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Abstract. Proteins are an important class of biological

macromolecules present in all biological organisms. Protein

structures are essential for correct function because it al-

lows molecular recognition. Thus protein structures provide

the opportunity to recognize homology that is undetectable

by sequence comparison, and they are powerful means of

discovering functions, yielding direct insight of the molecu-

lar mechanisms. In this paper, we propose algorithms and

develop tools for local alignment between two protein struc-

tures by means of local adjustments.We show the effective-

ness of the proposed refinement methods and initialization

algorithms by a set of experiments; the results show im-

provement comparing to several previous results.

Keywords: structural proteomics, structure align-
ments and comparisons, local refinement, initial align-
ment

1 Introduction

Protein structures play critical roles in vital biolog-
ical functions [9]. The three dimensional structure of
proteins is highly conserved during evolution [4]. Pro-
teins are constructed by one or more polypeptide chains
that fold into complicated 3D structures. Detection of
proteins with a similar fold can suggest a common an-
cestor and often a similar function [5, 19].

With more than 50,000 protein structures deter-
mined by the advances in X-ray crystallography and
NMR spectroscopy to date, molecular biologists these
days proceed in the direction of analyzing and classi-
fying these protein structures in order to discover the
structural relationships with protein functions [6]. This
is why structural alignment of proteins increases our
understanding of more distant evolutionary relation-
ships [3, 13]. The link between structural classification
and sequence families enables us to study functions of
various folds, or whole proteins [15].

The VAST system [10] is based on continuous distri-
bution of domains in the fold space. The FSSP/DALI
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system [12] provides two levels of description – a
coarse-grained one and one with a fine-grained resolu-
tion. The method, CATH, provides the complete PDB
fold classification by domains and links to other sources
of information. The two methods, CE and LGscore2
[24] focus on the local geometry rather than global
features such as orientation of secondary structures
and overall topology (as in the case of VAST or DALI).
VAST has been used to compare all known PDB do-
mains to each other. The results of this computation
are included in NCBI’s Molecular Modelling Database
at http://www.ncbi.nlm.nih.gov/Structure/-
VAST/vast.html.

Incorporating with ideas of bipartite matching and 3-
parameter isometric transformation, Lin et al. [14, 22]
proposed methods of using parametric searching strate-
gies with adaptive controls, and demonstrated that
more accurate and similar protein structure pairings
are possible comparing to previous known results like
VAST [10] or CE [24].

In our previous work [23], we propose algorithms for
efficiently locating more suitable isometric transforma-
tions of one structure and aligning it to the other struc-
ture. In this paper, we propose algorithms for local
refinement and the new initialization method.

2 Background and Terminology

Consider the point of north-pole n = (0, 0, 1) on the
unit sphere. After the rotation, R, say n is rotated
to another point p = (x, y, z); i.e., p = Rn. Let α
denote the angle ∠nOp. Note that α determines the
z-coordinate of p. To determine x-coordinate and y-
coordinate of p, the point is rotated around the z-axis
for the angle β on the unit sphere. Note that there are
infinitely numbers of rotation that transform n to p.
The particular rotation R can be decided by rotating
all other points around the vector p by the angle γ. It is
not hard to verified that, in such a way, any rigid rota-
tion transformation can be parameterized by the three-
tuple (α, β, γ). Thus, we call a vector p = (x, y, z) on
the surface of the unit sphere a probe. Note that the



movement of each probe is started from the north-pole
(0, 0, 1) to other points in the sphere. The position of p
is decided by the parameters (α, β), and exact rotation
is fixed by the self-rotation angle γ.

The main idea of our algorithm for finding a suitable
matching between two sets of points before utilizing
the Rmsd procedure to fine-tune the final result is by
searching the suitable (parametric) probe. After that,
we use the minimum bipartite matching algorithm to
find the best matching between two sets to decide the
best matching for the Rmsd procedure. Let P ′ = T ◦P ,
and Q being translated to Q′ such that the mass center
of Q′ is located at the origin. We construct a weighed
graph G = (V,E) with V being labelled with points of
P ′ and Q′, and each (p, q) in E being weighted with
the squared Euclidean (3D) distance; i.e., w(p, q) =
‖p, q‖2. We then solve the weighted minimum bipartite
matching problem [8] to obtain the best matching of P ′

and Q′. By the matched pairing, we perturb and refine
the final alignment to obtain a possible lower rmsd.

