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Abstract-The standard method for non-targeted
profiling in plant metabolomics is the gas
chromatography-mass spectrometry (GC-MS). It
produces more robust output than other
chromatographic techniques linked to MS, and
metabolite identification requires both retention
indices (i.e., adjusted retention times) and mass
spectra, which are dependent on individual
experimental platforms. Here we assess two
approaches of dynamic programming on
annotated reliable GC-MS data from two major
institutions in plant metabolomics: (1) dynamic
programming approach using absolute retention
indices and (2) dynamic programming approach
using relative retention indices. Our result
suggested the advantage of the latter method.
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1. Introduction
Mass spectrometry (MS) is the standard method

for the non-targeted profiling of small molecules
from biological samples. Depending on the
molecules to be analyzed, MS is combined with an
additional separation method such as gas- or liquid
chromatography (GC and LC, respectively), or
capillary electrophoresis (CE). Among them,
GC-MS has been the de-facto standard in plant
metabolomics because of its reproducibility and
stability, and of its wide coverage of biologically
important compounds. Indeed, major institutions
have reported successful identification of hundreds
of metabolites using GC-MS not only in cress
(Arabidopsis) but also in potato, rice, and tomato
[1,2,3].

The identification process uses both retention
indices (RIs) from chromatography and spectra

from MS. The standard strategy first aligns
chromatograms from the samples of identical
background, and then identifies peak components
that are well conserved across samples [4]. The
size of each raw chromatogram from MS is around
2 gigabytes and the computational cost for the
alignment is expensive. In the software program
by Jonsson et al. [5], therefore, chromatograms are
divided into several time windows, each of which
undergoes 1) baseline adjustment, 2) noise
reduction, and 3) peak alignment. Candidate
peaks thus identified are searched against a
reference library for similar RIs and spectra.
Successfully identified peaks are annotated with
their metabolite names (i.e. identified compounds),
whereas unidentified but consistently observed
peaks are annotated as mass spectral tags (MSTs).
In order to ensure the accuracy, each committed
institution usually prepares its own reference
library, consisting of measurements of
commercially available standard metabolites on its
own platform.

The above strategy can be applied to a sample
set of different biological backgrounds. In the
authors’ previous report, total 40 Arabidopsis data
from 3 genetic backgrounds were aligned and
analyzed [6]. Among the extracted 518 peaks, 98
and 77 peaks were annotated as known metabolites
and MSTs, respectively.

This annotation process requires an expert’s
knowledge and experience. No separation
method is perfect, and many metabolites co-elute,
or at least overlap, in the chromatography step (i.e.
multiple metabolites for the same RI). The same
metabolite may obtain multiple RIs due to
different degrees of derivatization and ionization.
Retention-time drift is also problematic; peaks of



the same metabolite may have different RIs in
different experiments at different institutions.
For these reasons, the number of observed peaks is
usually much larger than the number of detectable
metabolites. Extracted raw peaks must be
manually verified by an expert for their possible
overlaps or excessive separations. In our
previous work, only 171 peaks (known metabolites
or MSTs) out of 518 were annotated, and the rest
were abandoned as noise even though they were
consistently observed. It is therefore natural that
a comparison method across institutions is needed
to verify and refine annotation, and to hopefully
increase the number of identified metabolites.

Even on the common experimental platform,
comparing data across institutions is not
straightforward. Extracted peak lists are the
result of profile alignments for different analyses
with different biological and software parameters
[4]. In GC-MS analysis, it is common that the
same metabolites obtain multiple RIs. Moreover,
the genotype of the standard sample (often called a
wild-type, e.g. Col-0 in Arabidopsis) may not be
identical across institutions. To assess the
possibility of inter-institutional comparison, we
present here a dynamic programming approach to
align extracted peak lists from chromatograms.

Dynamic programming (DP), a well known
solution for DNA sequence comparison, has
already been applied to chromatographic
peak-alignments. Nielsen et al. reported a DP
approach to find nearly best correlation between
LC-MS chromatograms a decade ago [7], and
Johnson et al. utilized RIs for peak alignments [8].
These alignment methods rely on absolute RIs:
closer peaks are aligned preferentially. The same
is true for other approaches such as peak clustering
[9]. In other words, these methods are designed
for homogeneous data from a single institution.

