
Maintaining and Mining Sequential Patterns in Incremental Sequence
database

WEI-HUA HAO
Department of

Electrical
Engineering

Mucha Vocational
High School

edhao@mcvs.tp.edu
.tw

NANCY P. LIN
Department of

Computer Science and
Information
Engineering

Tamkang University
nancylin@mail.tku.edu.

tw

HUNG-JEN CHEN
Department of

Industrial
Engineering and

Management
St. John’s
University

chenhj@mail.sju.ed
u.tw

CHUNG-I CHANG
Department of

Information
Management,

St. Mary’s Medicine
Nursing and

Management College
taftdc@mail.tku.edu.t

w

HAO-EN CHUEH

Department of
Information

Management,
Yuanpei University
hechueh@mail.ypu.

edu.tw

Abstract-Real world databases are dynamic, new
data are stored into database over time. The most
naïve solution of mining sequential patterns over
an incremental database is to rerun the database
from scratch, which didn’t take the advantage of
previous work. The other way is that merge the
new sequential patterns set with previous
discovered sequential patterns. However,
Algorithms that pruned off infrequent sequences
are essentially not suitable for merging due to the
information loss. In this paper, we proposed a
novel algorithm IMSP that transform original
sequence database into a frequency data model. In
the model constructing process, no candidates
were generated and with only one database scan.
The advantages of IMSP are proven by example.

Keywords: Data mining, Sequential patterns,
Candidates, Closed sequential patterns, Lattice
structure.

1. Introduction

Most real world records are time related, such
as super market transaction records, scientific
records, environment monitoring records and
e-Learning data.

The major problem of previous works which
base on apriori-like approaches is generating too
many candidate sequences and multiple scan of
database during the mining process, which urges
larger working space, consequence is more
unlikely to fit all data into main memory.

1.1 related works

In order to minimize both the working space and
searching space it is necessary to introduce closed
sequential patterns to our algorithm. Closed

itemset and maximal itemset, sequence, concept
had been introduced in [2][3][4][5][6]. In GSP,
the candidates were generate-and-test repeatedly
until no more new frequent sequences are
discovered.

To alleviate the drawback of generating huge
amount of candidates in the mining process, many
researchers had proposed their counter approach;
Garofalakis had proposed SPIRIT[7], a
Apriori-like algorithm, that generate less
candidates via constrains. Han had proposed
Prefixspan[8] and Freespan[9] algorithms based on
projected databases to improve efficiency. These
two algorithms applied a divide-and-conquer
approach that generate many smaller projected
databases of the original sequence database, only
mining the frequent sequences that confined in
each projected databases by discovering
participated frequent patterns. None the less, these
are all apriori-like algorithms still inherit the
drawback of candidate gen-and-test.

Many researches of incremental mining of
sequential patterns were developed in recent years.
An incremental method SPADE[14] of mining
sequential patterns was proposed by Zaki. In this
paper, equivalent class was introduced to construct
sequence lattice in incremental manner. Newly
read sequence data from sequence database are
updated into the lattice. Other research has
presented diverse methods solving the incremental
sequence database problem in [23][24]. Many
proposed methods on incremental sequence mining
have to tackle the problems of dealing with the
newly append sequences to the original sequential
database to form into previous constructed
frequent sequential patterns, and to adjust the
sequential patterns with change of minimum
support, which is usually change after, or during,
the mining process. In the practice fields,
e-commerce and eLearning applications, facing an
incremental sequence database is inevitable. How

to save mining time with less memory is essential
to evaluate sequential patterns algorithm. In this
aspect, not to rebuild previous construct sequential
patterns is almost an essential part to solve this
problem.

1.2 Contributions

In our previous studies [4][5], that mining
sequential patterns without candidates, and scan
sequence database only once. To our best
knowledge, this is the optimal condition of scan
times. Note that, the FP-tree needs to scan
database twice.

The main contributions of this paper are:
constructing closed sequence data model without
generating candidates, require less memory space
and no need to rerun mining algorithm from
scratch.

The rest of this paper is organized as follows. In

section 2, we define the basic definitions and
properties of sequential patterns. In section 3, we
analyzed incremental sequence database. In
section 4, we describe the adjustable minimum
support. The algorithm of IMSP and its example
are given in section 5 and 6, respectively. Section
7 gives conclusion and future work.

