
Improved Context Modeling Architecture of
JPEG2000 on FPGA

Khomkris Mathiang
Faculty of Engineering,

King Mongkut’s Institute of Technology Ladkrabang
Bangkok, Thailand

Email: ratiodetector@hotmail.com

Orachat Chitsobhuk
Faculty of Engineering,

King Mongkut’s Institute of Technology Ladkrabang
Bangkok, Thailand

Email: orachatc@yahoo.com

Abstract—In this paper, an improved context modeling archi-
tecture of JPEG2000 implemented on FPGA is proposed. The
proposed architecture is based on a pass-pipelined structure
with dual memories and data multiplexer. The proposed context
modeling architecture allows multiple symbol context pairs to
be generated simultaneously while the pass-pipelined structure
helps to reduce the processing time and the critical path delay.
Moreover, the dual memories and data multiplexer are employed
in order to accelerate the memory access. The proposed pass-
pipelined architecture can process with the speed greater than
100 MHz and can generate up to 22 context-data pairs in one
clock cycle.

I. INTRODUCTION

The developed JPEG2000 [9] standard based on Discrete
Wavelet Transform (DWT) can perform for both lossless and
lossy compression. The JPEG2000 standard will be effective in
a variety of applications such as internet, digital photography,
digital library, printing, scanning, medical image, and mobile
multimedia communication.

To improve the performance of DWT and bit-plane coding
algorithms for real-time applications, there is a requirement
for the development of the JPEG2000 system on the custom
spatial VLSI for high-performance computation.

An Embedded Block Coding with Optimized Trunca-
tion (EBCOT) is the most time consuming function in the
JPEG2000 process. It requires nearly 70% of the total coding
time. Therefore, several researchers have proposed the VLSI
architectures to help reducing this computational time. One of
the proposed architecture employs a pass-parallel data path [2]
- [5], [8]. In this designed architecture, the context modeling
scheme merges the three coding passes of bit-plane coding
into a single pass to improve the system performance. Another
architecture was proposed using a pass-predicting and clean-
up pass skipping structure [7].

However, in this paper, a design of pass-pipelined architec-
ture for context modeling implemented on FPGA is proposed.
The architecture is separated into 4 pipelined stage. As a result,
the processing time and the critical path delay can be reduced
while the multiple symbol context pairs are allowed to be
generated simultaneously.

This paper is organized as follows. In section II, the
reference and proposed context modeling system is described.

Fig. 1. Context modeling system block diagram.

The experimental results are illustrated in section III followed
by a conclusion in section IV.

II. THE CONTEXT MODELING SYSTEM

A. An overview of a context modeling system

In this section, an overview of context modeling system in
bit-plane coding(BPC) process is described.

In BPC module, the quantized wavelet coefficients are en-
coded bit-plane by bit-plane, starting with the most significant
bit-plane which is the sign data. The ith bit-plane is separated
into stripes. Each stripe consists of 4 rows, which is pro-
cessed in 3 coding pass, Significant Propagation Pass (SPP),
Magnitude Refinement Pass (MRP), and Cleanup Pass (CUP)
respectively. There are four possible coding operations used
for generating the value of context-data pair. Two operations
of zero and sign coding are employed in the SPP while
the magnitude refinement coding is operated in the MRP.
Additionally, three operations of zero, sign, and run-length
coding are implemented in the CUP.

B. A review on a context modeling system

There are several context modeling system are proposed in
the literature [1]-[8]. This section provides a review of the
context modeling system proposed in [1]. Fig.2 shows the

Fig. 2. The exciting context modeling system from [1].

hardware architecture of the context modeling from [1].
The context modeling architecture can be separated into

three states. State 0 is the control unit providing the interface
to the main control unit of the encoding system and controlling
the memory read/write signal generation for data, sign, state
bits, and coding pass information. State 1 is used to handle
data and generate simple information for compression. The
boundary handler in this state is used to monitor data at the
boundary of the image. Finally, state 2 encodes information
through three coding pass (SPP, MRP, and CUP) using sign,
ZC, MR, and run-length coding operations in order to generate
the context-data pairs. It also generates the context-active
signal, depending on the current pass, run-mode signal, run-
interrupt signal, pass flags, and data bits to identify the active
context-data pairs. In addition, a multiplexer is required to
select between the context-data pair generated from the ZC
operation and that of MR operation depending on the current
coding pass. The system can process a complete stripe column
in a single clock cycle for each coding pass. Besides, up to
10 coding-data pairs can be produced in a single clock cycle.
The extreme case of 10 context-data pairs happens only during
the CUP when the run-mode condition is satisfied while a
run interrupt occurs immediately at the first sample location
in the stripe column. This system repeatedly computes for
the context-data pairs three times for each bit-plane since the
coding pass can be operated only one pass at a time.