Advancement was recently made for GC-MS
data by Robinson et al [10]. They used a
combination of RIs and mass spectra using the
following similarity function between peaks i and j
in their dynamic programming:
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In this equation, S(i, j) refers to the similarity of
mass spectra between peaks i and j, ti and tj are
their RIs, and C is the user-defined tolerance
parameter that adjusts the importance of time
differences to the overall peak similarity. This
approach can flexibly align chromatograms

considering the similarity of mass spectra and
covers nonlinear time drifts by adjusting the value
C. However, it still uses absolute RIs: for
chromatograms with an overall shift, it will assign
many small penalties for all peak pairs with a shift,
instead of introducing a single ‘gap’corresponding
to the overall shift between chromatograms.

Here we extend the Robinson’s method to
accommodate for linear time shifts, and assess its
effectiveness on data from different institutions.
The data we use are extracted peak lists from the
hierarchical multivariate curve resolution (H-MCR)
method, which is known to outperform custom
software used in metabolome analysis [11].
Approximate error rates were estimated from
manual annotations, and we show that our method
indeed improves the alignment of peaks and that
the alignment helps identify new metabolites.

2. Results
The input peak lists were provided by Riken

Plant Science Center (PSC, Yokohama) and Max
Planck Institute for Molecular Plant physiology
(MPI-MP, Golm). MPI-MP used another peak
detection- (deconvolution) process using AMDIS
(See Methods). The data were independently
measured for different experiments on different
plant samples, and contained peaks were identified
by different experts as either known, MSTs, or
un-annotated. Note that each peak is
characterized with a RI and a mass spectrum.

2.1 Estimation of true matches and their
retention-index shifts

The list of 54 commonly identified-as-known
metabolites between the two institutions is shown
in Appendix with their adjusted retention indices.
RIs were adjusted by the standard molecules
(alkanes), and the adjustment is reliable up to
around the index 2300. Therefore in the
following analysis, metabolites eluting at less than
index 2300 were regarded as the true data for error
estimation. When these metabolites are matched
with differently annotated peaks, we call them
false-positives. When these metabolites are
matched with gaps, we call them false-negatives.
The objective of the alignment is to minimize such
false matches.

From the chart, we can tell that there is an
overall shift between institutions (the average time
difference between 48 metabolites is about +12).
On the other hand, the average time difference for
the same metabolites within each institution was



less than 5 (data not shown). Peaks of some
metabolites tended to appear in a wider range of 6
or 7 (e.g. lactic acid or L-valine, data not shown).
These observations justify the necessity of DP
approach that can cope with overall shift. We
employ Eq. 1 for our similarity function together
with a gap penalty of –0.2. Since there is no
mismatch penalty (range of similarity score is 0 <
P(i, j) < 1), using a negative gap penalty
corresponds to a strategy that aligns data as much
as possible. This strategy is not necessarily
suitable for peak alignments where many gaps are
allowed, and we will discuss this issue later.

For the similarity of mass spectra S(i, j), the
cosine correlation (dot product) is used where each
peak intensity is normalized as

W = [original intensity]0.5 [mass]2.

This normalization scheme was shown to be
effective in our previous report and is actually
used in our MassBank database for metabolite
mass spectra (http://massbank.jp/) [12].

2.2 Coping with a shift in retention indices

Our DP approach basically uses the following
standard recurrence relation:
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where gp stands for gap penalty, and P for the
peak similarity function. Each state D(i, j) keeps
the alignment score, a pointer to the previous state
for the traceback, and a pointer to the previously
peak-matched state (the third condition in Eq. 2)
skipping all gaps. The introduction of the latter
pointer does not change the time complexity of the
algorithm and its maintenance is straightforward:
gapped states simply inherit the destination of
pointers from their previous states. This pointer
is used in the computation of peak similarity
function (Eq. 1). For the values ti and tj, we do
not use absolute RIs of spectra, but their distances
from the previously matched peaks. In order to
guarantee that peaks with large time-differences
will not match, initial conditions D(i, 0) and D(0, j)
are set only for the states with close RIs. For the
rest, the initial scores are set as –∞ .