2. Preliminary

Lemma- Decrement Monotonic:
According to the downward closure property, if

a sequence is frequent then all its subsequences are
also frequent. The size of frequent sequence |LK+1|
is no large than |LK|. In apriori-like algorithm, the
size of each length of sequences is decrement
monotonic. All apriori-like mining algorithms are
compliant to this lemma.

Let the size of searching space, |ss|, is the
summary of all frequent sequences.

|ܛܛ| ൌ ෍ |࢏ࡸ|
࢑

ୀ૚࢏

Here, k is the length of longest frequent
sequences in frequent sequences set.

Most previous work of apriori-like algorithm
didn’t discuss about working space, ws, that is the
minimum space requirement of memory to run the
mining algorithm. It is defined as the sum of
maximum candidate space and frequent sequences
space.

࢙࢝ ൌ |ା૚࢑࡯|ሺ ܠ܉ܕ ൅ ሻ|ܓܛܛ|

Usually the size of candidate set is much larger

than frequent sequences set, which makes the

candidate became the most crucial part when
evaluating efficiency.

The problem can be described as follows:
Assume I={i1, i2 , …, in} be a set of all items (or
events). An itemset is a non-empty set of finite
items. A sequence is an ordered list of itemsets. A
sequence s is denoted as s=〈i1,…,i|s|〉, where ii is
an itemset, that is , ii I for 1≤i≤k. si is also
defined as an element of sequence, and denoted as
(x1 x2…xl), where xjאI for 1≤j≤l. In fact, the
brackets are usually omitted if |ii|=1. An item can
appear at most once in an element of a sequence,
but can appear more than one time in different
elements of a sequence. The length of a sequence
is defined as the number of instances of items in a
sequence. A sequence with length l is called an
l-sequence. A sequence x =〈x1,x2,…,xn〉is called a
subsequence of y=〈y1,y2,…,ym〉 and y a super
sequence of x, denoted as x y, y contains x, if
there exist integers 1≤j1＜j2＜…＜jn≤m such that
xଵ ط y୨ଵ, xଵ ط y୨ଵ, … , x୬ ط y୨୫, . A sequence
database D is a set of tuples denoted as 〈SID, s〉,
where SID is a sequence identification number and
s is a sequence. Given a k-items sequence s, its
support is supp(s) which is defined as the number
of transactions in D that including s.

Cardinality of sequence s denotes the number of
distinct SID values in the id-list of sequence
database for a sequence s. A sequence X is closed
sequence if there exist no super-sequence that
contain X in the equivalent class [6].

Given a sequence database (SDB), a minimum
support (minsup), and an appended sequence
database (ASDB). Let SDBk+1 be an updated
sequence database that SDBk+1 =SDBk+ASDBk.
When original sequence database has changed, the
algorithm must make full use of the previously
discovered information to adapt with the change.
This frequent sequences set (FSS) is transform
from original sequence database without distortion,
FSSk=f(SDBk). When new sequence, ASDB, has
been appended to original sequence database the
data model also change dependently. FSSk+1 =
f(SDBk)+ f(ASDBk).

Definition 1 Closed Sequential Patterns (CSP)

are frequent sequence has no Supersequence in
same equivalent class (EC).

{ }''| ssthatsuchECsandECssCSP p∈¬∃∈=

Definition 2 Frequent Closed Sequential

Patterns are closed sequential patterns that satisfy
the threshold of minimum support.

3. Incremental Sequence Database

In incremental sequence database the absolute
support of some sequences will increase also.
Hence, the frequent sequence set (FSS) will be
altered. We can regard frequent sequence set as a
function, mining algorithm, of SDB and
predefined fixed minimum support (minsupp).

 FSSk=f(SDBk, minsuppk)

So, when sequence database SDB has been

changed from SDBk to SDBk+1 the frequent
sequence set changed accordingly. Let ASDBk be a
sequence database to be added to original sequence
database. The most up-to-date sequence database
SDBk+1 is derived from SDBk and ASDBk.

SDBk+1 = SDBk + ASDBk

To discover frequent sequence set from the most

up-to-date sequence database, the most intuition
way is to run the mining algorithm on it from
scratch.

FSSk+1=f(SDBk+1, minisuppk+1)

But this approach is very time consuming,

didn’t take the advantage of previous discovered
frequent sequence set, FSSk=f(SDBk, minisuppk).
Normally, the size of ASDB is much smaller than
SDB.

|SDB| > |ASDB|

It is very inefficient to rerun the mining
algorithm on original sequence database from
scratch.
3.1 Linear Algorithm

For a linear algorithm, the updated frequent
sequence set can be obtain from pervious
discovered frequent sequence set and apply mining
algorithm on appended sequence database
separately.

