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Abstract- A steganographic encoding scheme, 
Coded LSB (Least Significant Bit) method, was first 
proposed by Dijk and Willems. The scheme can alter 
less bits to hide the secret than the conventional LSB 
scheme, and meantime the distortion is reduced and 
the security against steganalysis is improved. Errors 
may be caused due to the channel noise or the 
tampering by the active warden; however, for the 
Coded LSB scheme one error bit may result in 
multi-bit error when extraction. This is called as 
error spreading. In this paper we propose unequal 
error protection (UEP) codes strategy to overcome 
this error spreading problem. Our method will save 
the parity bits when compared to the scheme using 
the conventional error correcting codes directly. 
 
Keywords: Steganography, error correcting code, 
unequal error protection code. 
 
1. Introduction 

Steganography is a technique to conceal the 
secret under the communication media in which the 
secret cannot be disclosed. Hiding information in a 
gray image is commonly discussed in steganography. 
For a plain LSB-Steganography scheme, if the 
grayscale value of a pixel is x with binary form 

1 1 0( , , , )nx x x
−
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simply modify the least significant bit x0 to embed 
the secret bit s by 0x s⊕ . A more efficient method, 
coded LSB method, based on encoding LSBs was 
proposed to reduce the distortion when noise occurs 
[1]. However, there will be an error spreading 
problem in the coded LSB method. One bit error in 
some LSBs will cause two or more errors when 
decoding and this will damage the clearness of the 
recovered secret image. A trivial method for solving 
this problem is to add the error correcting (EC) 
capability into the Coded LSB scheme. Here, we 
propose a more reasonable solution for solving the 
error spreading problem. According our observation, 
the error spreading only occurs in some bits but not 
all bits. Thus, we use the unequal error protection 
(UEP) codes strategy to give the different protection 
ability for these LSBs individually. Finally, we can 

save the parity bits when compared with the trivial 
method using EC codes. 

The rest of this paper is organized as follows. 
In Section 2 the Coded LSB scheme is introduced. In 
Section 3, a trivial method based on EC codes is 
given. Our scheme based on UEP code is proposed 
in Section 4. The comparison and experimental 
results are shown in Section 5. Conclusion is drawn 
in Section 6.  
 
2. Coded LSB Steganography Scheme 

In the plain LSB-Steganography approach, the 
secret bits are embedded by simply replacing the 
LSBs of pixels. It means that when embedding n bits, 
we have 1/2 probability to alter LSBs of pixels, i.e., 
n/2 LSBs will be changed in average. For the Cded 
LSB scheme [1], the hidden secret is divided into 
many chips of l bits and each chip is embedded into 
n pixels to reduce the number of altered LSBs using 
the (n, k) Hamming codes where k and n are code 
lengths for information and codeword and l=n−k.  
 
Coded LSB Scheme: 
The construction method for the Coded LSB scheme 
is based on the cyclic coding. Let 
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1, 2,and {0,  1}i ig g ∈  be two binary polynomials 
with degree k and l, respectively. Their product is 

1 2( ) ( ) 1nG x G x x⋅ = + . Using (n, k) Hamming codes 
with the generating function G(x)=G2(x), we can 
construct 2l  cosets including 2k  codewords in 
each coset and every coset does not contain the 
identical codewords. Since there are 2l  cosets, we 
may let each coset represent the l-bit secret chip. 
When encoding the LSBs to embed secret message, 
we use the nearest codeword in the coset to 
represent the embedded secret. The formal 
embedding process for the Coded LSB scheme is 
described in the following algorithm. 
 
Algorithm 1: [Process every n LSBs of the pixels in 
the cover image] 
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Input: l embedded secret bits 1 0( , ,  )ls s
−

, n LSBs 

1 0( , ,  )nc c
−

 of the pixels in the cover image O. 

Output: n LSBs 1 0( , ,  )nc c
−
′ ′  of the pixels in the 

Stego-image O′ . 
Step 1: Choose one cyclic (n, k) code with 

generating function ( ) l

lG x g x= ⋅ + +  

1 0g x g⋅ +  and then select any k-tuples as 
the input to construct 2k codewords. This 
code set including the 2k codewords is called 
a coset. Choose one n-tuple codeword that 
does no appear in this coset, and then add an 
unused n-tuple to all the codewords in the 
coset to form another coset. 

