
Towards Automatic Load Balancing for Programming Parallel Fuzzy

Expert Systems in Heterogeneous Clusters

Chao-Chin Wu, Lien-Fu Lai, Yu-Shuo Chang

Department of Computer Science and Information Engineering

National Changhua University of Education, Taiwan

ccwu@mail.ncue.edu.tw, lflai@mail.ncue.edu.tw, asouchang@gmail.com

Abstract-FuzzyCLIPS is a rule-based language

for developing the fuzzy expert systems. Due to the

characteristics of rule-based languages, the

execution of the system would be more

time-consuming than most conventional

algorithmic languages. To address this problem,

we propose to execute a FuzzyCLIPS application

in parallel on the emerging heterogeneous cluster

system. Furthermore, to maximize the speedup of
the parallel execution and to minimize the burden

of programmers, we have implemented built-in

self-scheduling schemes in the interpreter for

better load balancing. The developer only needs to

use our proposed directives to specify where the

parallelisms are, no explicit and complicated send

and receive routines have to be invoked in the

parallel program. Experimental results show that

the built-in load balancing schemes can improve

the system performance significantly.

Keywords: Expert System, Cluster System,

FuzzyCLIPS, Load Balancing, Self Scheduling.

1. Introduction
Conventional computer programs generally

solve problems having algorithmic solutions.

Algorithmic languages include C, Java, and VB.

On the contrary, for non-algorithmic languages,

the programmer does not give exact details on how

the program is to be solved. Instead, the

programmer only has to specify the goal. The

underlying mechanism of the implementation itself

tries to satisfy the goal. This kind of languages
includes LISP, Prolog, and FuzzyCLIPS. Because

the key feature of expert systems is to solve

problems for which there are no known algorithms,

the latter kind of language is more suitable for

building expert systems. Among these languages,

FuzzyCLIPS has been widely adopted because it is

a multiparadigm programming language that

provides support for rule-based programming,

object-oriented programming, and procedural

programming [1].

FuzzyCLIPS consists of three components:

facts, rules, and an inference engine, where the
rules form the knowledge base. To solve a problem,

FuzzyCLIPS must have data or information with

which to reason. Each chunk of information is

called a fact. By matching unknown facts with the

rules, the inference engine draws conclusions from

the knowledge base. If all the patterns of a rule

match facts, the rule is activated and put on the

agenda. The activated rule with the highest

priority in the agenda will be selected and

executed repeatedly until the agenda becomes

empty.
A lot of fuzzy expert systems have been

constructed for solving various complex problems

[2-5]. However, it is very time-consuming to run

the rule-based applications. To address this

problem, we propose to use the MPICH Library [6]

to parallelize the execution of a FuzzyCLIPS

application on cluster systems. Meanwhile, we

hope that the programmers can parallelize their

programs without the need of understanding the

complicated parallel programming skills. To

achieve this goal, we define several easy-use

directives for parallelization. The FuzzyCLIPS
programmers only need to use these directives to

specify which facts can be inferred with which

rules in parallel. Accordingly, the master process

will dispatch these facts to the slave processes.

Furthermore, the number of facts will be processed

by a slave process depends on its dynamic

computing power at runtime. The master process

employs the concept of self-scheduling schemes to

dispatch facts to slaves for better load balancing

[7]. Therefore, the proposed programming model

is easy to parallelize the FuzzyCLIPS application
and the application can be executed more

efficiently by the built-in load balancing

mechanism.

 To verify our proposed approach, the search

engine of a human resources website has been

parallelized and evaluated on a heterogeneous

cluster system. The search engine is written in

FuzzyCLIPS, and it performs the fuzzy logical

evaluations based on the user’s query to find the

satisfied records with different levels of fitness. In

a sequential version, if the number of records

exceeds 6000, the end-user has to wait for more

than two minutes to get the result. After applying

our proposed approach, even if the number of
records is equal to 10000, the response time is only

16 seconds. Therefore, our approach is very easy

to parallelize FuzzyCLIPS applications and the

speedup can be superlinear.

