
Evaluating Java AWT for Cross-Platform Java Game Development

Yi-Hsien Wang and I-Chen Wu

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

{wangys,icwu}@csie.nctu.edu.tw

Abstract-This paper extends the research of CYC
Window Toolkit (CWT) [11] to other environments
in two aspects. First, we evaluate the rendering
performance of Java AWT in most commonly used
JREs on four operating systems (OSs), including
Windows XP, Windows Vista, Fedora Core and
Mac OS. The evaluation results indicate that the
performance inconsistency of Java AWT also exists
among the four OSs, even if the same hardware
configuration is used. Second, we design an
OpenGL version of CWT, named CWT-GL, to take
advantage of modern 3D graphics cards. The
results show that CWT-GL achieves more
consistent and higher rendering performance in
JRE 1.4 to 1.6 on the four OSs.

Keywords: CYC Window Toolkit, OpenGL,
Windows, Linux, Mac OS

1. Introduction
Since released in 1995, Java has attracted much

attention in game industry. Along with the growth
of World Wide Web (WWW) in the late 1990s,
many Java casual applet games were deployed
over the Internet, including Yahoo! Games and
CYC Games. It is because these games can be
easily distributed over the Internet and played on
multiple operating systems (OSs). Other than
applet games, several commercial stand-alone Java
games were also developed, such as You Don't
Know Jack and Tribal Trouble. Examples of
commercial massively multiplayer online (MMO)
Java games include RuneScape and Wurm Online.

Although PCs have great support of Java, many
Java games on PCs are still low-profile games1.
The most discussed reasons include the runtime
speed and the rendering performance of Java,
because early implementations of the JVM and
graphic user interface (GUI) components, also
called widgets, normally delivered poorer
performance, which made game developers
hesitant to use it for high-profile games1.

1 Low-profile and high-profile games are defined
in [4].

In view of these problems, research for Java
graphics that is reviewed in Subsection 1.1 has
been done to make Java more suitable for game
development. However, some problems which are
identified in Subsection 1.2 still remain in the GUI
part of Java, especially when programmers try to
deploy cross-platform Java games with consistent
rendering performance. By consistent rendering
performance, we mean to deliver similar rendering
performance on different OSs or different
rendering environments when using the same or
equivalent-power hardware. Subsection 1.3 briefly
describes our goals for solving these problems, and
also summarizes the organization of the rest of this
paper.

1.1. Evolution of Java Graphics
This subsection reviews the graphics part of

Java, which is of great concern to game developers
today and is the focus of this paper.

The standard way to perform 2D graphics in
Java is the use of Java AWT/Swing. However, Java
AWT/Swing did not take full advantage of
graphics cards, before J2SE 1.4. J2SE 1.4
introduces the DirectX-based Java2D pipeline
(abbreviated as DirectX pipeline) on Microsoft
Windows platforms, while J2SE 5.0 introduces the
OpenGL-based Java 2D pipeline (abbreviated as
OpenGL pipeline) on Windows platforms and
Linux. Since then, the rendering performance of
Java AWT/Swing has had a great boost. In
particular, the use of OpenGL which is supported
by multiple platforms is quite important to Java in
which the cross-platform feature is critical.

1.2. Problems of Java Graphics
Although the rendering performance of Java

AWT/Swing has been improved since J2SE 1.4,
some problems are still identified in cross-platform
game development. This subsection lists three
problems as follows.
(1) Inconsistent rendering performance among

different JREs.
This problem occurs since significant changes

are made in the graphics part of newer JREs, as
described in Subsection 1.1. These changes are



tightly
rarely
accord
and M
users
indica
still us
Web b
Windo
platfor
obtain
(2) In

di
The

tations
render
system
graphi
Micro
(X) on
on Ma
new
Manag
and th
Other
suppor
involv
differe
one O
Theref
optimi
(3) O

Alt
multip
stabili
pipelin
such a
game
OpenG
JREs 1
JRE 1

1.3.
In

Subsec
develo
(CWT
Micro

performance of MSVM. In this paper, we extend
their work to various JREs on more OSs in the
following two aspects.