C. The proposed pass-pipelined context modeling system

Fig.3 shows a block diagram of the proposed pass-pipelined
context modeling system. The proposed system consists of five
modules as followed.

1) Input Interface Module: : This module is used to ex-
change information between external data and the proposed
context modeling system. First, input data is inserted into
FIFO. Then, input data from FIFO are sent to the sign and
magnitude generator block in order to separate the sign from
the magnitude of the data. The last process of this module is to
pass the magnitude and sign data to Dual Memories Module.

Fig. 3. The proposed pass-pipelined architecture block diagram.

2) Dual Memories Module and data multiplexer: : In this
module, dual memories of A and B are used to store both
magnitude and sign memory. While memory A is used by the
context generation module, the data for the next code block
will be loaded into memory B. Each set of memory will be
enabled by the main controller through the data multiplexer.
This helps the context generation module to process input data
continuously without an interruption of input interface delay.

3) Context Generator Control Unit: : This module is used
to generate the control signals such as addressing the memory,
selecting data, and control valid data for the context generation
module.

4) Context Generation Module: : This module is used
to generate pass flag, significant state, magnitude refinement
state, and coding state. The pass flag equation is illustrated in
equation (1) - (6):

Pflag[1]tn

SPP =
�KSigma(1)&¬SigmaSPP (1); (1)

Pflag[2]tn

SPP =

(�KSigma(2)|(Pflag[1]tn

SPP&v[1, 1]))
&¬SigmaSPP (2); (2)

Pflag[3]tn

SPP =

(�KSigma(3)|(Pflag[2]tn

SPP&v[2, 1]))
&¬SigmaSPP (3); (3)

Pflag[4]tn

SPP =

(�KSigma(4)|(Pflag[3]tn

SPP&v[3, 1]))
&¬SigmaSPP (4); (4)

Pflag[i]tn

MRP =
SigmaMRP (i)&¬η[i, 3]tn

MRP ; i ∈ 1, 2, 3, 4 (5)

Pflag[i]tn

CUP =
¬η[i, 5]tn

CUP ; i ∈ 1, 2, 3, 4 (6)

where �KSigma(i) is a neighbor significant state of row
i. The η[i, j]tn

x is a coding state for row i and column j at
current time. Witch x, it is a set of {MRP, CUP}.

The possible set of significant bit show as below:

PSσB[1]tn
x =

⎧⎪⎪⎨
⎪⎪⎩

σ[0, j − 1]tn
x , σ[0, j]tn

x ,
σ[0, j + 1]tn

x , σ[1, j − 1]tn
x ,

σ[1, j + 1]tn
x , σ[2, j − 1]tn

x ,
σ[2, j]tn

x , σ[2, j + 1]tn
x

⎫⎪⎪⎬
⎪⎪⎭

(7)

PSσB[2]tn
x =

⎧⎪⎪⎨
⎪⎪⎩

σ[1, j − 1]tn
x , σ̂[1, j]tn

x ,
σ[1, j + 1]tn

x , σ[2, j − 1]tn
x ,

σ[2, j + 1]tn
x , σ[3, j − 1]tn

x ,
σ[3, j]tn

x , σ[3, j + 1]tn
x

⎫⎪⎪⎬
⎪⎪⎭

(8)

PSσB[3]tn
x =

⎧⎪⎪⎨
⎪⎪⎩

σ[2, j − 1]tn
x , σ̂[2, j]tn

x ,
σ[2, j + 1]tn

x , σ[3, j − 1]tn
x ,

σ[3, j + 1]tn
x , σ[4, j − 1]tn

x ,
σ[4, j]tn

x , σ[4, j + 1]tn
x

⎫⎪⎪⎬
⎪⎪⎭

(9)

PSσB[4]tn
x =

⎧⎪⎪⎨
⎪⎪⎩

σ[3, j − 1]tn
x , σ̂[3, j]tn

x ,
σ[3, j + 1]tn

x , σ[4, j − 1]tn
x ,

σ[4, j + 1]tn
x , σ[4, j − 1]tn

x ,
σ[5, j]tn

x , σ[4, j + 1]tn
x

⎫⎪⎪⎬
⎪⎪⎭

(10)

The possible set of significant bit is a set of significant state
that is neighbor position for all position in current processed
column. This data may change the state immediately in current
process time.