2. Related Work
FuzzyCLIPS is an extended version of CLIPS

(C Language Integrated Production System) [8]

that is a tool for helping the developer to design

the expert system [9]. FuzzyCLIPS extends CLIPS

by adding the concept of fuzzy logic, i.e. fuzziness

and uncertainty. The extension let the FuzzyCLIPS

inference engine be able to do the inference with

the facts and rules with fuzzy expressions.
Due to the rule-based characteristics of CLIPS,

it makes the execution very time-consuming.

Several research projects have proposed different

solutions to address this problem [10-13].

However, these solutions were all based on some

specific platforms, such as shared memory, Intel

Hypercubes, distributed system, and PVM

(Parallel Virtual Machine). All of them were based

on the MPMD programming model [14] and none

of them adopted the MPICH Library for parallel

executions on the cluster system.
In our previous researches, we have proposed

two methods to parallelize the CLIPS-based expert

systems. They adopted SPMD programming

model for easy maintenance [14]. In the ECS

(Embedded Subroutine Calls) method, we separate

the facts and the rules into two parts [15]. The

facts are embedded into the C-based inference

engine and the rules are left in the CLIPS file. The

MPICH Library is used in the inference engine to

exchange these facts between different computing

nodes. After receiving the facts, the slave process
will use the built-in subroutines to insert the facts

into the local knowledge base. Finally, the facts

are matched with the rules by the inference engine

to draw the conclusion.

In the EFD (External Function Definitions)

method, we use the interface of the External

Function Definition provided by the CLIPS

interpreter to extend the languages [16, 17]. In this

way parallel syntax can be defined based on the

original CLIPS programming style. As a result, the

proficient CLIPS programmers have no need to

learn the C language to develop parallel expert
systems. They only need to learn the basic parallel

programming knowledge and use the simple

CLIPS-style parallel routines such as send, receive,

and synchronization to develop parallel CLIPS

applications. The supported parallel syntaxes are

simplified for the CLISP language by

implementing various complicated message
passing mechanisms with the MPICH Library in

the interpreter.

3. The proposed approach
In this section, we propose a programming

model that allows programmers to write parallel

FuzzyCLIPS applications in an easy way. No
explicit send and receive routines are invoked in

the program. The extended FuzzyCLIPS

interpreter will execute the application in parallel

automatically. In addition, because of the

heterogeneity of the cluster system, each slave

process will be assigned different chunk of tasks

for better load balancing.

3.1. The main idea

If a FuzzyCLIPS expert wants to execute his

parallel program more efficiently on a

heterogeneous cluster system, he has to write

additional codes for load balancing. However, it is

preferred that the expert system developers do not

need to care about the coding of load balancing.

Hence, we propose a SPMD-based programming
model that hides message passing subroutine calls

from the programmers. In other words, there are

no Send or Recv function calls needed in the

parallel code of a fuzzyCLIPS expert system.

Instead, several simple directives are employed for

parallelization. The programmers only have to

figure out the following information. (1) Which

facts will be processed by slave processes in

parallel? These facts are called the parallel facts.

(2) What kinds of facts should be sent back after

each slave process finishes its work? These facts
are called the returned facts. (3) Which rules will

be applied to the parallel facts? These rules are

called the applied rules. (4) Which rules the master

process has to apply to the returned facts from

slave processes? These rules are called the reduce

rules.

Several directives are designed to specify the

first two kinds of the above information in a

SPMD-based FuzzyCLIPS application code. In

addition, the applied rules and the reduce rules are

specified by asserting particular facts to the
left-hand-side of the rules. At runtime, a master

process and multiple slave processes will be

created from the code as shown in Figure 1. First,

the master process would call the preprocessor to

analyze these directives, called FuzzyCLIPS

Parallelism Directives, to identify the parallel facts,

and the returned facts. The parallel facts are

identified and stored into the memory of the

master process. The type names of the facts which

should be returned are stored by slave processes.
Next, the master process will perform some self

scheduling algorithm to assign parallel facts to

slave processes. On the other hand, the slave

processes will match the assigned parallel facts

with the applied rules and send all the asserted

returned facts back to the master process. Finally,

the master process will perform the reduced

operations on the returned facts after all the

parallel facts have been processed.