First, evaluate the rendering performance of
Java AWT in different JREs on four OSs, including
Windows XP, Windows Vista, Fedora Core and
Mac OS. The evaluation results indicate that the

Jav

M
J2
J2
Ja
Table 1. Current state of JREs.

a Version
Percentage of Web

Browser Users
Available CWT
Implementation

SVM 10.75% DirectX (in [11])
SE 1.4 10.27%
SE 5.0 23.77%

OpenGL
(in this paper)
bound to the versions of the JREs and are
ported back to old JREs. However,

ing to the statistical data in [2] during April
ay in 2008, the percentages of Web browser
of popular JREs, as shown in Table 1,

te that about 10.75% of Web browser users
ed MSVM, and the percentage for J2SE 1.4
rowser users was 10.27%. Using MSVM on
ws platforms or J2SE 1.4 on non-Windows
ms, such as Linux, game applications cannot
the benefit of hardware acceleration.
consistent rendering performance among
fferent operating systems.

problem is caused by different implemen-
of graphics systems as follows. Java 2D

ing pipelines are built on different graphics
s on different OSs, such as Window
cs device interface (GDI) and DirectX on
soft Windows platforms, X Window System

Linux, and Quartz graphics layer (Quartz)
c OS X. In addition, Windows Vista has a

graphics system called Desktop Window
er (DWM), which runs on top of Direct3D
rough which GDI rendering is redirected.
than the above graphics systems, OpenGL is
ted on all of the four OSs. Since the JREs
e these different graphics systems on
nt OSs, the optimization of Java games for
S may not be applicable to other OSs.
ore, more efforts are required for testing and
zing the games on all targeted OSs.
penGL pipeline is not stable enough.
hough the OpenGL pipeline is supported on
le OSs, it is disabled by default owing to the
ty issues [8]. During our test, the OpenGL
e sometimes delivered incorrect screen,
s blank or incomplete screen. Besides, Java
programmers cannot fully depends on the
L pipeline, since it can only be enabled in
.5 and beyond on Windows and Linux, and

.6 on Mac OS 10.5.2.

Goals of This Paper
view of the first problems listed in
tion 1.2, Wang, Wu and Jiang [11]
ped a toolkit, named CYC Window Toolkit
), and implemented a DirectX version on
soft Windows XP to improve the rendering

performance inconsistency of Java AWT/Swing
also exists among the four OSs, even if the same
hardware configuration is used. This problem
weakens the merits of the Write-Once-Run-
Anywhere (WORA) feature of Java.

Second, propose solutions to solve the above
problems of Java AWT and compare the results
with those of Java AWT. That is, we design an
OpenGL version of CWT [11] via OpenGL, named
CWT-GL. The results show that CWT-GL achieves
more consistent and higher rendering performance
in JRE 1.4 to 1.6 on the four OSs.

The rest of this paper is organized as follows.
Section 2 presents the design of CWT-GL. Section
3 describes the configurations of JREs and
benchmark programs used in this paper. Section 4
analyzes the experimental results. Finally, Section
5 presents conclusions and future work.

2. Design of CWT-GL
This Section describes the design of CWT-GL.

Subsection 2.1 introduces JOGL and Subsection
2.2 reviews the architecture of CWT. Subsection
2.3 presents the design of the CWT-GL based on
JOGL and Subsection 2.4 discusses the issues
related to performance optimization. Subsection
2.5 summarizes the work related to CWT.

2.1. Introduction to JOGL
JOGL (Java binding for the OpenGL API) [9] is

an open-sourced project initiated by Sun
Microsystems. JOGL is a Java binding for
OpenGL and provides access to the latest OpenGL
API. JOGL abstracts the OpenGL functionality
from platform-specific libraries, such as wgl, glx
and agl, to create a platform-independent
OpenGL API. The abstraction greatly improves the
portability of JOGL on different OSs. Since JOGL
is a development version of the JSR-231 and will
possibly be included in the Java SE core library in
the future, we implemented CWT-GL using JOGL.

2.2. Architecture of CWT
CWT [11] was proposed to provide high and

similar rendering performance for Java game
development on different platforms. It aimed to
enhance the graphics performance by directly
using DirectX and OpenGL to render all widgets,
figures, images and texts. For ease of use and

va SE 6 54.73%



backward compatibility, CWT provides
AWT/Swing compatible APIs for Java 1.1 and
beyond.

The architecture of CWT is shown in Figure 1.
Supporting Java AWT/Swing compatible APIs,
CWT defines component hierarchy, event model,
and painting model. The component hierarchy
models a component hierarchy similar to Java
AWT/Swing 1.1. The event model specifies the
event-handling process. The painting model

defines an abstract class called Graphics which is
required to be implemented in the wrapper
implementations of CWT: CWT-DX, CWT-GL,
and CWT-AWT. All of the wrapper
implementations share the component model and

event model, but realize the Graphics class using
different graphics libraries, such as DirectX,
OpenGL and Java AWT. The greater details of
these models are described in [11].

