial and the other is nontrivial. The nontrivial 
component of Xn-F contains 2n-|F|-1 vertices. 
 

The BC graph can be described as follows: Let Xn 
denote an n-dimensional BC graph. X1 is a complete 
graph with two vertices labeled with 0 and 1, 
respectively. For n ≥ 2, each Xn consists of two Xn-1's, 
denoted by Xn-1

L and Xn-1
R, with a perfect matching M 

between them. That is, M is a set of edges connecting 
the vertices of Xn-1

L and the vertices of Xn-1
R in a 

one-to-one manner. It is easy to see that there are 2n-1 
edges between Xn-1

L and Xn-1
R. By using a simple 

induction, we can prove the following lemma. 
 
Lemma 4. ∀Xn∈Ln (n ≥ 5), let F be a set of vertices 
F⊂V(Xn) with |F| ≤ 3n-6. Then Xn-F has a connected 
component containing at least 2n-|F|-2 vertices. 
 
Proof. 

We prove the lemma by induction on n. For n = 5, it 
is straightforward to verify that the lemma holds. As the 
inductive hypothesis, we assume that the result is true 
for Xn-1, for |F| ≤ 3(n-1)-6, and for some n ≥ 6. Now we 
consider Xn, |F| ≤ 3n-6. An n-dimensional BC graph Xn 
can be divided into two Xn-1's, denoted by Xn-1

L and Xn-1
R. 

Let FL = F∩V(Xn-1
L), 0 ≤ |FL| ≤ 3n-6 and FR = 

F∩V(Xn-1
R), 0 ≤ |FR| ≤ 3n-6. Then |F| = |FL| + |FR|. 

Without loss of generality, we may assume that |FL|≥|FR|. 
In the following proof, we consider two cases by the 
size of FR: 1) 0 ≤ |FR| ≤ 2 and 2) |FR| ≥ 3. 
 
Case 1: 0 ≤ |FR| ≤ 2. 
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Since 0 ≤ |FR| ≤ 2, Xn-1
R-FR is connected and 

|V(Xn-1
R-FR)|=2n-1-|FR|. Let FR

(L)⊂V(Xn-1
L) be the set of 

vertices which has neighboring vertices in FR. For each 
vertex v∈Xn-1

L-FL-FR
(L), there is exactly one vertex v(R) 

in Xn-1
R-FR, such that (v,v(R))∈E(Xn). Besides, 

|V(Xn-1
L-FL-FR

(L))| ≥ 2n-1-|FL|-|FR|. Hence Xn-F has a 
connected component that contains at least [2n-1-|FR|] + 
[2n-1-|FL|-|FR|] = 2n-|F|-|FR| ≥ 2n-|F|-2 vertices. 

 
Case 2: |FR| ≥ 3. 

Since |FR| ≥ 3, 3 ≤ |FL| ≤ 3(n-1)-6 and 3 ≤ |FR| ≤ 
3(n-1)-6. By the inductive hypothesis, Xn-1

L-FL (Xn-1
R-FR, 

respectively) has a connected component CL (CR, 
respectively) that contains at least 2n-1-|FL|-2 (2n-1-|FR|-2, 
respectively) vertices. Next, we divide the case into 
three subcases: 2.1) |V(CL)|=2n-1-|FL|-2 and Xn-1

R-FR is 
disconnected, 2.2) |V(CL)|=2n-1-|FL|-2 and Xn-1

R-FR is 
connected, and 2.3) |V(CL)| ≥ 2n-1-|FL|-1 and |V(CR)| ≥ 
2n-1-|FR|-1. 
 
Case2.1: |V(CL)|=2n-1-|FL|-2 and Xn-1

R-FR is disconnected 
This is an impossible case. Since κ(Xn-1)=n-1, |FR| ≥ 

n-1. By Lemma 3, |FL| ≥ 2((n-1)-1). Then the total 
number of faulty vertices is at least (n-1) + 2((n-1)-1) = 
3n-5 which is greater than 3n-6, a contradiction. 
 