2.1 Root mean squared deviation

The smallest root mean squared deviation (rmsd) is a
least-squares fitting method for two sequences of points
[12]. The idea is to align atom vectors of the two given
(molecular) structures, and use the common least av-
eraged squared errors as a measurement of differences
between these two (paired) sequences. Formally, let
P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be two sequences
of points. We assume that P is translated so that its
centroid ( 1

n

∑n
k=1 pk) is at the origin. We also assume

that Q is translated in the same way. For each point or
vector x, let (x)i(i = 1, 2, 3) denote the i-th (X, Y, Z)
coordinate value of x, and ‖x‖ denote the length of

x. Let rmsd(P, Q,R,a) =
√

1
n

∑n
k=1 ‖Rpk + a− qk‖2,

where R is a rotation matrix and a is a translation vec-
tor. Then, the rmsd value d(P,Q) between P and Q
is defined by d(P, Q) = minR,a d(P, Q, R,a). Schwartz
[21] showed that d(P,Q, R,a) is minimized when a = 0
and R = (AtA)

1
2 A−1, where the matrix A = (Aij)

i, j = 1, 2, 3 is given by Aij =
∑n

k=1(pk)i(qk)j , where
A

1
2 = B means BB = A , and o denotes the zero vec-

tor. Thus, d(P,Q), R and a can be computed in O(n)
time [17].

We refer to Martin’s ProFit package (standing for
protein fitting system) [16] and write a program to cal-
culate the rmsd between C-α atoms of paired protein
backbones with C language. Fitting was performed us-
ing the McLachlan algorithm [17].

2.2 Isometric Rotation Transformation

According to Euler’s rotation theorem [7] , any rota-
tion about the origin point can be described by using
three angles. The rotation is determined by 3 consec-
utive rotations with 3 Euler angles (α, β, γ). The first
rotation is done by the angle α around the z-axis, the

second is done by the angle β around the x-axis, and
the third rotation is done by the angle γ around the
z-axis. see [11] for related discussions about the trans-
formation.

As a result, we reduce the problem of finding a good
rotation matrix to the new problem of finding a good
3-parameter. The rotation matrix is thus characterized
by just adjusting the 3 uniformly distributed parame-
ters.

2.3 Minimum Bipartite Matching

We use the minimum bipartite matching to find the
best matching between two sets of points to decide the
best matching for the rmsd procedure. We adopted
the Munkres [18, 2, 1, 20] algorithm. The public avail-
able implementation is written with Perl language. To
improve the efficiency of computation, we implement
the Munkres algorithm and write hundreds lines of C
Codes.

2.4 Parametric Adjustment with Trigono-
metric Series

In our previous work [23], the trigonometric series
estimation method, the three parameters are assumed
to be independent. We adjust the three parameters
one by one and increase the power of the estimated
function. The trigonometric series function is described
as the following:
f(θ) = C1 + C2 cos πθ + C3 sin πθ

+ C4 cos 2πθ + C5 sin 2πθ

+ C6 cos 3πθ + C7 sin 3πθ + . . .

+ C2k cos
k − 1

2
πθ + C2k+1 sin

k − 1
2

πθ

(1)

, where the f(θ) denote the corresponding value of rmsd
with respect of one of the three parameters, (α, β, γ).
The k usually reflects the numbers of local maximal
points in the approximated curve.

3 Methodology

In this section, first we introduce the motivation
about why we want to use the local refinement algo-
rithm to find the better list between two proteins. Sec-
ondly, we show the initial algorithm according to the
structure of protein. The detail experimental result is
showed in next section.

3.1 Motivation

In our previous work, the trigonometric series es-
timation method is used to find a better position in
protein structure comparison. When comparing with
the VAST, there are 15.89% improvement by our pro-
posed method.It is appropriate to the local alignment
algorithm in finding the better alignment. Therefore,



Struc-Mir(P, Q, A) ¤ Structure Alignment with Mirror.

Input: (P, Q, A), where P = {p1, p2, . . . , pnP } and Q = {q1, q2, . . . , qnQ} are two set of 3D
coordinates of points, and A is a initial alignment.