2.3. Design of CWT-GL
In this subsection, we briefly introduce how

CWT-GL implements the Graphics class using
JOGL. We divide the functionalities of the
Graphics class into three parts: figures, images,
and texts, whose design issues and strategies are
described in Subsections 2.3.1 to 2.3.3,
respectively.
2.3.1. Figures

In Java 1.1, the Graphics class allows programs
to draw several kinds of figures, including lines,
rectangles, ovals, round rectangles, polylines and
polygons. These figures are mainly of two types –
outline and solid figures. In OpenGL, outline
figures can be assembled by lines, while solid
figures can be filled by triangles. Therefore, we
use lines and solid triangles for these
figure-drawing and figure-filling methods,
respectively.
2.3.2. Images

In CWT-GL, images are loaded onto so-called

texture maps to fill rectangles. In practice, there
are several limitations when we use texture
mapping for the simulation of drawing AWT
images. These limitations and the corresponding
solutions are described as follows.

First, the size of each texture has a maximum
bound. For example, the limitation on texture size
of ATI X1600 series, which are used as our test
beds, is up to (40964096)-pixel2. Currently,
CWT-GL does not support images larger than the
bounds of the underlying system.

Second, most graphics cards only support
power-of-two-sized texture. When dealing with
non-power-of-two images in the graphics cards,
JOGL pads the image by creating a power-of-two
texture image and then draws the original image
onto the new one. However, the price to pay is
more memory consumed. This problem can be
solved by introducing texture packing [1], which
groups small images into a single power-of-two
texture to utilize memory.
2.3.3. Texts

Since text drawing is not directly supported in
OpenGL, two alternatives are used in OpenGL
applications: image-based and geometry-based
approaches [10]. The image-based approach draws
texts by rendering images on which texts are
pre-rendered or dynamically rendered during
runtime. On the other hand, the geometry-based
approach represents texts in a series of lines,
curves and polygons. Since the texts are presented
in 3D models, scaling the texts will not cause the
effect of artifact. However, the more complex
shape the texts are of, the more polygons and
processing power are needed. For example, Asian
languages, such as Chinese, typically require more
polygons to emulate.

CWT-GL implements both approaches. Since
both approaches have cons and pros, CWT-GL lets
programmers configure the behaviors of the text
engine during runtime, such as the threshold of
font size for enabling geometry-based rendering.

2.4. Optimization of CWT-GL
In order to achieve fast rendering for game

development, CWT-GL introduces two
optimization methods, (1) disabling unnecessary
checking and testing, and (2) minimizing the
number of state changes in OpenGL.

In optimization method (1), we disable some
unnecessary checking and testing of OpenGL
before performing certain rendering operations.
For example, alpha testing and blending mode are
unnecessary when the programs draw opaque
images and figures.

In optimization method (2), we try to minimize

Figure 1. Architecture of CWT.



the number of state changes in OpenGL, which
take extra overhead in time [10]. For example,
binding textures and invoking glBegin()/glEnd().
In order to achieve this, CWT-GL uses variables to
indicate current states of bound textures and type
of glBegin(). Before issuing the rendering
operations to OpenGL, CWT-GL changes OpenGL
states only when the states are different from
required ones. Therefore, unnecessary state
changes can be avoided.

2.5. Related Work
Agile2D [6] implements an almost complete set

of Java 2D functionalities based on GL4Java to
replace the repaint manager of Swing. The authors
of Agile2D also showed the improvement in
rendering performance to Sun’s Java 2D
implementation. However, there exist some
problems in Agile2D. First, Agile2D supports only
J2SE 1.4 and beyond, and it does not support the
acceleration of Java AWT 1.1, which is still used
by many applet games, such as Yahoo! Games and
CYC Games. Second, Agile2D is based on
GL4Java which only supports OpenGL version 1.4
and has no plan for evolution. Finally, Agile2D
only supports the first 256 characters in Unicode,
e.g. ISO 8859-1. These issues can limit the
applications of Agile2D.

FengGUI [5] is a Java graphics toolkit based on
JOGL and LWJGL. This toolkit specially focuses
on the rendering performance for multimedia and
game applications, and has been used in several
commercial projects. FengGUI provides a new set
of commonly used widgets and graphics API with
easy-to-use design. Programmers can also directly
access JOGL or LWJGL, since FengGUI does not
encapsulate these two APIs. However, using
FengGUI, programmers need to learn not only the
new API, but JOGL or LWJGL, which may reduce
the programmers’ productivity. In addition,
FengGUI supports only JRE 1.5 and beyond,
which also limits possible Web browser users.