Case 2.2: |V(CL)|=2n-1-|FL|-2 and Xn-1

R-FR is connected. 
Since Xn-1

R-FR is connected, |V(Xn-1
R-FR)| = 2n-1-|FR|. 

Since |V(CL)| ≥ |FR| + 1, there exists a vertex u∈CL and a 
vertex v∈CR such that (u,v)∈ E(Xn). Hence Xn-F has a 
connected component that contains at least [2n-1-|FR|] + 
[2n-1-|FL|-2] = 2n-|F|-2 vertices. 
 
Case 2.3: |V(CL)| ≥ 2n-1-|FL|-1 and |V(CR)| ≥ 2n-1-|FR|-1. 

Since |V(CL)| ≥ |FR| + 1, there exists a vertex u∈CL 
and a vertex v∈CR such that (u,v) ∈ E(Xn). Hence Xn-F 
has a connected component that contains at least 
[2n-1-|FL|-1] + [2n-1-|FR|-1] = 2n-|F|-2 vertices. 

 
This completes the proof of the lemma.         � 

 
By Lemma 4, we have the following corollary. 

 
Corollary 2. ∀Xn∈Ln (n ≥ 5), let F be a set of vertices 
F⊂V(Xn) with |F| ≤ 3n-6. Then Xn-F satisfies one of the 
following conditions: 
 
1. Xn-F is connected. 

 
2. Xn-F has two components, one of which is K1, and 

the other one has 2n-|F|-1 vertices. 
 

3. Xn-F has two components, one of which is K2, and 
the other one has 2n-|F|-2 vertices. 
 

4. Xn-F has three components, two of which are K1, 
and the third one has 2n-|F|-2 vertices. 
 

We are now ready to show that the conditional 
diagnosability of Xn is 3(n–2)+1 for n ≥ 5. Let 
F1,F2⊂V(Xn) be two conditional faulty sets with F1 ≤ 
3(n-2)+1 and F2 ≤ 3(n-2)+1, n ≥ 5. We shall show our 
result by proving that (F1,F2) is a distinguishable 
conditional-pair under the comparison model. 

 
Lemma 6. Let Xn be an n-dimensional BC graph with 
n≥5. For any two conditional faulty sets F1,F2⊂V(Xn), 
and F1 ≠ F2, with F1 ≤ 3(n-2)+1 and F2 ≤ 3(n-2)+1. Then 
(F1,F2) is a distinguishable conditional-pair under the 
comparison model. 
 
Proof. 

We use Theorem 2 to prove this result. Let S=F1∩F2, 
then 0 ≤ |S| ≤ 3(n-2). We will show that, deleting S from 
Xn, the subgraph CF1ΔF2,S containing F1ΔF2 has "many" 
vertices having degree 3 or more. More precisely, we are 
going to prove that, in the subgraph CF1ΔF2,S the number 
of vertices having degree 3 or more is at least 
2[3(n-2)+1-|S|]+1 = 6n-2|S|-9. In the following proof, we 
consider three cases by the size of S: 1) 0 ≤ |S| ≤ n-1, 2) 
|S|=n, and 3) n+1 ≤ |S| ≤ 3(n-2). 
 
Case 1: 0 ≤ |S| ≤ n-1 

Since the connectivity of Xn is n [4], Xn-S is 
connected, the subgraph CF1ΔF2,S is the only component 
in Xn-S. Since the BC graph Xn has no cycle of length 
three and any two vertices have at most two common 
neighbors, it is straightforward, though tedious, to check 
that the number of vertices which has degree 2 or 1 is at 
most 2 in CF1ΔF2,S. Hence, the number of vertices having 
degree 3 or more is at least 2n-|S|-2 which is greater than 
6n-2|S|-9, for n ≥ 5. By Theorem 2, (F1,F2) is a 
distinguishable conditional-pair under the comparison 
diagnosis model. 