In the following two sections, we will introduce

the FuzzyCLIPS Parallelism Directives and the

way of identifying the applied rules and the reduce
rules.

Figure 1. A SPMD-based FuzzyCLIPS code

with directives

3.2. FuzzyCLIPS Parallelism Directives
The main function of the directives is to

identify the parallel facts and the returned facts.

Each directive begins with “;#”. We define three

directives: “;#TASK_BEGIN”, “;#TASK_END”,
and “;#RETURN”. The first two directives are a

pair of directives used together to enclose all the

parallel facts between them. The directive

“;#TASK_BEGIN” is placed at the beginning and

the directive “;#TASK_END” is placed at the end.

The third directive “;#RETURN” is for specifying

the returned facts. However, because the contents

of the returned facts cannot be known until the

runtime, the type name of the returned facts is

adopted as the argument of the directive

“;#RETURN”. Accordingly, a slave process will

send all the facts of the specified type names in the

directive “;#RETURN” back to the master process.

In this way, the programming can be simplified
subtaintially.

Backus-Naur Form and Action Symbols

<CMD>→DIRECTIVE <TYPE>

<TYPE>→KEY(TASK_BEGIN)<TASKS>

 <END>

<TYPE>→RETURN WORD #addRtn

{WORD #addRtn}

<END>→DIRECTIVE KEY(TASK_END)

<TASKS>→FACT #addFact
{FACT #addFact}

Functions of Action Symbols

#addRtn

To store the type name of the returned
facts.

#addFact To store a fact belonging to the

parallel facts.

Token Types and Definitions

DIRECTIVE Begin with a semicolon and a

number sign, i.e., “;#”.

FACT Begin with a semicolon and a

CLIPS fact followed.

E.g. ;(SAMPLE (SLOT 1))

COMMENT A line beginning with a

semicolon.

WORD The regular expression is (α|η)+,

where α means an alphabet and η

means a number.
KEY(…) It is a keyword. The keyword

must one of words listed in the

parenthesis.

Figure 2. The BNF, action symbols and token

types of our preprocessor

Figure 3. Preprocessor architecture

The Backus-Naur Form with the action symbols

of our preprocessor and the token type are shown
in Figure 2. Our preprocessor is an interpreter, as

shown in Figure 3, derived from LL(1) parser [5].

The entry point of the preprocessor is the parser

Scanner Parser

FuzzyCLIPS
Parallelism
Directives

Storing

Memory of

the Master

Memory of

the Slave

Returned

types
Parallel

facts

Master Process

Preprocess for identifying

the directives
While more tasks are left

 Assign tasks to slaves

by a load-balancing

scheme

 Receive results

Loop

Run the reduced rules
Slave Process

Preprocess for identifying

the directives

While not terminated
 Receive tasks

 Run inference

Return results

Loop

A FuzzyCLIPS
code with

Directives

routine. The parser routine calls the scanner

routine to get tokens, and then checks the syntax

correctness. Next, it passes the necessary

information to the storing routine that is

responsible for storing the information or data

specified by the directives.

3.3. Identification of the rules
For a SPMD-based FuzzyCLIPS program, the

rules that the master process and the slave

processes should perform are all written in the

same file. Because there are no if-then-else

statements in FuzzyCLIPS, the programmers

cannot divide the rules into two partitions by

control statements. Hence, we propose to use the
following fact template to specify if a rule will be

executed by the master process or by the slave

process.

(deftemplate MPI (slot TYPE))

The above template consists of only one slot, the

TYPE slot. Based on the template, the fact (MPI

(TYPE MASTER)) indicates the associated rule

will be executed by the master process and the fact

(MPI (TYPE SLAVE)) denotes the associated rule

will be executed by the slave process. Therefore,

the fact (MPI (TYPE SLAVE)) is inserted into the

left hand side of every applied rule and the fact
(MPI (TYPE MASTER)) is added into the left hand

side of the reduce rules.

