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Abstract

Given a string S = a1a2a3 · · · an, the longest
increasing subsequence (LIS) problem is to find
a subsequence of S such that the subsequence
is increasing and its length is maximal. In this
paper, we propose and solve two variants of the
LIS problem. The first one is the minimal height
LIS where the height means the difference between
the largest and smallest elements. We propose an
algorithm with O(n log n) time and O(n) space to
solve it. The second one is the sequence constrained
LIS that given a sequence S and a constraint
C, we are to find the LIS of S containing C as
its subsequence. We propose an algorithm with
O(n log(n + |C|)) time to solve it.
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1 Introduction

Given a string S = a1a2a3 · · · an, increasing
subsequence (IS) is a subsequence [23] IS(S) =
ai1ai2ai3 · · · aik

that aip < aiq if ip < iq, for 1 ≤
p < q ≤ k. For example, consider S = 41573. Three
of increasing subsequences of S1=41573 are 13, 457
and 157. The longest increasing subsequence (LIS)
problem is to find the longest among all increasing
subsequences. Note that the LIS of a given string
may not be unique. For example, both 457 and 157
are LIS’s of S = 41573. The longest decreasing sub-
sequence problem can also be solved similarly.

The LIS problem is interesting in both combina-
torial perspective, such as pattern recognition, and
biological applications. Delcher et al.[8] used LIS to
help finding the whole genome alignment.

The rest of this paper is organized as follows. In
Section 2, we will review some previous work on the
LIS problem. In Section 3, we first review the previ-
ous work on the constrained LIS, and then solve the

minimal height LIS and sequence constrained LIS
problems. Finally, section 4 gives conclusions and
some future work.

2 Previous Results

The LIS problem has been widely studied in the
past decades. A straightforward method of find-
ing the LIS is to obtain the longest common sub-
sequence of the input string and the sorted in-
put string, with time complexity O(n2). Schensted
[19] is the first one who defined the LIS problem
and proposed an algorithm with O(n log n) time.
Hunt and Szymanski [10] improved the algorithm to
O(n log log n) time. And later, many papers [1, 3–
5, 15, 16, 26] studied the LIS problem by using the
van Emde Boas priority queue [22], which supports
insert, delete, find, predecessor, and successor opera-
tions in O(log log |Σ|) time, where Σ is the alphabet
set of the input string. In LIS, the input can be
transformed into an integer string where each inte-
ger is in {1, 2, 3, · · · , n} and |Σ| = n, so the LIS al-
gorithm needs only O(n log log n) time. Finding the
LIS in streaming data has the limitation that the
passed data can only be retained a limited number
of times, Liben-Nowell et al. [14] gave an algorithm
with log(1 + 1

ε ) - pass, O(log l) or O(log log Σ) up-
dating time, and O(l1+ε log Σ) space, where l is the
length of the LIS. The length distribution of the LIS
has been analyzed by Aldous and Diaconis [2]. In
their result, the average length of the LIS of a string
with length n is 2

√
n.

Kim showed that finding the LIS is equivalent to
finding the maximal independent set in a permuta-
tion graph[12]. A variant of the LIS problem is to
find the heaviest increasing subsequence(HIS), which
is given a string S formed by Σ, and each symbol α
in Σ has a weight w(α). The weight of a subsequence
is the sum of the weights of all symbols contained in
the subsequence. The HIS problem is to find the in-
creasing subsequence with the maximal weight. As



the equivalence of LIS and the maximal independent
set of the permutation graph, HIS is equivalent to
the maximal weight independent set of the permuta-
tion graph. Several papers [6, 9, 13, 26] have devoted
to the study of the maximal weight independent set
problem in graphs, including permutation graphs.

A simple extension of the LIS problem is to find
the LIS of every substring. In our previous work
[21], we design an efficient preprocessing method,
with O(n2) time, to solve it. After the preprocessing
has been performed, the required answering time is
linear to the output size.