Step 2: Repeat Step 1, until all 2n codewords are 
used. Finally we have 2l different cosets 

0 2 1
, ,  lL L

−
 that include 2k codewords in 

each coset. 
Step 3: Encrypt the secret 1 0( , ,  )ls s

−
 by 

choosing the coset Li where 
1

0

2
l

i

i
i

i s
−

=

= ⋅∑ . 

Then, find the codeword 1 0( , ,  )nc c
−
′ ′  in 

coset Li such that the Hamming distance 
between 1 0( , ,  )nc c

−
′ ′  and 1 0( , ,  )nc c

−
 is 

as minimal as possible. 
Step 4: Deliver the n LSBs 1 0( , ,  )nc c

−
′ ′  to the 

corresponding pixels in the embedded 
Stego-image O′ .  

 
Here, we define two parametrs to show the 

efficiency of steganographic sschemes. One is the 
embedding rate, ER, which is the number of 

embedded bits per pixel, i.e. 
l

ER
n

= ; the other is 

the alteration rate, AR, which is the number of 

embedded bits per altered bit, i.e., altl
AR

n
=  where 

altl  is the average alteration LSBs when l secret bits 

are embedded into the n LSBs. The value altl  can 
be calculated from all codewords in coset by a 
computer program. The first parameter is for 
discussing the embedded capacity and the second 
parameter is to show the distortion of the cover 
image. For the plain LSB-Steganography scheme, it 

is obvious that 100%
l n

ER
n n

= = =  and AR =  

/ 2
50%altl n

n n
= = . 

 
The following example shows the embedding 

operation of Algorithm 1. 
 
Example 1. Construct a Coded LSB scheme with l=3 
and n=7. 

When n = 7, we have 7 4 3 21 (x x x x+ = + +  
3 21) ( 1)x x+ ⋅ + + . Let 3 2( ) 1G x x x= + + , and we 

have k = 4, and l = 3 i.e., we can embed three secret 
bits into seven LSBs. After the first two steps in 
Algorithm 1, we construct eight cosets with sixteen 
codewords in each coset based on (7, 4) Hamming 
code. If the secret is (101) and the 7-tuple LSBs is 
(0001110), we use the coset L5 (since the binary 
representation of 5 is (101)) to find the codeword 
that has the minimum Hamming distance 1 from 
(0001110). We only alter one LSB to embed three 
secret bits. The embedding rate and alteration are 
ER=3/7=42.9% and AR=0.875/7=12.5%. (Note that 

altl  is 0.875 for this example.) Compared with the 
plain LSB-Steganography scheme (ER=100%, 
AR=50%), the plain LSB-Steganography scheme has 
more embedded capacity but the Coded LSB scheme 
modifies fewer bits, i.e. reduces the distortion of the 
cover images. 
 
Error Spreading Problem in Coded LSB Scheme: 
One drawback of the Coded LSB scheme is that 
when one bit error occurs in the coded n LSBs, it 
may cause more than one bit errors of secret bits 
when extraction. Considering Example 1, we can 
use the 7-tuple LSBs (0000000) to carry the secret 
(000). Suppose that there is one bit error, for 
example (0010000), we recover the secret as (111) 
and there are three error bits. However, If the error 
pattern is (0000001), the recovered secret is (001) 
and no errors spread. From our observation, if the 
error falls in the right three positions, i.e. (0000100), 
(0000010) and (0000001), there will be only one 
error in the recovered secret and the damage is not 
expanded. For the following error patterns 
(1000000), (0100000), (0010000) and (0001000), 
the decoded secret is (110), (011), (111) and (101), 
respectively, and there are more than one bit errors 
in the decoded secret. This is called error spreading 
problem and will make the revealed secret image 
worse. 

There is one trivial method to solve the error 
spreading problem in Coded LSB scheme. We can 
add the error correcting capability into this scheme 
using EC codes. The following section shows how 
to add the error correcting capability. 

 
3. Add Error Correcting Capability into 
Coded LSB Scheme Using EC Codes 
 We can directly add error correcting capability 
to ensure the correctness of the n-tuple LSBs to 
prevent the error spreading in the secret. Let 

1 21 ( ) ( )nx G x G x+ = ⋅  where the degree of G1(x) 
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and G2(x) are k, and l. It is obvious that we can 

construct a Coded LSB scheme with 
l

ER
n

=  using 

the generating function G(x)=G2(x). After that we 
encode 2k  k-tuple vectors in each coset into (NE, n) 
EC codes. The embedding rate for this new Coded 

LSB scheme is reduced to
E

l
ER

N
= , but now we 

have the error correcting capability of (NE, n) EC 
codes. The following example shows the 
efficiencies ER and AR for this EC-based scheme. 
 