2.3 Coping with consecutive occurrence of
split peaks from identical metabolite

Extracted peak lists from the H-MCR method
often include split chromatographic peaks that are
consecutive in time from identical metabolites.

The multiplicity of split depends on difference of
metabolite concentrations in each experimental
condition and software parameters. Their mass
spectra show high similarity and range for 0 to 9
time window depending on metabolites. This is
an inevitable consequence from the balance
between the bandwidth of elution and the
resolution of peak detection. Ideally, split peaks
should be compacted into a single peak with a
representative retention index, but this operation is
difficult because we cannot tell an ideal retention
index for the metabolite. To cope with split
peaks, therefore, we use a two-state gap condition.
One is a standard gap-state with penalty gp1 and
the other, gp2, is a penalty for a split-peak-state,
i.e., peaks of highly similar mass spectra from
identical metabolites. The DP starts from the
standard gap-state, and after each single peak
match, it enters the split-peak state. If no highly
similar split peaks are found, it returns to the
standard state. The value of gp2 must be much
smaller than the gp1 to reduce the excessive
penalties for a group of split peaks. Thus, the gp
term in Eq. 2 becomes:
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where ε is a user-defined threshold close to 1.

3. Performance Analysis
We assume an ideal situation where false

positives and false negatives arise due to random
occurrences of (possibly similar) noise peaks.
Under this assumption, introducing an overall
time-shift in the alignment does not alter, on
average, the matching probability with noise peaks.
Therefore in discussing peak alignments, we only
need to focus on the improvement of matching
probability for true data. Let p1, p2,..., pn be an
ideal chromatographic peaks without noise and f, g
be a function that shifts or skews their RIs (but not
their spectra). The chromatographic comparison
in the DP process can be represented as comparing
f(pi) and g(pi) for all i. They each are typically
nonlinear and institution-dependent.

Proposition: If function g is linearly
approximated as bf + c where scaling factor b and
baseline difference c are constants, then the
proposed DP method produces a better alignment
score than the Robinson’s method in comparing
f(pi) and g(pi).

Proof (outline): We only need to focus on true
matches between f(pi) or g(pi) of total M peaks (0 <



i < M) if scores from false matches can be
averaged out between f and g. Let us write Δ pi =
g(pi) – f(pi) = (b–1) f(pi) + c and assume b ≠  1. In a
DP that considers absolute RIs, the total score for
true matches will depend on the distance between
mapped positions of ith true peak pi. The crucial
part of the exponent in Eq.1 is therefore – Δ pi

2

= –(b–1) 2 { f(pi) – c/(1–b) }2. Whereas in the DP
of relative RIs, the total score will depend
on –(Δ pi – Δ pi-1)

2 = – (b–1) 2{ f(pi) – f(pi-1) }2.
The performance therefore depends on the
difference between f(pi-1) and the constant c/(1–b).
Case 1: Let us consider f(pi) > g(pi) with 1 > b or
f(pi) < g(pi) with 1 < b always holds. It is
straightforward that f(pi) > c/(1–b) and the DP with
relative RIs performs better.
Case 2: Let us consider f(pi) < g(pi) for 0 < i < j
and f(pi) > g(pi) for j < i < M for some j. Such j
can exist at most once when g is a linear
approximation of f. The performance of relative
RIs becomes worse only around j because Δ pj+1 –
Δ pj ~ 2 Δ pj+1. For other i, the case is reduced to
Case 1. Therefore, when the number of matching
peaks is large, the DP with relative RIs performs
better. The same idea applies to when function g
is quadratically approximated or further (there can
be two or more js).

4. Performance on real samples
The analysis in the previous section ignored

contributions from false matches in DP and noise
factors that may shift f(pi) and g(pi). Indeed, the
analysis shows that the relative DP performs worse
when f(pi) – g(pi) fluctuates around zero.