FSSk+1=f(SDBk+ASDB)

For a linear mining algorithm the frequent

sequence set can be obtained with merging of
f(SDBk) and f(ASDBk).

FSSk+1=merge(f(SDBk),f(ASDBk))

Hence, the advantage of previously work is

taken. The only overhead is the effort of merging

two frequent sequence sets. Merge is to deal with
the mutual part of two frequent sequence sets.

3.2 Nonlinear Algorithm

A nonlinear mining algorithm can’t process
original sequence database and incremented
sequence database separately via merging. The
most up-to-date frequent sequence set is not equals
to previous minded frequent sequence set merge
with updated frequent sequence set.

FSSk+1 merge(f(SDBk),f(ASDBk))

That is

FSSk+1 merge(FSSk+f(ASDBk))

The transfer function is the algorithm of finding
frequent sequences from sequence database SDB,
such as apriori-like algorithms, FP-Tree, FMMSP
and etc.

4. Adjustable Minimum Support

The minimum support measure plays a major
role in sequential patterns mining algorithm.
Lacking the knowledge of the sequences and their
frequency, knowledge worker defined minimum
support measures are often inappropriate.
Especially when applying an algorithm that must
predefine the minimum support in advance.

Most previous work has focus on single
minimum support threshold. Few had discussed
about multilevel minimum support threshold.

FSSk=f(minsuppk, SDBk)

FSSk+1=f(minsuppk+1, SDBk) , where minsuppk+1

≠minsuppk.
In this paper we propose a new algorithm, IMSP,

to alleviate this problem via mining frequent
sequences in a form of maximal sequential pattern,
rather than mining the full set of frequent
sequences. The reason why we mine maximal
sequential patterns is that they are compact
representations of frequent sequential patterns.

5. IMSP and Merge Algorithm

IMSP provides a categorized, in frequency, data
model represent original sequence database
without distortion. With a approach of incremental
strategy, sequences of D are read one by one,
transformed and load into the data model, Frequent
Sequences Set (FSS). Sequence S read from
database is compared to the existed sequences in
the FSS. Comparison is in descending order in

each array, but in ascending order from F1 to
higher frequent sequence array. The relationship

between S and SFSS are ,

, or S and SFSS
are partially mutual to each other. That is mutual

sequence and .
The new sequence S is processed according to the
type of relationship. The first case is simple; we
just append the new sequence S to the array of F1.
In case 2 and 3, the mutual part is upgraded to
higher frequent array. In case 4, S is upgraded to
higher frequent array. Each frequent array contains
maximal sequences only. For example, sequence
〈ABC〉 and 〈C〉 will not coexist in the same
array because 〈ABC〉 is the maximal sequence of
〈C〉.

//Input: sequence database, SDB
//Output: FSS
Initial 2-dimension array FSS={ F1, F2, …}
Function Upgrade(S){

move S from allocated array to higher frequent
array }
For each sequence in SDB{

Read sequence S from sequence database D
For n= 1 to Top{

Case S :{
append S to Fn ;
break;
}

Case S Fn.sequence :{
Upgrade(S);
mark S;
}

Case S Fn.sequence:{
Upgrade(Fn.sequence);
Mark Fn.sequence
}

Case S Fn.sequence=Smutual :{
Upgrade(Smutual);
S= Smutual;
}

}
}

Fig. 1 IMSP algorithm

Input: 2 frequent Sequence Sets FSS1 and FSS2
Output: Merged Frequent Sequent Set
If |FSS1|>|FSS2|

For each frequent array FSS.Fn{

Append sequences S from FSS2.Fn to
FSS1.Fn
IMSP(S)}

Return FSS1 as most up-to-date frequent Sequence
Set
If |FSS1|<|FSS2|

For each frequent array FSS.Fn{
Append sequences S from FSS1.Fn to
FSS2.Fn

 IMSP(S)}
Return FSS1 as most up-to-date frequent Sequence
Set

Fig.2 MergeFSS algorithm

6. Example and Performance Analysis

In figure 2 is a simple sequence database, SDB.
SID represents Student Identifier. The itemset
I={A,B,C,D,E}. The incremental sequence
database is represented by ASDB which contains
sequences of items.

Let SDB has kept 5 tuples of sequences depicted in
Fig 3.