Output: (r, A), where r is a sufficiently low rmsd, and A is the new alignment
1 started ← true
2 repeat improve ← true
3 repeat ( P, Q′) ← ΦA(P, Q) ; r ← rA ¤ adjust atoms of Q to atoms of P
4 A′ ← Mbm(P (A), Q′) ; succ ← false ¤ P (A) is the aligned atoms of P
5 if rA′ < r then succ ← improve ← true; A ← A′; Q ← Q′
6 until not succ
7 if not improve and not started then exit
8 improve ← false ; started ← false
9 repeat ( P, Q′) ← ΦA(P, Q) ; r ← rA ¤ adjust atoms of Q to atoms of P

10 A′ ← Mbm(Q′(A), P ) ; succ ← false ¤ Q′(A) is the aligned atoms of Q′
11 if rA′ < r then succ ← improve ← true; A ← A′; Q ← Q′
12 until not succ
13 until not improve
14 return (r, A)

Mbm(P (A), Q′) returns the minimum bipartite matching of two point sets P (A) and Q′.

ΦA(P, Q) ¤ adjust atoms of Q to atoms of P by the alignment, A.

Input: (P, Q), where P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm} are two set of 3D coordinates of points.
Output: Q′, where Q′ is adjusted from Q.

1 MR ← Rot(A) ¤ MR is a rotation matrix calculated from the alignment, A.
2 Q′ ← Trans(P, Q, MR) ¤ adjust atoms of Q to atoms of P by MR.
3 return Q′

Figure 1: The mirroring method tries to find a better local alignment by reflection atoms of two structures.

we propose a local refinement algorithm, mirroring
method, to have a better alignment. The procedure for
all the algorithms is shown in Figure 3. PA and PB
are two protein structures. We get the fixed numbers
of aligned atom in PA by initial algorithm and then
proceed with trigonometric series estimation method
to adjust the parameters. The use of the mirroring
method depends on global alignment or local align-
ment. Besides, we also develop two new initial meth-
ods, main vector and segment alignment, to substitute
for the well-known methods, such as the VAST and
CE. In the following we introduce the local refinement
by mirroring method, then initial with main vector or
segment alignment.

Figure 3: Algorithms for structure alignments of protein pairs.

3.2 Local Refinement by Mirroring
Method

The principle for the mirroring method is to fix one
side of protein pairings and find the minimum bipartite
matching of the protein pairings. The mirroring algo-
rithm is illustrated at Figure 1. Given P and Q two
protein structures, let np and nQ denote the numbers

of atom in P and Q. Q′ is the rotated Q. There is an
initial alignment, A, whose length is nA between P and
Q, where nA ≤ nP , nQ. P (A) stands for the aligned
atoms in P , and Q(A) stands for the aligned atoms in
Q. P (A) and Q(A) are included in A. ΦA(P, Q) means
adjusting atoms of Q to atoms of P . The mirroring al-
gorithm is divided into two parts:

1. Find a better matching by reflecting from Q′(A)
to P .

2. Find a better matching by reflecting from P (A) to
Q′.

The mirroring algorithm stops if it doesn’t improve the
presently best rmsd value for two consecutive times.
The mirroring algorithm tries to find a better local
alignment by reflection atoms of two structure. It fixes
the numbers of atom for one side and finds a better
matching in another side.

3.3 Initialization by Main Vector Method

The initial method, such as VAST and CE, supports
the trigonometric series estimation method to improve
the rmsd value. A better initial alignment is very im-
portant for the trigonometric series estimation method
to adjust a better result. Therefore, we try to develop a
initial method according to the shape of protein struc-
ture. The main vector method is to find a main vector
about protein structure in 3-dimension and a second
main vector in 2-dimension. We apply the inner and
outer product to find the rotation and vertical vector.
Let x, y be two vectors and θ be the included angle of x
and y. We can have θ = cos−1 〈x·y〉

‖x‖·‖y‖ , then we use the



Vect-Alig(P, deg, Z) ¤Vector Aligment ¤ Find the initial rotate for protein structure

Input: a set of 3D coordinates of points P = {p1, p2, . . . , pn}.
deg is the dimension for protein structure coordinates.
(Z[2], Z[3]) stands for (x-axis, z-axis).

Output: (P ) rotated P
1 for i ← 3 to 2
2 do g ← Center(P, i, Z[i]) ¤ g is the mass center of P in the i-th dimension.
3 a ← Farthest(P, g) ¤ a is a farthest point of P from g.
4 b ← Farthest(P, a) ¤ b is a farthest point of P from a.

5 v ← b− a ¤ v is
−→
ab.

6 MR ← Matrix(V, Z[i]) ¤ MR is the matrix which rotates V to Z[i].
7 P ← Rot(P, MR) ¤ rotate P by MR.
8 return P

Matrix(P, Q) returns the matrix that rotate point P to point Q on the unit sphere.