In order to test the feasibility of the relative
approach, several approaches were compared on
actual data. The performance of the traditional
scoring scheme a la Robinson on data from Riken
PSC and MPI-MP Golm is shown in Table 1.
The number of peak pairs that showed similarity of
more than 0.3 was computed for different
tolerance parameter for retention time difference C
in Eq. 1. In the similarity function Eq. 1, gap
penalty of gp1 was –0.1, and gap penalty for split
peaks (gp2) was unused to emulate the traditional
method. The tolerance parameter C played a
crucial role. When C was small, the algorithm
could not find valid matching peaks, and it must be
enlarged as much as 50 to obtain valid alignment
between two data. The result of our approach is
summarized in Table 2. The gap penalties were
gp1 = –0.2 and gp2 = –0.05, and the number of
false positives is comparable with that of
Robinson’s approach at C = 10.0. The reason of
smaller number of matches is because the same
metabolites are counted multiple times because of

split peaks, and in both approaches, the total
number of matching metabolites is almost identical.
The larger number of false negatives in Table 2 is
due to metabolites of large RIs (see Appendix).
Metabolites in the shaded part in Appendix tended
to obtain inconsistent RIs because the adjustment
by standard molecules does not work well for
heavy molecules. When we ignore such large
molecules, our method outputs a comparable result
with a much smaller value of C.

Table 1 - Performance of similarity function
using absolute retention indices:
C Gp1 Threshold #match #FP #FN

3.0 -0.1 0.07 Could not find matches

10.0 -0.1 0.07 Could not find matches

17.5 -0.1 0.3 85 12 21

50.0 -0.1 0.3 144 12 5

60.0 -0.1 0.3 144 15 5

70.0 -0.1 0.3 145 18 5

Table 2 - Performance of similarity function
using relative retention indices:
C Gp1 Gp2 Threshold #match #FP #FN

6.0 -0.2 -0.05 0.27 103 19 18

8.0 -0.2 -0.05 0.27 113 22 17

10.0 -0.2 -0.05 0.27 115 15 12

15.0 -0.2 -0.05 0.3 100 20 10

5. Discussion and conclusions
We developed an alignment program for

outputs of GC-MS. The method uses relative
retention indices in the computation and can align
metabolite peaks with a smaller tolerance value.
Although our method is theoretically advantageous,
it did not much outperform on real samples
measured at Riken and MPI-MP. The reason we
believe is the ad-hoc setting of gap penalties. As
described previously, negative gap penalties
correspond to ‘align as much as possible’ strategy.
For metabolite peaks, in contrast to biological
sequence alignments, we need not maximize the
number of matches; the alignment goal is the
detection of highly similar mass spectra (with
close retention indices) only. From this
perspective, investigation of appropriate parameter
values is needed as well as consideration on
probabilistic alignment method [13].



Methods
The metabolite samples of Arabidopsis at Riken

PSC were measured by Pegasus III TOF-MS
system (Leco, St. Joseph, MI, USA) and MS data
analysis including smoothing, alignment,
time-window setting, and H-MCR [11] was carried
out by MATLAB 7.0 (Mathworks, Natick, MA,
USA). The detailed procedure is shown as in Ref.
11. The metabolite samples at MPI-MP were
measured by the same platform but the
temperature program was different. At PSC it
started with a 2-min isothermal step at 80 ◦C
followed by temperature ramping at 30 ◦C to a
final temperature of 320 ◦C, which was maintained
for 3.5 min. At MPI-MP, on the other hand, the
temperature ramping at 15 ◦C to a final
temperature of ramping was 350 °C and was
maintained for 2 min at 350 °C. The difference
made the time shift of retention indices. In
addition, the peak detection was done by AMDIS
(Automated Mass Spectral Deconvolution and
Identification System, National Institute of
Standards and Technology, Gaithersburg, MD,
USA) at MPI-MP.