3. Experiments
We implemented a benchmark program to

simulate a Bomberman game, as shown in Figure 2.
We measured the average frame rate of the
Bomberman game in rendering 20000 frames. For
backward compatible to Java 1.1, we only used
Java 1.1 API to implement the program.

We performed our benchmark on four OSs. In
order to make fair comparison, Windows XP
Professional SP2, Windows Vista Business and
Fedora Core 6 were installed in a PC specified in
Table 2, while Mac OS 10.4.11 was installed in an
iMac with computing power roughly equivalent to

the PC.
and disa
of the
MSVM
1.3.1_20
that Mac

We
environm
different
identify
attribute
 To

re
CW
im
CW
im

 JR
an
re

 Sy
ca
fo
Op

sy

tr

 OS
an
fo
W

For e
that use
OpenGL
simplici
group o

Computer

1

2

Figure 2. A screenshot of the benchmark.
Table 2. System hardware.
Hardware

 AMD X2 3800+ 2.0GHz
 ATI Radeon X1650 with 256 MB GDDR2 AGP

(12801024@60Hz). Driver version: Catalyst 8.4

 Intel Core 2 Due 2.0GHz
Both computers worked in true color mode
bled font anti-aliasing. We installed most
popular JREs on these OSs, including
(version 5.0.0.3810), Sun JRE versions
, 1.4.2_16, 1.5.0_13, and 1.6.0_05. Note
OS 10.4 does not support Java SE 6.

ran test programs in all the rendering
ents (RE) with the combination of using
JREs, system properties, and OSs. We

each RE by an identifier, a tuple of four
s (Toolkit, JRE, SystemProperty, OS).
olkit{AWT, CWT-DX, CWT-GL}. AWT
presents the Java AWT graphics library,

T-DX represents the DirectX
plementation of CWT in [11], and

T-GL represents the OpenGL
plementation of CWT in this paper.
E{M, 4, 5, 6}. “M” represents MSVM,
d “4” to “6” denote JRE version 1.4 to 6,
spectively.
stemProperty{N, O}. “N” represents the
se that no system properties are specified
r JREs, and “O” denotes the case that
enGL pipeline is enabled (by setting the

stem property sun.java2d.opengl to

ue).

{XP, VS, FC, MC}. “XP,” “VS,” “FC”
d “MC” respectively represent the
llowing operating systems, Windows XP,
indows Vista, Fedora Core and Mac OS.
xample, (AWT, 6, O, XP) refers to the RE
s AWT, runs in JRE version 6, enables

pipeline, and runs on Windows XP. For
ty, the wildcard character “*” indicates a
f REs for all cases in the attribute. For

 ATI Mobility Radeon X1600 with 128MB
GDDR3 PCIe (1440900@60Hz)



example, (AWT, *, O, *) means all the REs with
AWT and with OpenGL pipeline enabled on the
four OSs.

To measure the rendering performance, we use
two metrics: Frame Rate and Anomaly. Frame rate
is commonly employed to measure the rendering
speed expressed by frames per second (FPS) for
the macro-benchmark. For a RE r, FrameRate(r)
denotes the frame rate in r. Anomaly for a set of
REs, say R, is defined as follows.

))((min

))((max
)(

rFrameRate

rFrameRate
RAnomaly

Rr

Rr





Anomaly is employed to measure the
inconsistency of the rendering speed in a given set
of REs.

4. Analysis
In this section, we first summarize the results of

Java AWT and CWT-GL in Subsection 4.1. Next,
we discuss the results and our suggestions for
cross-platform Java game development in
Subsection 4.2.

4.1. Summary of Results
First, we summarize the results of Java AWT as

follows. The rendering performance of Java AWT
is inconsistent among the four OSs. Figure 3
shows the results of comparing the rendering
performance among the four OSs, given RE (AWT,
{M, 4, 5, 6}, N, *). As shown in the figure, Fedora
Core 6 often delivers much slower frame rates than
those on other OSs, which is the main source of
performance inconsistency among the four OSs.
For all j{4, 5, 6}, and p{N}, Anomaly(AWT, j,
p, *) ranges from 3.06 to 3.64. This means that the
rendering performance of the same Java program
would be quite different on the four OSs,
especially on Fedora Core.

This phenomenon also exists when we enable
the OpenGL pipeline in RE (AWT, 6, O, *), as
shown in Figure 3. The OpenGL pipeline delivered
much worse frame rates. Furthermore, the OpenGL
pipeline was not stable enough since it sometimes
rendered incomplete screens in these REs during
our tests.