3.4. A simple example

Figure 4 shows a complete example code by

using our proposed programming model. The main

function of the program is to find the unusual

weather of July in Changhua City during the last

ten years. The data facts, ranging from Line 2 to

Line 5, record the information of weather of July

for each year in Changhua. They are the parallel

facts that will be processed by the slave processes.

Therefore, they are enclosed between the paired

directives: “;#TASK_BEGIN” and “;#TASK_END“.

The “;#RETURN” directive followed by the type
name of unusual, listed on Line 7, indicates that

the slave process will return the facts of the type

name of unusual. The find-unusual-weather rule,

listed from Line 13 to Line 18, is the applied rule

with the fact (MPI (TYPE SLAVE)) on its left hand

side. The action (assert (unusual (year ?y) (month

July))) on the right hand side of the rule will assert

all the unusual facts that will be sent back to the

master process. Finally, the printout-result rule,

listed from Line 19 to Line 23, is the reduce rule

with the fact (MPI (TYPE MASTER)) on its left

hand side. After the master process receives the
returned unusual fact, it will perform the rule.

As we can see, there are no explicit message

passing between the master and the slaves in the

code. However, at the runtime, the master will

dispatch the data facts to the slaves by the

interpreter based on the specified load-balancing

scheduling scheme. The number of facts to be
assigned to a slave depends on the computing

power of the slave at the runtime. Therefore, the

programming model is very easy for the

FuzzyCLIPS experts to develop parallel

FuzzyCLIPS applications.

1. ;#TASK_BEGIN
2. ;(data (year 1998) (month July) (location

Changhua) (average-temperature (30.7 0)
(30.7 1) (30.7 0)) (total-rainfall (261.3 0)
(261.3 1) (261.3 0)))

3. ;(data (year 1999) (month July) (location

 Changhua) (average-temperature (29.2 0)
 (29.2 1) (29.2 0)) (total-rainfall (174.1 0)
 (174.1 1) (174.1 0)))

4. …………………
5. ;(data (year 2007) (month July) (location

Changhua) (average-temperature (31.2 0)
(31.2 1) (31.2 0)) (total-rainfall (252.1 0)
(252.1 1) (252.1 0)))

6. ;#TASK_END

7. ;#RETURN unusual
8. (deftemplate MPI (slot TYPE))
9. (deftemplate temperature

0 100 Celsius
((cold (z 10 25))(warm (pi 4 26))(hot (s 27
32))))

10. (deftemplate rainfall
0 1000 mm

((light (z 100 160))
(medium (pi 30 180))
(heavy (s 200 260))))

11. (deftemplate data
(slot year)(slot month)(slot location)
(slot average-temperature (type
FUZZY-VALUE temperature))
(slot total-rainfall (type FUZZY-VALUE

rainfall)))
12. (deftemplate unusual (slot year)(slot month))
13. (defrule find-unusual-weather
14. (MPI (TYPE SLAVE))
15. (data (year ?y) (month July) (location

Changhua) (average-temperature very hot)
16. (total-rainfall very heavy))
17. =>

18. (assert (unusual (year ?y) (month July)))
19. (defrule printout-result
20. (MPI (TYPE MASTER))
21. ?f <- (unusual (year ?y) (month July))
22. =>
23. (printout t "The weather is unuasal at July, " ?y

crlf))

Figure 4. An example of parallel expert system

with our proposed model

4. Experimental Results
A human resources Web site has been

implemented to evaluate the performance. Because

users’ query requirements are usually imprecise

and uncertain, instead of matching the input

phrases with the records in the database, the search

engine uses fuzzy logic to find the records with
different levels of fitness. If the search engine is

powered by a single processor, the response time

will be too long to tolerate. When the number of

records is 8000, the user has to wait for about four

minutes before the results are displayed as shown

in Figure 5. As the number of records is enlarged,

the response time is increased substantially. To

address the problem, we employ the proposed

programming model to parallelize the search

engine and construct a cluster system with 16

processor cores as shown in Table 1.