Another extension of the LIS problem is the
longest common increasing subsequence (LCIS)
problem. Given two strings A = a1a2a3 · · · am,
B = b1b2b3 · · · bn where each pair of symbols in A
and B are comparable, the common increasing sub-
sequence of A and B is G = g1g2g3 · · · gl where
g1 = ai1 = bj1 , g2 = ai2 = bj2 , · · ·, gl = ail

= bjl
and

for all 1 ≤ p < q ≤ l, ip < iq, jp < jq, gp < gq. The
LCIS of A and B is the longest among all common
increasing subsequences of A and B. Yang, Huang
and Chao [25] proposed an algorithm for solving the
LCIS problem in O(n2) time. In 2005, several pa-
pers tightened the upper bound, Katriel and Kutz
[11] gave an algorithm with O(nl log n + Sort) time,
where Sort is the time required for sorting string B
into nondecreasing order. Chan et al. [5] gave an al-
gorithm with O(min(r log l, nl + r) log log n + Sort))
time, where r is the number of matched pairs be-
tween A and B. Brodal et al. [4] gave an algorithm
with O((m + nl) log log |Σ| + Sort) time. For small
|Σ|, the algorithm has a tighter bound, O(m) when
|Σ| = 2, O(m+n log n) when |Σ| = 3. Yoshifumi [18]
gives a linear space algorithm for the LCIS problem.

For the LCIS of multiple sequences,
Chan et al. [5] gave an algorithm with
O(min(Nr2, Nr log p log Nr) + NSortΣ(n)) time,
where N is the number of input sequences, and
SortΣ(n) denotes the time required for sorting all
sequences. Brodal et al.[4] proposed an algorithm
with O(min(Nr2, r logN−1 r log log r)+NSortΣ(n))
time.

3 Constrained LIS

Yang et al. [24] presented the first seen paper
on the constrained LIS problem. They defined two
types of constraints, the first one is that the differ-
ence between two neighboring elements in the in-
creasing subsequence must be in [LV , UV ] and their
positional distance in the original string must be in

[LI , UI ]. We call the difference between two neigh-
boring elements as the cliff in this paper. They pro-
posed an algorithm with O(n log(UI−LI)) time and
O(n) space. The second constraint stipulates that
the slope of two neighboring elements in LIS must
be greater than a predefined value, where the slope
is defined as their difference divided by their posi-
tional distance in the original string. They solved
it in O(n log r) time and O(n) space where r is the
output size.

The representative increasing subsequence (RIS)
of a string S is the principle row of the row tower
proposed by Albert et al. [1]. The ith element in
RIS of S is the minimal ending number of increasing
subsequences with length i. For example, For S =
41573, its increasing subsequences are {4, 1, 5, 7, 3},
{45, 47, 15, 17, 13, 57} and {457, 157}. The ending
numbers of increasing subsequences with length 2
are {5, 7, 3}, thus the minimum is 3. So the RIS
of S is 137. If an element is smaller than the ith
element of the RIS, it can not be the ending number
of increasing subsequence with length i + 1 . So the
length of the LIS ending at a certain element x can
be found by searching for the largest element that is
smaller than x in the previous RIS and add one to
the position. Likewise, insertion of a new element x
to RIS R is to find the minimal element in R greater
than or equal to x and replace it by x, if x is greater
than all elements in R then we append x to the end
of R.

The constrained LIS problems we consider in this
paper are the minimal height LIS and the sequence
constrained LIS, the detail is described in the fol-
lowing subsections.

3.1 Minimal Height LIS

The height of an increasing string is defined as the
difference between the largest and the smallest ele-
ments. The minimal height constraint is in fact the
minimal sum version of the cliff constraint. Given a
string S = a1a2 · · · an, the minimal height LIS (MH-
LIS) problem is to find an LIS with the minimal
height. For example S = 4683571, its MHLIS is 457
or 467.

Let li denote the length of LIS ending at ai. We
record the maximal ending number smaller than ai

of IS’s with length li − 1 in a1a2 · · · ai−1 as the pre-
vious element of ai in MHLIS.