The σ̂[i, j]tn
x can be generated from equation (11), where i is

the ith row and j is the jth column of process window. The tn

is a current time when x is a current pass to process. Equation
(11) is used to generate immediately updated significant state
for the significant propagation pass.

σ̂[i, j]tn

SPP =
((

Pflag[i]tn

SPP &v[i, j]
) |σ[i, j]tn

SPP

)
;

i ∈ {1, 2, 3, 4}, j ∈ {1} (11)

Equation (12) is used to generate immediately updated
significant state for the cleanup pass.

σ̂[i, j]tn

CUP =
((

Pflag[i]tn

CUP &v[i, j]
) |σ[i, j]tn

CUP

)
;

i ∈ {1, 2, 3, 4}, j ∈ {5} (12)

The neighbor magnitude refinement state can be generated
using equation (14) - (16). This is called possible set of
magnitude refinement state bits.

PSσ′B[1]tn

MRP =

⎧⎪⎪⎨
⎪⎪⎩

σ′[0, 2]tn

MRP , σ′[0, 3]tn

MRP ,
σ′[0, 4]tn

MRP , σ′[1, 2]tn

MRP ,
σ′[1, 4]tn

MRP , σ′[2, 2]tn

MRP ,
σ′[2, 3]tn

MRP , σ′[2, 4]tn

MRP

⎫⎪⎪⎬
⎪⎪⎭

(13)

PSσ′B[2]tn

MRP =

⎧⎪⎪⎨
⎪⎪⎩

σ′[1, 2]tn

MRP , σ̂′[1, 3]tn

MRP ,
σ′[1, 4]tn

MRP , σ′[2, 2]tn

MRP ,
σ′[2, 4]tn

MRP , σ′[3, 2]tn

MRP ,
σ′[3, 3]tn

MRP , σ′[3, 4]tn

MRP

⎫⎪⎪⎬
⎪⎪⎭

(14)

PSσ′B[3]tn

MRP =

⎧⎪⎪⎨
⎪⎪⎩

σ′[2, 2]tn

MRP , σ̂′[2, 3]tn

MRP ,
σ′[2, 4]tn

MRP , σ′[3, 2]tn

MRP ,
σ′[3, 4]tn

MRP , σ′[4, 2]tn

MRP ,
σ′[4, 3]tn

MRP , σ′[4, 4]tn

MRP

⎫⎪⎪⎬
⎪⎪⎭

(15)

PSσ′B[4]tn

MRP =

⎧⎪⎪⎨
⎪⎪⎩

σ′[3, 2]tn

MRP , σ̂′[3, 3]tn

MRP ,
σ′[3, 4]tn

MRP , σ′[4, 2]tn

MRP ,
σ′[4, 4]tn

MRP , σ′[5, 2]tn

MRP ,
σ′[5, 3]tn

MRP , σ′[5, 4]tn

MRP

⎫⎪⎪⎬
⎪⎪⎭

(16)

Because the magnitude refinement state can be immediately
change its value in the current process column, its value must
be immediately updated using equation (17).

σ̂′[i, j]tn

MRP =
(
Pflag[i]tn

MRP |σ′[i, j]tn

MRP

)
;

i ∈ {1, 2, 3}, j ∈ {3} (17)

where σ′[i, j]tn

MRP is a previous magnitude refinement state
before immediately updated magnitude refinement state at
current time.

5) Primitive Operator Generation Module: : The primitive
operators in context modeling consist of 4 primitive operators:
Zero, Sign, Magnitude Refinement, and Run-length Coding.
The SPP employs the zero and sign coding operators. The
MRP consists of only the magnitude refinement coding. In
addition, the CUP utilizes all three operators: zero, sign, and
run-length coding.