  

Example 2. Construct a EC-based Coded LSB 
scheme with l=3, n=7 and NE=11 and one-error 
correcting capability. 
Considering Example 1, first use (7, 4) Hamming 
code to embed three secret bits and then use (11, 7) 
shorten Hamming code to achieve one error 
correcting capability. To show the error correcting 
capability, assume that we embed the secret (000) 
into 7-tuple (0001101) in coset L0 using (7, 4) 
hamming code. Then append the parity (1001) to 
form a shorten (11, 7) Hamming code 
(10010001101). Now, for example, if one error 
occurs in the sixth position, i.e. (10010101101), we 
first decode codeword to (0001101) using (11, 7) 
code and then find that the codeword (0001101) is in 
coset L0. Finally, we get secret (0000). The error is 
always corrected no matter where the one bit error 
occurs due to the capability of (11, 7) shorten 
Hamming code. So, we can solve the error 
spreading problem. However, the cost is the 
reduction of the embedding rate and alteration rate. 
In this example, the ER and AR are reduced to 
3/11=27.3% and 2.625/11=23.9%, where altl  is 
2.625. 

 
As we mention in error spreading problem of 

Section 2. It is observed that only the error in the 
first k bits of n-tuple will result in more errors. So, 
to prevent the error spreading, we can just make 
sure the validity of the first k bits instead of all the n 
bits. 
 
4. Add Error Correcting Capability into 
Coded LSB Scheme Using UEP Codes 

A category of EC code called UEP code is to 
present different protecting capability for different 
bit locations [2], [3]. Some information bits are 
protected against a greater number of errors than 
other information bits. UEP codes are denoted as 

1 2[ , , ( ,  , , )]kn k d d d , where k means the length of 
the information vector and n is the code length. 
When decoding, if no more than ( 1) / 2id −⎢ ⎥⎣ ⎦  
errors occurr in the transmitted codeword, the 

correctness of the ith bit can be guaranteed. 
Since the first k bits of vectors in the coset need 

more error protection, we can apply UEP codes to 
assure the correctness of these k bits and meantime 
the redundant parity bits are less than EC codes. 
First, Let 1 21 ( ) ( )nx G x G x+ = ⋅  where the degree 
of G1(x) and G2(x) are k, and l and take G2(x) as the 
generating polynomial to construct the 2l  cosets. 
Then encode the n-tuple vector by using 
the 1 2[ , ,  ( ,  , , )]kUN n d d d UEP code. Since the 
value of NU is less than NE, so our proposed 
UEP-based Coded LSB scheme will have higher 
embedding rate and also prevent the error 
spreading. 
 
Example 3. When NU =10, n = 7, k = 4 and l = 3, we 
use [10, 7, (3333222)] UEP code to add one 
correcting capability into the Coded LSB scheme.  
Eight cosets for this Coded LSB are shown in Table 
1. (Note that the parity bits are added from right for 
easy description.) Suppose that the original 
codeword is “0000000000”, and consider the 
following cases that one error occurs: 
Case 1: If the first bit (from left) is wrong, we 
receive the codeword “1000000000”. By Table 1, 
there is only one codeword “0000000000” in coset 0, 
which is closet to “1000000000” with Hamming 
distance 1.  
Case 2: If the error falls in the 5th bit (from left) as 
“0000100000”, we can find that two codewords, 
“0000000000” in coset 0 and “0000100100” in coset 
4, are close to “0000100000” with Hamming 
distance 1. It can be observed that the first 4 bits of 
“0000000000” and “0000100100” are the same, so 
after decoding, the first 4 bits “0000” will be still 
correct, while the last 3 bits may be “000” or “010”. 
Thus, even though we choose 010 in the other three 
bits, the recovered secret has only one error, i.e., no 
errors spread. 
Case 3: If the error falls in the 10th bit as 
“0000000001”, it will be decoded as “0000000000” 
in coset 0 or “0000001001” in coset 1, the first 4 bits 
“0000” is also guaranteed.  