Our algorithm for finding the MHLIS is given as
follows.

Step 1: Maintain l binary search trees
q1, q2, · · · , ql, where each qj , 1 ≤ j ≤ l,



records the ending numbers of all IS’s with
length j , and l denotes the length of the LIS.

Step 2: Whenever an element ai is read, we find
the LIS ending at ai by the following steps.

Step 2.1: Perform binary search on RIS to find
the smallest element that is greater than or
equal to ai. The position index of the element
is the length li of the LIS ending at ai.

Step 2.2: Suppose the predecessor of ai in qli−1 is
pi. Add ai to qli and record the predecessor of
ai in the MHLIS ending at ai as pi.

Now, we prove the correctness of our algorithm.

Theorem 1. Our approach finds the MHLIS ending
at ai.

Proof. Suppose the LIS we find is b1b2 · · · bli−1ai. If
we say that d1d2 · · · dli−1ai has smaller height, for
every corresponding bk, dk, we have dk ≥ bk+1, dk is
not on the right of bk. Here we use the term ”not on
the right” because bk may be the same as dk. We
will show this by induction.

For k = 1, we have ai−d1 < ai−b1, so d1 > b1. If
d1 is on the right of b1, then b1d1d2 · · · dli−1ai is an
IS with length li +1, which is a contradiction. Thus,
d1 is not on the right of b1. Also, b1 is on the left of
b2, so d1 is on the left of b2. Suppose d1 < b2, and
we have d1 > b1, then b2 would choose d1 instead of
b1, which is a contradiction. So d1 ≥ b2.

Suppose the assumption holds for k = m, that
is dm ≥ bm+1 and dm is not on the right of bm.
For k = m + 1, dm+1 > bm+1 because dm ≥ bm+1,
dm+1 > dm. If dm+1 is on the right of bm+1, then
b1b2 · · · bm+1dm+1 · · · dli−1ai is an IS with length l+
1, which is a contradiction. So dm+1 is not on the
right of bm+1. Also, bm+1 is on the left of bm+2, so
dm+1 is on the left of bm+2. Suppose dm+1 < bm+2,
and we have dm+1 > bm+1, then bm+2 would choose
dm+1 instead of bm+1, which is a contradiction. So
dm+1 ≥ bm+2. By the induction hypothesis, this
assumption is true for all k.

Suppose that there exists d1d2 · · · dli−1ai with
smaller height. We have dli−2 ≥ bli−1, and dli−1 >
dli−2, so dli−1 > bli−1. But since we select bli−1

instead of dli−1, we have bli−1 ≥ dli−1 which is a
contradiction. So there is no other IS of length l
with smaller height.

By Theorem 1, we can find the MHLIS ending at
a certain element. We maintain the minimal height
element in every q. To get the MHLIS, we start from
the minimal height element in ql and trace back the

LIS by continuously switching to the predecessor of
the current element.

The time complexity is analyzed as follows. For
each ai, we spend O(log n) time on deciding the
length l of the LIS by binary search on the RIS, and
O(log n) time on inserting ai into the RIS. Find-
ing predecessor in the set of ending numbers of IS’s
with length l − 1 takes O(log n) time, and inserting
into the set of ending numbers of length l IS’s also
takes O(log n) time. Finally, calculating the height
of the LIS ending at ai takes constant time if the
predecessor and the height of the LIS ending at the
predecessor are given. Tracing out the predecessor
takes O(n) time by following the predecessor link.
So totally we need O(n log n) time to find the MH-
LIS. And the space requirement is O(n).

3.2 Sequence Constrained LIS

Given a string S = a1a2 · · · an and an increasing
constraint C = c1c2 · · · ck, the sequence constrained
longest increasing subsequence (SCLIS) problem is
to find an LIS containing C as its subsequence. Be-
cause we are finding an IS and the constraint is a
subsequence of the IS, the constraint has to be in-
creasing too.