Figure 5. The response time (seconds) of the

system

We compare the performance improvements of

different load-balancing schemes by using 8

processor cores as shown in Figure 6. The
performance improvement is derived from

dividing the parallel execution time by the

sequential execution time. Therefore, the label of

Single Core represents the performance

improvement by using the Intel Core 2 Duo

processor only. The label of Static Scheme

represents the improvement by dispatching

equal-sized chunk of parallel facts to every slave

process. The label of CSS(x) denotes the

improvement by dispatching facts based on Chunk

Self-Scheduling (CSS) scheme with the chunk size
equal to x. No matter which kind of scheduling

schemes is adopted for parallelization, our

approach provides superior performance

improvements. If the number of records is

enlarged, the improvements are also increased.

Moreover, the dynamic load balancing scheme is

better than the static scheme. On the other hand,

the chunk size influences the performance.

Increasing the chuck size does not necessarily

improve the performance. The appropriate chunk

size depends on the number of records.

Table 1. The configuration of our cluster system

Intel Core 2 Duo (2 Duo-core PCs)

CPU Intel Core 2 Duo E2160, 1809Mhz

Memory 512MB DDR2-667 ×1

Swap 1024MB

HD SATA 80GB

OS CentOS 4.4, kernel 2.6.9-42.ELsmp

AMD Athlon @1250 (1 Single-core PC)

CPU AMD Athlon XP 2800+, 1243Mhz

Memory 256MB DDR-400 ×1

Swap 2048MB

HD ATA133 80GB

OS Slackware 12.0, kernel 2.6.21.5-smp

AMD Athlon @2000 (3 Single-core PCs)

CPU AMD Athlon XP 2800+, 1243Mhz

Memory 256MB DDR-400 ×1

Swap 2048MB

HD ATA133 80GB

OS Slackware 12.0, kernel 2.6.21.5-smp

Intel Core 2 Quad (2 Quad-core PCs)

CPU Intel Core 2 Quad, 2394Mhz

Memory 2048MB DDR2-533 ×1

Swap 1024MB

HD SATA 160GB
OS Slackware 12.1, kernel 2.6.24.5-smp

Figure 6. The performance comparison of

different load balancing schemes by using 8

processor cores

Figure 7. The performance improvements by

using different number of processor cores

Next, we compare the performance improvements

by using different number of processor cores as

shown in Figure 7. The CSS(100) scheme is

adopted for all parallel executions. Increasing the

number of processor cores used can lead to

performance improvement only when the number
of records is larger enough. In this experiment, the

number of records should be larger than 6000 for

scalable performance improvements. Furthermore,

our approach can provide superlinear speedups if

the number of records is larger than 6000. The best

performance speedup is 26.17 even though the

search engine is parallelized by only 16 processor

cores.

5. Conclusions and future work
In this paper, we have proposed a dynamic load

balancing programming model for the parallel

FuzzyCLIPS application. The programmers do not

need to write any code for load balancing. Instead,
with our proposed directives, they only need to

indicate (1) which facts can be executed in parallel,

(2) which asserted facts should be sent back to the

master, (3) what the slave process should do, and

(4) what are the reduce operations after the master

receives the returned facts. Accordingly, the

interpreter will assign the appropriate chunk of

facts to each slave depending on the individual

computing power, resulting in better load

balancing. Therefore, it is very easy for

programmers to write parallel FuzzyCLIPS
applications with load balancing capacities.

Experimental results show our method can

improve the system performance with superlinear

speedups.

In the future, we will extend the FuzzyCLIPS

Parallelism Directives to support more complex

applications. In addition, more advanced load

balancing schemes will be developed based on the

dynamic characteristics of grid systems.