 
Case 2: |S|=n 

If Xn-S is disconnected, by Lemma 3, Xn-S has one 
trivial component {v} such that N(v)⊂F1 and N(v)⊂F2. 
Since F1 and F2 are two conditional faulty sets, this is an 
impossible case. So Xn-S is connected, and the subgraph 
CF1ΔF2,S is the only component in Xn-S. Let U=Xn-(F1∪F2). 
If there exist two vertices u and v in V(U) such that u is 
adjacent to v, then the condition 1 of Theorem 1 holds 
and therefore (F1,F2) is a distinguishable conditional-pair; 
otherwise V(U) is an independent set. Hence, 
NXn-S(v)⊂F1ΔF2, ∀v∈U, and we have the following 
inequality 
      

1 2

| deg ( ) | | deg ( ) |.n nX S X S
v U v F F

v v− −
∈ ∈ Δ

≤∑ ∑  

To check the inequality, we have 

 
2

| deg ( ) |

[2 2(3( 2) 1) | |] | |
2 6 10

nX S
v U

n

n

v

n S n S n
n n n

−
∈

≥ − − + + −

= − +

∑
 

and 
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1 2

2

| deg ( ) |

2[3( 2) 1 | |]
4 10 .

nX S
v F F

v

n S n
n n

−
∈ Δ

≤ − + −

= −

∑
 

2 22 6 10 4 10  for 5,nn n n n n n− + > − ≥  a contradiction. 
 
Case 3: n+1 ≤ |S| ≤ 3(n-2) 

By Corollary 2, there are four cases in Xn-S we need 
to consider. For case 1 of Corollary 2, Xn-S is connected, 
the proof is exactly the same as that of Case 2, and 
hence the detail is omitted. For case 2 and 4 of Corollary 
2, Xn-S has at least one trivial component {v} such that 
N(v)⊂F1 and N(v)⊂F2. Since F1 and F2 are two 
conditional faulty sets, the two cases are disregarded. 
Therefore, we only need to consider that Xn-S has two 
components, one of which is K2 and the other one has 
2n-|S|-2 vertices. Let (x,y) be the component with only 
one edge. Since N({x,y})⊆S and F1 and F2 do not 
contain all the neighbors of any vertex, vertex x and y 
cannot belong to F1ΔF2. So the subgraph CF1ΔF2,S is the 
other large connected component of Xn-S. Let 
U=Xn-(F1∪F2)-{x,y}. If there exist two vertices u and v in 
V(U) such that u is adjacent to v, then the condition 1 of 
Theorem 1 holds and therefore (F1,F2) is a 
distinguishable conditional-pair; otherwise V(U) is an 
independent set. Hence, NXn-S(v)⊂F1ΔF2, ∀v∈U, and we 
have the following inequality 

1 2

| deg ( ) | | deg ( ) |.n nX S X S
v U v F F

v v− −
∈ ∈ Δ

≤∑ ∑  

To check the inequality, we have 

2

| deg ( ) |

[2 2(3( 2) 1) | | 2] | |
2 6 8

nX S
v U

n

n

v

n S n S n
n n n

−
∈

≥ − − + + − −

= − +

∑
 

and 

1 2

2

| deg ( ) |

2[3( 2) 1 | |]
4 12 .

nX S
v F F

v

n S n
n n

−
∈ Δ

≤ − + −

≤ −

∑
 

2 22 6 8 4 12  for 5,nn n n n n n− + > − ≥  a contradiction. 
 

In Case 1, we prove that at least one of the 
conditions of Theorem 1 is satisfied in subgraph CF1ΔF2,S. 
In Case 2 and 3, the condition 1 of Theorem 1 holds in 
subgraph CF1ΔF2,S. Therefore, (F1,F2) is a distinguishable 
conditional-pair under the comparison model.       � 

 
By Lemma 2, tc(Xn) ≤ 3(n-2) + 1, and by Lemma 6, 

Xn is conditionally (3(n-2)+1)-diagnosable for n ≥ 5. We 
now present our main result which can be stated as 
follows. 

 
Theorem 4. The conditional diagnosability of Xn is 
tc(Xn)=3(n-2)+1 for n ≥ 5. 
 

Since Qn, CQn, TQn, MQn ∈ Ln, the following 
corollary holds. 

 

Corollary 3. tc(Qn) = tc(CQn) = tc(TQn) = tc(MQn) = 
3(n-2)+1 for n ≥ 5. 
 