SID Sequence
1 〈ACD〉
2 〈ABCE〉

3 〈BCE〉
(SDB)

SID Sequence
4 〈BE〉
5 〈ABCDE〉

(ASDB)
Fig.3 original sequence database SDB and new

appended sequence database ASDB

The first sequence 〈ACD〉 from database SDB
is reside at Frequent-1 set (F1) depict in Figure.4.
For all sequence from SDB are compared with
sequences in F1. Since there is no other sequence
in F1 the comparison process stops after allocate
〈ACD〉to F1.

F1 F2 F3 … Fn
〈ACD〉

Fig. 4 FSS(SDB) containing 〈ACD〉

Next sequence 〈ABCE〉 is compared with all
sequences in F1. The mutual sequence of 〈ACD〉
and 〈ABCE〉 is 〈AC〉 which will be upgraded
to higher frequent set F2. As depicted in Fig 5.

F1 F2 … Fn
〈ACD〉 〈AC〉
〈ABCE〉

Fig. 5 FSS with 〈ACD〉 and 〈ABCE〉 and

their mutual sequence 〈AC〉

Since sequence 〈BCE〉 is contained by 〈ABCE〉
of F1, so 〈BCE〉 is upgraded to F2. Sequence
〈BCE〉 is a new sequence to F2. In F2, The
mutual sequence of new comer 〈BCE〉 and
〈AC〉 is 〈C〉 that will be upgraded to F3. In F3,
the empty set has no sequences to compare to. As
depicted in Figure.6.

F1 F2 F3 …
〈ACD〉 〈AC〉 〈C〉
〈ABCE〉 〈BCE〉

Fig. 6 example of upgrading mutual sequence

Apply IMSP to appended sequence database
ASDB. The frequent sequence set, f(ASDB), is
depicted in Fig. 7.

F1 F2 … Fn
〈ABCDE〉 〈BE〉

Fig.7 frequent sequent set f(ASDB)

Next is applying Merge Algorithm to these two
frequent sequence sets. Sequences of f(ASDB) are
appended to f(SDB) respectively. Compare
sequences in descending order to merge each
sequence into most-up-date frequent sequence set.
The process is demonstrated in Fig.8.

F1 F2 F3 …
〈ACD〉 〈AC〉 〈C〉
〈ABCE〉 〈BCE〉
〈ABCDE〉 〈BE〉

Merge FSS(SDB) with FSS(ASDB)

F1 F2 F3 …
〈ACD〉 〈AC〉 〈C〉
〈ABCE〉 〈BCE〉 〈BE〉
〈ABCDE〉

upgrade <BE> to F3

F1 F2 F3 …
〈ABCE〉 〈AC〉 〈C〉
〈ABCDE〉 〈BCE〉 〈BE〉

 〈ACD〉

Upgrade <ACD> to F2

F1 F2 F3 …
〈ABCE〉 〈BCE〉 〈C〉
〈ABCDE〉 〈ACD〉 〈BE〉
 〈AC〉

Upgrade <AC> to F3

F1 F2 F3 F4 …
〈ABCE〉 〈BCE〉 〈BE〉 〈C〉
〈ABCD
E〉

〈ACD〉 〈AC〉

Upgrade <C> to F4

F1 F2 F3 F4 …
〈ABCDE〉 〈BCE〉 〈BE〉 〈C〉
 〈ACD〉 〈AC〉
 〈ABCE〉

upgrade <ABCE> to F2

F1 F2 F3 F4 …
〈ABCDE〉 〈ACD〉 〈BE〉 〈C〉

 〈ABCE〉 〈AC〉
 〈BCE〉

upgrade <BCE> to F3

F1 F2 F3 F4 …
〈ABCDE〉 〈ACD〉 〈AC〉 〈C〉
 〈ABCE〉 〈BCE〉 〈BE〉

upgrade <BE> to F4
Fig.9 Formation of updated frequent sequent set

The updated frequent sequence set is also

known as searching space which is represented by
closed sequences. The threshold of minimum
support is adjustable in our algorithm. Let
minsupp=3 then frequent sequences are easy be
classified from data model. Furthermore, the
threshold could be two values to set up a range of
frequent sequences. Such as setting upper bound
minsuppup=4, lower bound minsupplow=2.
Setting threshold range is to discover sequential
patterns that are not frequent enough to regard as
strong rules.

7. Conclusions and future works

 With the result of performance analysis with
examples, the accomplishment include: 1)full set
of frequent sequences set is discovered, 2) our
algorithm is linear which means it is maintainable
for incremental sequence database, 3)adjustable
minimum support, 4) compact searching space and
5) no candidates are generated.