In the proposed system, all the three passes (SPP, MRP,
and CUP) are fully processed in parallel. This can increase
the performance of the proposed system upto 22 context-data
pairs generated in a single clock cycle

III. EXPERIMENTAL RESULTS

In this section, the proposed pass-pipelined context mod-
eling architecture is implemented on FPGA. The designed
architecture is compiled and synthesized using Xilinx ISE
Webpack tool and ported onto Spartan-3 FPGA platform.
Several standard images are selected from the database as
test images such as camera man, Lena, Mandrill, and pirate.
The performance comparison of the context-modeling sys-
tem between [1] and the proposed system are presented in
TABLE.I. and TABLE.II. TABLE.I presented a comparison
of hardware cost and maximum clock speed while TABLE.II

TABLE I
A HARDWARE COST FOR THE SYNTHESIZED PROPOSED ARCHITECTURE

Detail Proposed paper [1]

Number of Slice: 786 978

Number of Slice FF: 573 441

Number of LUTs: 1224 1178

Number of GClks: 1 1

Total equivalent gate count for design: 997762 701519

Maximum frequency (MHz): 100.371 100.160

TABLE II
THE PERFORMANCE OF EACH SYSTEM

Picture
Number of clock cycle(s)

proposed [1]

camera man(gray) 365046 1025001

lena(color) 934963 2600741

mandril(gray) 395204 1115459

pirate(gray) 445124 1265179

illustrates the total number of clock cycles required to encode
each test image. Even though the proposed system utilizes
greater amount of hardware cost and slightly higher maximum
clock speed, the number of clock cycles and the encoding
time are much superior to those of [1]. The performance of
the proposed system is about 2.781 times higher thus the
hardware cost increases approximately 1.422 times greater.
With the proposed context-modeling architecture, the system
can generate up to 22 context-data pairs in a single clock cycle
with maximum frequency of 100.371 MHz.

IV. CONCLUSION

This paper presents a design of the pass-pipelined archi-
tecture for JPEG2000 context modeling system. The design
consists of the 4 pipelined stages, dual memories, and a data
multiplexer. The pass-pipelined architecture helps reducing the
processing time and critical path delay. The dual memory
and data multiplexer modules are used to accelerate the
memory access. The context generation module is designed
in order to process all the tree passes (SPP, MRP, and CUP)
simultaneously with the support of concurrent process method.
This allows the proposed system to process with the speed
greater than 100 MHz and generate upto 22 context-data pairs
in one clock cycle. Consequently, the proposed system can
process 30 images of size 640 x 480 in only one second.

REFERENCES

[1] A.K. Gupta, D. Taubman, S. Nooshabadi, High speed VLSI architecture
for bit plane encoder of JPEG2000, The 2004 47th Midwest Symposium
on Circuits and Systems, vol. 2, pp. II-233 - II-236, July 2004.

[2] Jen-Shiun Chiang, Yu-Sen Lin, Chang-Yo Hsieh, Efficient pass-parallel
architecture for EBCOT in JPEG2000, IEEE International Symposium on
Circuits and Systems, vol. 1, pp. I-773 - I-776, May 2002.

[3] Jen-Shiun Chiang, Chang-Yo Hsieh, Jin-Chan Liu, Cheng-Chih Chien,
Concurrent bit-plane coding architecture for EBCOT in JPEG2000, 2006
IEEE International Symposium on Circuits and Systems, May 2006.

[4] Jen-Shiun Chiang, Chun-Hau Chang, Yu-Sen Lin, Chang-You Hsieh,
Chih-Hsieh Hsia, High-speed EBCOT with dual context-modeling cod-
ing architecture for JPEG2000, Proceedings of the 2004 International
Symposium on Circuits and Systems, Vol. 3, pp. III-865 - III-868, May
2004.

[5] Jen-Shiun Chiang, Chun-Hau Chang, Yu-Sen Lin, Chang-Yuo Hsieh,
High throughput rate EBCOT architecture for JPEG2000, Proceedings of
the 46th IEEE International Midwest Symposium on Circuits and Systems,
Vol. 2, pp. 610 - 613, Dec. 2003.

[6] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, Liang-Gee Chen, Anal-
ysis and architecture design of block-coding engine for EBCOT in JPEG
2000, IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 13, pp. 219 - 230, March 2003.

[7] Tsung-Han Tsai, Lian-Tsung Tsai, JPEG2000 encoder architecture
design with fast EBCOT algorithm, 2005 IEEE VLSI-TSA International
Symposium on VLSI Design, pp. 279 - 282, April 2005.

[8] Yijun Li, R.E. Aly, M.A. Bayoumi, S.A. Mashali, Parallel high-
speed architecture for EBCOT in JPEG2000, 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. II-
481 - II-484, Aprl 2003.

[9] JPEG 2000 Part I Final Commitee Draft Version 1.0, ISO/IEC JTC1/SC29
WG1 N1646R, March 2000.