 
4. Conclusions 
 

In the real world, processors fail independently and 
with different probabilities. The probability that any 
faulty set contains all the neighbors of some processor is 
very small[1],[8], so we are interested in the study of 
conditional diagnosability. A new diagnosis measure 
proposed by Lai et al.[5], it restricts that each processor 
of a system is incident with at least one fault-free 
processor. In this paper, we use the BC graph as an 
example and show that the conditional diagnosability of 
Xn is 3(n-2)+1 under the comparison model. 

Several different fault diagnosis models have gained 
much attention in the study of fault diagnosis. It is worth 
to investigate the conditional diagnosability of a system 
under various models. It is also an attractive work to 
develop more different measures of diagnosability based 
on network topology and network reliability. 
 
 
5. References 
 
[1] A. H. Esfahanian, “Generalized measures of 
fault-tolerance with application to N-cube networks,” 
IEEE Trans. Computers, vol. 38, no. 11, pp. 1586-1591, 
Nov. 1989. 
 
[2] J. Fan, “Diagnosability of Crossed Cubes under the 
Comparison Diagnosis Model,” IEEE Trans. Parallel 
and Distributed Systems, vol. 13, no. 10, pp. 1099-1104, 
October 2002. 
 
[3] J. Fan, “Diagnosability of the Möbius Cubes,” IEEE 
Trans. Parallel and Distributed Systems, vol. 9, no. 9, 
pp. 923-928, Sept. 1998. 
 
[4] J. Fan, L. He, “BC interconnection networks and 
their properties,” Chin J Comput, vol. 26, no. 1, pp. 
84V90, 2003 
 
[5] P. L. Lai, Jimmy J. M. Tan, C. P. Chang, and L. H. 
Hsu, “Conditional Diagnosability Measures for Large 
Multiprocessor Systems,” IEEE Trans. on Computers, 
vol. 54, no. 2, pp. 165-175, Feb. 2005. 
 
[6] P. L. Lai, Jimmy J. M. Tan, C. H. Tsai and L. H. Hsu, 
“The Diagnosability of the Matching Composition 
Network under the Comparison Diagnosis Model,” 
IEEE Trans. Computers, vol. 53, no. 8, pp. 1064-1069, 
Aug. 2004. 
 
[7] J. Maeng and M. Malek, “A Comparison Connection 
Assignment for Self-Diagnosis of Multiprocessors 
systems,” Proc. 11th Intl Symp. Fault-Tolerant 
Computing, pp. 173-175, 1981. 
 



 6

[8] W. Najjar and J. L. Gaudiot, “Network Resilience: A 
Measure of Network Fault Tolerance,” IEEE Trans. 
Computers, vol. 39, no. 2, pp. 174-181, Feb. 1990 
 
[9] F. P. Preparata, G. Metze and R. T. Chien, “On the 
Connection Assignment Problem of Diagnosis 
Systems,” IEEE Trans. on Electronic Computers, vol. 
16, no. 12, pp. 848-854, Dec. 1967. 
 
[10] A. Sengupta and A. Dahbura, “On Self Diagnosable 
Multiprocessor Systems: Diagnosis by the Comparison 
Approach,” IEEE Trans. Computers, vol. 41, no. 11, pp. 
1386-1396, Nov. 1992. 
 
[11] D. Wang, “Diagnosability of Hypercubes and 
Enhanced Hypercubes under the Comparison Diagnosis 
Model,” IEEE Trans. Computers, vol. 48, no. 12, pp. 
1369-1374, Dec. 1999. 
 
[12] D. B.West, Introduction to Graph Theory. Prentice 
Hall, 2001. 
 
[13] J. Zheng, S. Latifi, E. Regentova, K. Luo and 
Xiaolong Wu, “Diagnosability of star graphs under the 
comparison diagnosis model,” Information Processing 
Letters, vol. 93, no. 1, pp. 29-36, January 2005. 
 
[14] Q. Zhu, “On conditional diagnosability and 
reliability of the BC networks,” J Supercomput, 2008. 