Note that if there is no duplicated symbol in the
input sequence, the problem becomes finding the oc-
currence of the constraints in the input sequence
as follows. Let the constraint C be on positions
p1, p2, · · · , pk in S. To simplify the discussion, we
add two dummy constraints c0 = −∞ in front of S
and C and ck+1 = ∞ at the rear of S and C. Cut
the input sequence by pi for 1 ≤ i ≤ k, find the
LIS of each substring starting at pi and ending at
the previous element of pi+1 with value also starting
at ci and smaller than ci+1, 0 ≤ i ≤ k, and then
we concatenate the IS’s together. The concatenated
IS is the answer. So the lower bound of the time
complexity is the time required for finding the LIS.

This problem can be solved by the similar strat-
egy solving the constrained longest common subse-
quence (CLCS) problem [7, 17, 20], the layered ap-
proach. First, we put the symbol ci as the sym-
bol of the ith floor, where the 0th floor means no
constraint is satisfied. Because all the constraints
need be satisfied, in the region after constraint ci

has been satisfied but constraint ci+1 has not been
satisfied yet, we can only allow this part of IS in the
final constrained LIS to be with value larger than or
equal to ci but smaller than ci+1. Otherwise, ci+1 is
unable to concatenate to the current increasing sub-
sequence. Also, we only insert the element to the



priority queue when all constraints smaller than it
is already in the queue.

In the ith floor, we maintain an RIS Ri of the
elements greater than or equal to ci and smaller than
ci+1. Originally when we insert an element into the
RIS, we replace the smallest element larger than it
which is the successor of it in the priority queue.
But now, if the successor of the inserted element is
one of the constraint, we do not delete it from the
priority queue.

Our SCLIS algorithm is to insert the elements of
S one by one from left to right into our data struc-
ture and the algorithm for inserting a new element
is given as follows:

Input: The element to be inserted, e, and the con-
straint C.

Step1: Find the position of e in C. If e = ci, go to
step 2.1. If it is between ci and ci+1, go to step
2.2.

Step 2.1: If Ri−1 is not NULL, set predecessor of
e to the last element of Ri−1. If Ri−1 is not
NULL or i = 1, insert e to Ri.

Step 2.2: If ci is already in Ri or i = 0, insert e to
Ri, set predecessor of e to the predecessor of e
in Ri.

In Step 2.1 we only set the predecessor of ci and
add it to Ri when Ri−1 is not NULL. This means
we only accept constraint ci when all previous con-
straints have been satisfied. For example, in Figure
1, the first 7 can not be added since 3 has not been
added yet. In Step 2.2, we only add e to Ri when
ci has appeared. It is based on the same reason,
if ci has not appeared yet, the elements with value
greater than ci can never be in the final constrained
LIS. Take the first 4 in Figure 1 as an example, it
can not be added because 3 is not in R1 yet. The
occurrence of ci can easily be verified because if ci

is in Ri, it must be the first element of Ri.
The time complexity of this approach is analyzed

as follows. If we use arrays to implement this ap-
proach. Step 1 takes O(log |C|) time by binary
search on C. Step 2.1 takes constant time. Step
2.2 takes O(log n) time for doing binary search on
Ri. So the time required for inserting one element
is O(log n). There are n elements to be inserted,
so the total construction time is O(n log(n + |C|)).
The output operation can be achieved in O(n) time
by continuously lookup the predecessor table. The
space complexity of the R’s is O(n) because each ele-
ment is in at most one of the R’s and the predecessor
table takes O(n) space.

4 Conclusion and Future Works

In this paper, we propose and solve two variants of
the LIS problem. The first one is the minimal height
LIS. We propose an algorithm with O(n log n) time
and O(n) space to solve this problem. The second
one is the sequence constrained LIS, we proposed an
O(n log(n + |C|)) time algorithm to solve it. The
possible future work may involve trying to improve
the algorithm or to prove that the complexity of our
algorithm is optimal, solving other cliff based con-
straints like min-max, max-min, etc. And among
all, exploring the applications of the LIS problems.
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