Acknowledgement
This research is supported by the National

Science Council of Taiwan under contract number:
NSC97-2815-C-018-011-E.

References
[1] FuzzyCLIPS, 2007, FuzzyCLIPS, Available,

http://www.iit.nrc.ca/IR_public/fuzzy/fuzzyClips/fu
zzyCLIPSIndex2.html

[2] A. Iqbal, N. He, and L. Li, “A fuzzy expert system
for optimization of high-speed milling process”, in
Proceedings of the Fifth International Workshop on
Robot Motion and Control, pp. 297-304, 2005.

[3] N. Allahverdi, S. Torun, and I. Saritas, “Design of a
fuzzy expert system for determination of coronary

heart disease risk,” in Proceedings of the 2007
international conference on Computer systems and
technologies, Article No. 36, 2007, Bulgaria.

[4] I. Saritas, N. Etik, N. Allahverdi, and I.U. Sert,
“Fuzzy expert system design for operating room

air-condition control systems,” in Proceedings of
the 2007 international conference on Computer
systems and technologies, Article No. 23, 2007,
Bulgaria.

[5] C.A. Reyes-Garcia, and E. Corona, “Implementing
Fuzzy Expert System for intelligent buildings,” in
Proceedings of the 2003 ACM symposium on
Applied computing, pp. 9-13, Mar. 9-12, 2003,

Melbourne, Florida, USA.
[6] MPICH, 2008, MPICH Home Page, Available:

http://www-unix.mcs.anl.gov/mpi/mpich1/
[7] C.-T. Yang, K.-W. Cheng, K.-C. Li, “An Enhanced

Parallel Loop Self-Scheduling Scheme for Cluster
Environments”, Journal of Supercomputing, Vol.
34, No. 3, pp. 315–335, 2005.

[8] CLIPS, 2007, CLIPS: A Tool for Building Expert

Systems, Available,
http://clipsrules.sourceforge.net/

[9] J.C. Giarratano, and G.D. Riley. Expert Systems:
Principles and Programming, Thomson Course
technology, Taiwan, 2005.

[10] G.D. Riley, “Implementing clips on a parallel
computer,” in Proceedings of SOAR’87,
NASA/Johnson Space Center, 1987.

[11] L. Hall, B.H. Bennett, and I. Tello, “Pclips: Parallel
clips,” in Proceedings of Clips’94, pp. 307-314,
1994.

[12] D. Gagne, and A. Garant, “Dai-clips: Distributed,
asynchronous, interacting clips,” in Proceedings of
Clips’94, pp. 297-306, 1994.

[13] L. Myers, and K. Pohl, “Using pvm to host clips in
distributed environments,” in Proceedings of
Clips’94, pp. 177-186, 1994.

[14] B. Wilkinson, and M. Allen. Parallel Programming:
Techniques and Applications Using Networked
Workstations and Parallel Computers, Second
Edition, Prentice Hall Publisher, 2005.

[15] C.C. Wu, L.F. Lai, K.C. Lai, W.C. Chang, and S.S.
Jhan, “Parallelizing Expert Systems with CLIPS
Language for Grid Systems,” in Proceedings of the
4th Workshop on Grid Technologies and

Applications (WoGTA’07), pp. 125-131, Dec. 13-14,
2007, Providence University, Taiwan.

[16] C.C. Wu, L.F. Lai, and Y.S. Chang, “Developing
SPMD-based CLIPS Applications by Using
External Function Definitions for Grid Systems,” in
Proceedings of 2008 International Conference on
Advanced Information Technologies (AIT 2008), pp.
107, Apr. 25-26, 2008, Chao Yang University of

Technology, Taiwan.
[17] C.C. Wu, L.F. Lai, and Y.S. Chang, “Using MPI to

Execute a FuzzyCLIPS Application in Parallel in
Heterogeneous Computing Systems,” in
Proceedings of IEEE 8th International Conference
on Computer and Information Technology (IEEE
CIT 2008), pp. 279-284, Jul. 8-11, 2008, Sydney,
Australia.