MS data of MPI-MP are downloadable from
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/
gmd_msri.html. The software program in Java
and MS data of Riken PSC are available on request
from the authors.
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Appendix
Annotation A: RI at MPI-MP B: RI at PSC RI (A) - RI (B) Gap A - Gap B
Lactic acid (2TMS) 1047 1055.456 -8.456 0
L-Alanine (2TMS) 1098 1099.255 -1.255 7.201
Hydroxylamine (3TMS) 1101 1114.1815 -13.1815 -11.9265
[Oxalic acid (2TMS)] 1135 1127.3762 7.6238 20.8053
L-Valine (2TMS) 1216 1209.2981 6.7019 -0.9219
Urea (2TMS) 1257 1250.1523 6.8477 0.1458
L-Serine (2TMS) 1263.1 1252.005 11.095 4.2473
Phosphoric acid (3TMS) 1277.9 1263.1842 14.7158 3.6208
L-Proline (2TMS) 1301 1294.7119 6.2881 -8.4277
Glycine (3TMS) 1310 1300.8907 9.1093 2.8212
Succinic acid (2TMS) 1320.8 1302.2823 18.5177 9.4084
Glyceric acid (3TMS) 1337.9 1315.816 22.084 3.5663
Fumaric acid (2TMS) 1358.6 1341.2135 17.3865 -4.6975
DL-Alanine (3TMS) 1362 1357.287 4.713 -12.6735
Threonic acid-1,4-lactone (2TMS) 1381 1370.8207 10.1793 5.4663
L-Threonine (3TMS) 1392 1373.4647 18.5353 8.356
Beta-Alanine (3TMS) 1431 1421.4886 9.5114 -9.0239
Malic acid (3TMS) 1491 1472.8523 18.1477 8.6363
Malic acid (3TMS) 1491.7 1472.8523 18.8477 0.7
Threitol (4TMS) 1501 1487.2462 13.7538 -5.0939
Threitol (4TMS) 1501 1488.1174 12.8826 -0.8712
Pyroglutamic acid (2TMS) 1527 1521.2041 5.7959 -7.0867
4-Aminobutyric acid (3TMS) 1530 1524.6614 5.3386 -0.4573
Erythronic acid (4TMS)] 1547 1539.0604 7.9396 2.601
L-Glutamic acid (3TMS) 1630.5 1605.2803 25.2197 17.2801
L-Glutamic acid (3TMS) 1630.6 1606.2772 24.3228 -0.8969
L-Phenylalanine (2TMS) 1634 1625.8724 8.1276 -16.1952
Xylose methoxyamine (4TMS) 1667.3 1633.0255 34.2745 26.1469
Arabinose methoxyamine (4TMS) 1673 1655.7854 17.2146 -17.0599
L-Asparagine (3TMS) 1682.5 1658.4731 24.0269 6.8123
Putrescine (4TMS) 1740 1734.6171 5.3829 -18.644
Putrescine (4TMS) 1740 1737.0466 2.9534 -2.4295
Shikimic acid (4TMS) 1819.6 1784.083 35.517 32.5636
Citric acid (4TMS) 1828 1799.074 28.926 -6.591
L(+)-Ascorbic acid {BP} 1852.4 1840.346 12.054 -16.872
Tetradecanoic acid (1TMS) 1853 1842.5693 10.4307 -1.6233
Fructose methoxyamine (5TMS) 1874 1850.5438 23.4562 13.0255
Galactose methoxyamine (5TMS) 1891 1877.512 13.488 -9.9682
Glucose methoxyamine (5TMS) 1897 1899.6471 -2.6471 -16.1351
L-Tyrosine (3TMS) 1941 1930.8958 10.1042 12.7513
Glutamine (4TMS) 2000 1990.5898 9.4102 -0.694
Hexadecanoic acid (1TMS) 2050 2040.6145 9.3855 -0.0247
[cis-Sinapinic acid (2TMS)] 2058 2050.5916 7.4084 -1.9771
myo-Inositol (6TMS) 2090.3 2079.8335 10.4665 3.0581
myo-Inositol (6TMS) 2091 2080.5232 10.4768 0.0103
9,12-(Z,Z)-Octadecadienoic acid
(1TMS) 2210.9 2208.5803 2.3197 -8.1571
Spermidine (5TMS) 2253 2250.9578 2.0422 -0.2775
Fructose-6-phosphate
methoxyamine (6TMS) 2318.9 2279.287 39.613 37.5708
Nicotianamine (4TMS) 2606 2562.4546 43.5454 3.9324
5-AMP (5TMS) 3079.1 3046.1636 32.9364 -10.609
alpha-Tocopherol (1TMS) 3146 3153.3408 -7.3408 -40.2772
Cholesterol (1TMS) 3154 3186.7883 -32.7883 -25.4475
Campesterol (1TMS) 3264 3298.3704 -34.3704 -1.5821
Raffinose (11TMS) 3392.6 3353.7986 38.8014 73.1718
Average (up to Spermidine) 11.6485723 0.223366
Standard Deviation (up to Spermidine) 9.74987892 10.89416