Figure 2: The initial rotation by the main vector method, When i = 3, there is a first main vector in 3-dimension and then rotate the
protein structure by the matrix which rotates it to z-axis. When i = 2, there is a second main vector in 2-dimension which is x-axis
and y-axis, and then rotate the protein structure by the matrix which rotates it to x-axis.

outer product to find the vertical vector, v, which is
defined as v = x×y, then we use θ and v to rotate the
protein structure. The algorithm is shown in Figure 2.
In this algorithm, we have a first main vector and a sec-
ond main vector. If we assume a, b to stand for the two
points of first main vector and c, d to to stand for an-
other. There are totally four possible combinations for
them, (

−→
ab,

−→
cd), (

−→
ba,

−→
cd), (

−→
ab,

−→
dc), (

−→
ba,

−→
dc). We choose

the minimum rmsd of them to be the initial rotation.
Besides the main vector method, we also use a random
initial rotation to execute the trigonometric series esti-
mation method. The experimental results of those two
different settings are discussed in next section.

3.4 Initialization by Segment Alignment

Comparing to the more sophisticated methods like
CE or VAST, the main-vector initialization position
does have the advantage of saving valuable processor
computation resources. Yet the found initial orienta-
tion by the main-vector method seems a little bit rough
and not being able to produces satisfactory final orien-
tation even after the fine-tune procedures. The idea
here is trying to find a more suitable starting posi-
tion and still conserve enough computation time just
for the better tryout. Since the protein structure is
just a chain sequence of atoms, we can subdivide the
sequence and use the subsequence matching informa-
tion to find a better starting. Thus, the atom chains
of a structure is divided into several (consecutive) seg-
ments. Here is a list of (consecutive) atoms appeared
in the PDB file. One way of dividing protein chains of
a structure depends on the secondary structures of the
given protein. The other passable partitions can also
be obtained by slicing a fixed number of atoms of the
given protein. In the following experiment, we test the
effectiveness of the method by using the fixed number
partition method. After the segments of structures is
decided, the segment alignment uses the standard dy-
namic programming technique to obtain feasible pair-

ings between segments by maintaining a suitable score
table. The dynamic programming evaluation function
is described as the following:

score(s, λ) = Ump · | s |
score(λ, t) = Ump · | t |

score(sx, ty) =

min





Rmsd(L(s, t) ◦Match(x, y)) · `
+ Ump · (| sx | + | ty | −2`)

score(sx, t) + Ump · | y |
score(s, ty) + Ump · | x |

here λ denotes the empty list; s, t are two segment
lists. L(s, t) is the alignment between segment lists
s and y, and nL denotes the number of atoms in L;
` =| L(s, t) ◦Match(x, y) |.

The recurrence relation for evaluating the value score
relies on three possible alignments between sx and ty.
Here s and t are two prefix segment lists, and x and y
are the two currently (last) considered segments. The
first alignment, L is the pairing list from L(s, t) merg-
ing with Match(x, y) which stands for the match be-
tween segment x y. Since Rmsd() returns the average
precalculated rmsd value, the number is multiplied by
the number of matched pairs `. However, if one can not
find any match for an atom, a given punishment con-
stant, Ump, must be added to encourage most atom be
aligned with some atoms on the other sequence. An-
other possibility is the case of score(sx, t); in that case,
the segment y is not able to match with segment on
the other list. Thus we need to add in the punish-
ment values for all atoms of the y segment. The case
of score(s, ty) is also treated similarly, and the corre-
sponding table lookup algorithm is shown in Figure 4.
In this algorithm, we first initiate the table. lenA[i] is
prefix segment list when it treats the i-th segment. s
is the score of new atoms just joint into. We choose
the minimum and record into the score table. It also
records L[i, j] as the current merged list L. Finally, we
get the value of the bottom right hand side corner in



Seg-Alig ¤Segment Alignment algorithm

1 for i ← 0 to ns ¤ initiate the table
2 do score[i, 0] ← Ump · lenAs[i] ¤ Ump : unmatched penalty
3 for j ← 0 to nt

4 do score[0, j] ← Ump · lenBs[j]
5 for i ← 1 to ns

6 for j ← 1 to nt

7 do L ← L[i− 1, j − 1] ◦Match(i, j)
8 r ← Rmsd(L);
9 s ← r · nL + Ump · (lenAs[i] + lenBs[j]− 2 · nL) .nL ← (nL[i−1,j−1] + nM[i,j] )