Since (3 1) / 2 1− =⎢ ⎥⎣ ⎦ , when less than 1 error 
falls in the first 4 bits of the original 7-bit vector it 
can be corrected during decoding. If one error 
occurs in other places, we can guarantee that the 
first 4 bits are correct, but the last 3 bits may be not. 
When k = 4, and l = 3, the [10, 7, (3333222)] UEP 
code is suitable to provide more protection on the 
first 4 bit against the error spreading. For this 

UEP-based scheme 
U

l
ER

N
= =30% and AR = , 

22.5%alt

U

l

N
=  where altl  is 2.25 for this example. 
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From the above example, for [10, 7, (3333222)] 
UEP code, the first four bits have one-error 
correcting capability. When using EC code, we need 
to use (11, 7) shorten Hamming code to correct one 
error. Using the same representation like UEP codes, 
(11, 7) shorten Hamming code can be represented as 
[11, 7, (3333333)]. Therefore, if we just want to 
protect the first four bits, then we can save one 
redundant checking bits by using the UEP code. Our 
error-correcting capability of UEP codes is not 
better than EC codes, but it has better embedding 
and alteration rates and also overcomes the 
weakness of error spreading. 
 
5. Comparison and Experimental Results 

There are some powerful analyses for 
steganographic schemes, like the sample pair 
analysis [4], and image quality metrics [5]. To resist 
the different and new analysis, we have to construct 
the steganographic scheme that not only considering 
the higher embedding rate but also the relation 
between the cover-image and the stego-image, or the 
relations between pixels and pixels. In this section, 
we show the PSNR of the cover image and 
Stego-image for our proposed scheme. Table 2 
shows the Coded LSB schemes constructed by EC 
codes and UEP codes to avoid the error spreading 
for n = 2 to 12. In Table 2, the (n, k, l) is original 
Coded LSB scheme, and NE and NU are the code 
lengths of EC and UEP codes. From Table 2, all the 
UEP-based schemes have shorter lengths than the 
EC codes and both of them have the ability to 
correct the first k bits when 1 error occurs, i.e. avoid 
the error-spreading problem. 

To compare the distortion caused by these 
three Coded LSB schemes, conventional, EC-based 
and UEP-based schemes, we use “Baboon”, “Barb”, 
“Boat”, “Elain”, “Mena”, and “Peppers” as the test 
cover images and the test embedded image is a text 
picture (see Figure 1), the “NDHU” (National Dong 
Hwa University). All of the test cover images are 
256×256 and due to the different embedding rate for 
different schemes, we use three sized “NDHU” text 
image 59×59, 47×47 and 49×49 for conventional, 
EC-based and UEP-based schemes, respectively. 
The PSNR between each cover image and its 
Stego-image is shown in Table 3. It is observed that 
the conventional scheme have higher PSNR, since 
the AR=12.5% is smaller than 23.9% (EC-based) 
and 22.5% (UEP-based) of EC-based and 

UEP-based schemes. Thus adding the error 
correcting capability does not distort the 
Stego-image seriously. It is reasonable and practical 
to use the error correcting codes into the 
steganographic scheme. 

To further study the error spreading problem, 
we add the error patterns in two types: one is to add 
the errors randomly and the other is to add the errors 
in the worst places (the first k bits) that will cause 
error spreading. Figure 1 and Figure 2 show the 
extracting results for the random case and the worst 
case. Two embedded images are used: one is the 
“NDHU” text picture and the other is “NDHU” logo 
picture. 

It is observed that the proposed scheme is 
almost the same to EC-based scheme and better than 
the conventional Coded LSB scheme in a noisy 
environment. Moreover, our UEP-based scheme has 
more embedding rate than the EC-based scheme. 
 
6. Conclusion 

In this paper we integrate UEP codes into the 
Coded LSB steganographic scheme such that the 
error-spreading problem can be solved. Though a 
trivial EC-based scheme can have the same effect, 
its embedding rate is lower than our UEP-based 
scheme and needs to use more pixels to embed the 
same secret. 
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Table 1. Eight cosets for the Coded LSB scheme with l=3, N=11 using [10, 7, (3333222)] UEP code 
L0 (0000000000)*(0001101110)(0011010100)(0010111010)(0110100100)(0111001010) 

(0101110000)(0100011110)(1101000000)(1100101110)(1110010100)(1111111010)  
(1011100100)(1010001010)(1000110000)(1001011110) 