In this paper, we proposed IMSP, a novel
algorithm for mining frequent maximal sequential
sequences. It has alleviate the drawbacks of the
candidate maintenance-and-test paradigm,
construct more compact searching space compare
to the previously developed maximal pattern
mining algorithms and an adjustable minimum
support.

The future challenges are to deal with dynamic
sequence database, not only adding new sequences
but also deleting obsolete or impropriate
sequences.

References
[1] R. Agrawal and R. Srikant. “Mining sequential

patterns”, In Proc. 1995 Int. Conf. Data
Engineering (ICDE’95), pages 3–14, Taipei,
Taiwan, Mar. 1995.

[2] C. Lucchese, S. Orlando and R. Perego, “Fast
and Memory Efficient Mining of Frequent
Closed Itemsets”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 18, No.
1, January 2006.

[3] P. Songram, V. Boonijin and S. Intakosum,
“Closed Multidimensional Sequential Pattern
Mining”, Proceeding of the Third Conference
on Information Technology: New Generations
(ITNG’06).

[4] Nancy P. Lin, Wei-Hua Hao and Hung-Jen
Chen, “Fast Accumulation Lattice Algorithm
for Mining Sequential Patterns”, Proceedings
of the 6th WSEAS International Conference on
Applied Computer Science (ACOS’07), pp.
230-234, Hangzhou, China, April 15-17, 2007.

[5] Nancy P. Lin, Wei-Hua Hao, Hung-Jen Chen,
Hao-En Chueh and Chung-I Chang, “Fast
Mining Sequential Patterns”, Proceedings of
the 7th WSEAS International Conference on
Simulation, Modeling and Optimization
Applied Computer Science (SMO ’07), pp.
405-408,Beijing ,China ,September 15-17,
2007.

[6] R. Srikant and R. Agrawal, “Mining Sequential
Patterns: Generalizations and Performance
Improvements,” Proc. Fifth Int’l Conf.

Extending Database Technology (EDBT ’96),
pp. 3-17, Mar. 1996.

[7] M. Garofalakis, R. Rastogi, K. Shim, “SPIRIT:
Sequential pattern mining with regular
expression constraints,” Proceedings of the
25th International Conference on Very Large
Databases (VLDB’99), pp. 223-234, 1999.

[8] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl,
Janyong Wang, Helen Pinto, Qiming Chen,
Umeshwar Dayal, Mei-Chun Hsu, “Mining
Sequential Patterns by Pattern-Growth: The
PrefixSpan Approach”, IEEE Transactions on
Knowledge and Data Engineering, vol. 16, No.
11, November 2004.

[9] J. Han, J. Pri, B. Mortazavi-Asl, Q. Chen, U.
Dayal, and M.-C. Hsu, “FreeSpan: Frequent
Pattern-Projected Sequential Pattern Mining”,
Proc. 2000 ACM SIGKDD Int’l Conf.
Knowledge Discovery in Database (KDD ’00),
pp. 355-359, Aug. 2000.

[10] J. Han, J. Pei and Y. Yin, “Mining Frequent
Patterns without Candidate Generation”, Proc.
2000 ACM-SIGMOD Int’l Conf. Management
of Data (SIGMOD ’00), pp.1-12, May 2000.

[11] Wang, J., Han, J. a, “BIDE: efficient mining
of frequent closed sequences”, Data
Engineering, 2004. Proceedings. 20th
International Conference on 30 March-2 April
2004 Page(s):79 – 90.

[12] J. Wang, J. Han, and J. Pei, “CLOSET+:
Searching for the Best Strategies for Mining
Frequent Closed Itemsets”, KDD’03,
Washington, DC, Aug. 2003.

[13] X. Yan, J. Han, and R. Afshar, ” CloSpan:
Mining Closed Sequential Patterns in Large
Databases”. SDM’03, San Francisco, CA, May
2003.

[14] M. Zaki, “SPADE: An efficient algorithm
for mining frequent sequences”, Machine
Learning, 40:31–60, 2001.

[15] F. Masseglia, P. Poncelet, M. Teisseire,
“Incremental mining of sequential patterns in
large databases,” Actes des Jouenes Bases de
Donnes Avances (BDA’00), Blois, France,
1999.

[16] Weimin Ouyang, Qingsheng Cai, “An
incremental updating techniques for
discovering generalized sequential patterns,”
Journal of Software, Vol. 9, No. 10, pp.
778-780, 1998.