10 if s ≤ score[i, j − 1] + Ump · lenA[i] and s ≤ score[i− 1, j] + Ump · lenB[j]
11 then score[i, j] ← s; L[i, j] ← L
12 elseif score[i, j − 1] + Ump · lenB[j] ≤ s and score[i, j − 1] + Ump · lenB[j] ≤ score[i− 1, j] + Ump · lenA[i]
13 then score[i, j] ← score[i, j − 1] + Ump · lenB[j]; L[i, j] ← L[i, j − 1]
14 else
15 score[i, j] ← score[i− 1, j] + Ump · lenA[i]; L[i, j] ← L[i− 1, j]

Figure 4: The segment alignment .

the table. And the L[ns, nt] is the desired answer using
the segment alignment method.

4 Experimental Results

In this section, we introduce the target of experimen-
tal data set first. Then we show the difference with
VAST, CE, main vector, random and segment align-
ment. Finally, the experimental results for mirroring
method is shown.

4.1 Data Set

We choose the PDB for our experimental sample
source, and we randomly pick 200 protein structures in
the PDB database as our experimental subjects by the
uniform distribution sampling. For each chosen protein
structures we randomly choose 30 structure alignments
listed on the database of VAST as the tested targets.
We use the term, P , to stand for one of the 200 ran-
domly picked protein structures, and we use Q to stand
for one of the 30 neighbors of each P . Note that P and
Q include all un-aligned and aligned atoms. We use
the term, PA, to stand for the aligned atoms of P by
VAST. Totally, there are 6,000 protein pairings tested
by our previous experiment.

4.2 Comparison of Five Methods

There are five different initial rotations in the fol-
lowing algorithms- VAST, CE, main vector, random
and segment alignment. We use the numbers of atom
found by VAST for our standard. CE always finds its
own alignment, but we hope to compare the difference
with the five methods in the same standard. There-
fore, we also transform it back to the standard after
the trigonometric series estimation method. When it
finishes the trigonometric series estimation method, we
use the PA which is standard from VAST to run one
time MBM with Q. Therefore, the five methods are
compared in the same PA. We randomly select 1,000

of 6,000 samples pairings for our experiments, and the
distribution of them is shown in Figure 5

The MBM provides the effect of fine-tuning when
there is a correct initial rotation. But there are still
2%, 2.3% and 4.9% to improve VAST, CE and segment
alignment by trigonometric series estimation method.
The result indicates that the initial alignment with a
MBM is not perfect.

After VAST and CE execute the MBM and the
trigonometric series estimation method, VAST drops
the rmsd to 2.51. For this reason, it seems that VAST is
a better initial seeding method than CE. The segment
alignment drops the rmsd to 2.68 after execute the
MBM and the trigonometric series estimation method.
It is better then main vector, random and almost better
then CE. It is very close VAST and sometimes defeat
VEST. We think if we choose the way of dividing pro-
tein chains of the secondary structures, it should be
more better.

4.3 Experimental Results for Mirroring
method

We apply the mirroring method to the 6,000 protein
pairings. We obtain 3.11 after the VAST, 2.55 after
the VAST and a MBM and 2.27 after the VAST, a
MBM and the mirroring method. For all the 6,000
sample pairings, the MBM improves the result of the
VAST about 18.1%. The mirroring method improves
the result of the VAST about 27%. The value of rmsd
is down to 2.27 after mirroring method. We only need
to execute 6.81 times MBM.

5 Concluding Remarks

In this paper, we develops algorithms to improve the
rmsd value of a protein structure pair by finding bet-
ter alignment of two structures. Our method substan-
tially improves the alignments found by VAST method
(the averaged improvement ratios is about 27%). A set
of experiments is tested which leads to the conclusion
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Figure 5: (a) The distribution of the 1000 randomly picked protein structure pairings. (b) The average of rmsd value for VAST, CE,
Main Vector, Random and Segment alignment.

that good initialization orientation and its correspond-
ing alignment list is crucial before adjusting parame-
ters. Ways of finding suitable and feasible initalization
orientation, including the Vect-Alig and Seg-Align
methods, are proposed and tested; it can be concluded
that the segment alignment method is a reasonable way
of setting up the initial orientation of the given protein
pair. Furthermore, the local refinement algorithm, the
mirroring method, is proposed and the experimental
results confirm the rmsd values can then be reduced
substantially by the mirroring method.
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