L1 (0000001001)*(0001100111)(0011011101)(0010110011)(0110101101)(0111000011) 
(0101111001)(0100010111)(1101001001)(1100100111)(1110011101)(1111110011) 
(1011101101)(1010000011)(1000111001)(1001010111) 

L2 (0000010010)(0001111100)(0011000110)(0010101000)(0110110110)(0111011000) 
(0101100010)(0100001100)(1101010010)(1100111100)(1110000110)(1111101000) 
(1011110110)(1010011000)(1000100010)(1001001100) 

L3 (0000011011)(0001110101)(0011001111)(0010100001)(0110111111)(0111010001) 
(0101101011)(0100000101)(1101011011)(1100110101)(1110001111)(1111100001) 
(1011111111)(1010010001)(1000101011)(1001000101) 

L4 (0000100100)*(0001001010)(0011110000)(0010011110)(0110000000)(0111101110) 
(0101010100)(0100111010)(1101100100)(1100001010)(1110110000)(1111011110) 
(1011000000)(1010101110)(1000010100)(1001111010) 

L5 (0000101101)(0001000011)(0011111001)(0010010111)(0110001001)(0111100111) 
(0101011101)(0100110011)(1101101101)(1100000011)(1110111001)(1111010111) 
(1011001001)(1010100111)(1000011101)(1001110011) 

L6 (0000110110)(0001011000)(0011100010)(0010001100)(0110010010)(0111111100) 
(0101000110)(0100101000)(1101110110)(1100011000)(1110100010)(1111001100) 
(1011010010)(1010111100)(1000000110)(1001101000) 

L7 (0000111111)(0001010001)(0011101011)(0010000101)(0110011011)(0111110101) 
(0101001111)(0100100001)(1101111111)(1100010001)(1110101011)(1111000101) 
(1011011011)(1010110101)(1000001111)(1001100001) 

 
Table 2. Conventional, EC-based and UEP-based Coded LSB schemes for n = 2 to 12 

Conventional scheme EC-based scheme UEP-based scheme 
 (n, k, l) l

ER
n

=  1 2[ , ,  ( ,  , , )]kUN n d d d
E

l
ER

N
= [ , , ]EN n d  

U

l
ER

N
=

(2, 1, 1) 50.0% [5, 2, 3] 20.0% [4, 2, (32)] 25.0% 

(4, 1, 3) 75.0% [7, 4, 3] 42.9% [6, 4, (3222)] 50.0% 

(5, 4, 1) 20.0% [9, 5, 4] 11.1% [8, 5, (33332)] 12.5% 

(6, 4, 2) 33.3% [10, 6, 4] 20.0% [9, 6, (333322)] 22.2% 

(7, 4, 3) 42.9% [11, 7, 4] 27.3% [10, 7, (3333222)] 30.0% 

(8, 4, 4) 50% [12, 8, 4] 33.3% [11, 8, (33332222)] 36.4% 

(9, 4, 5) 55.6% [13, 9, 4] 38.5% [12, 9, (333322222)] 41.7% 

(10, 4, 6) 60% [14, 10, 4] 42.9% [13, 10, (3333222222)] 46.2% 

(11, 4, 7) 63.6% [15, 11, 4] 46.7% [14, 11, (33332222222)] 50.0% 

(12, 4, 8) 66.7% [17, 12, 5] 47.1% [15, 12, (333322222222)] 53.3% 
 

Table 3. PSNR(dB) between the cover images and its Stego-images 
     Coded LSB 

  scheme 
Cover image 

Conventional EC-based UEP-based 

    Baboon 57.173 54.671 54.691 
    Barb 57.148 54.687 54.675 
    Boat 57.181 54.696 54.677 
    Elain 57.143 54.675 54.681 
    Mena 57.151 54.683 54.710 
    Peppers 57.181 54.693 54.671 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

447



 6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Recovered images for different Coded LSB schemes with BER = 2%, 4% and 8% in random positions 

 
Figure 2. Recovered images for different Coded LSB schemes with BER = 2%, 4% and 8% in worst positions 

 

BER = 2% 

BER = 4% 

BER = 8% 

Conventional scheme        EC-based scheme       UEP-based scheme 

(a) Two Embedded images with three size: 59×59, 47×47 and 49×49 

BER = 2% 

BER = 8% 

BER = 4%  

Conventional scheme        EC-based scheme       UEP-based scheme 
                         (b) Recovered image with different BER

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

448