To sum up the results of Java AWT,
programmers may find it hard to optimize the
rendering performance on the four OSs for
cross-platform Java games. From the aspect of OS,
Java games running on Fedora Core would be two
to three times slower than those running on other
OSs. Thus, the efforts for performance testing are
required for programmers to develop
cross-platform Java games requiring consistently
high rendering performance.

It is even worse that some of the parameters,
such as JRE versions and system properties, are
controlled by users, not by the programmers,
especially for Java applet games, where the
programmers have fewer choices. Therefore, Java
AWT/Swing programmers need to pay more
attention to the issue when consistently high
rendering performance is required for
cross-platform Java games.

Next, we summarize the results of the CWT as
follows. CWT-GL achieves higher and more
consistent rendering performance among the four
OSs than Java AWT does. In Figure 3, RE
(CWT-GL, {4, 5, 6}, N, *) often delivers the
highest frame rates, and also more consistent
rendering performance than Java AWT. For
example, for all j{4, 5, 6}, Anomaly(CWT-GL, j,
N, *) ranges from 1.34 to 1.49, while
Anomaly(AWT, j, N, *) ranges from 3.06 to 3.64.
Therefore, CWT-GL performs more consistently
than AWT does among the four OSs.

Generally speaking, the rendering performance
of CWT-GL is higher and more consistent on
supported REs than those in Java AWT. This is
quite important especially when games run in
users’ computers with various REs. Furthermore,
the system properties in CWT-GL are simpler than
Java AWT, which also helps reduce the testing
efforts. Therefore, our experimental results suggest
that CWT-GL is more suitable for cross-platform
Java game development than Java AWT.

4.2. Discussion
Although the WORA (Write-Once-Run-

Anywhere) feature is very attractive to Java game
developers and Java has been greatly improved on
performance in terms of JVM and graphics, the
inconsistency of rendering performance weakens
the merit of WORA for game development,

0
100
200
300

400
500
600

M,N,* 4,N,* 5,N,* 6,N,* 5,O,* 6,O,* M,N,* 4,N,* 5,N,* 6,N,*A
v

er
ag

e
F

ra
m

e
R

at
e

(F
P

S
)

XP VS FC MC

CWT-DX CWT-GLAWT

0.0
1.0
2.0
3.0
4.0

RE

A
n

o
m

al
y

Figure 3. Frame rates and Anomaly among
different OSs in the REs, (AWT, {M,4,5,6}, *),

(CWT-DX, M, *) and (CWT-GL, {4,5,6}, *).



especially for cross-platform games running in
various REs. In this subsection, we further discuss
the problems of current Java 2D rendering
pipelines.

As described in Subsection 1.2, since the JREs
involve different graphics systems on different
OSs, it is not surprised that Java AWT delivers
inconsistent rendering performance among the OSs.
For example, the rendering performance on Fedora
Core is relatively low when compared with other
OSs. Fortunately, the OpenGL pipeline shows its
potential on cross-platform Java game
development. However, the OpenGL pipeline is
still not good and stable enough. In contrast,
CWT-GL achieves high and consistent rendering
performance on all of the tested OSs by direct
access to OpenGL via JOGL.

The current approach by Sun to solving the
problem is to bundle the OpenGL pipeline in JRE,
since J2SE 5.0 [7]. However, this approach also
incurs the following three problems.
(1) Since the new OpenGL pipeline is bundled

with new JREs and is not ported back to old
JREs, users need to upgrade to one of the
new JREs.

(2) In order to obtain new features or fix bugs in
the OpenGL pipeline, programmers and
users have to upgrade their entire JREs, not
only the part of the OpenGL pipeline.

(3) Programmers must wait for newer JREs to
improve the reliability, performance or more
support of the OpenGL pipeline. For
example, future JREs are required, since the
OpenGL pipeline is currently not reliable
enough, and that Mac OS 10.4 and below do
not support the OpenGL pipeline.

These problems weaken the motivation of using
Java AWT/Swing to develop cross-platform Java
games with high and consistent rendering
performance.

5. Conclusions
This paper identifies the inconsistent rendering

performance problem on four popular OSs,
including Microsoft Windows XP and Vista,
Fedora Core, and Mac OS. The results indicate that
it is hard to predict the rendering performance of
Java AWT on the four OSs.

To solve this problem, we have designed an
OpenGL version (CWT-GL) of the CWT
architecture defined in [11] using JOGL. The
results indicate that CWT-GL generally reaches
higher and more consistent rendering performance
in J2SE 1.4 to 6 on the four OSs.

The contributions of this paper are listed as
follows. (1) Identify the problem of inconsistent

rendering performance of Java AWT/Swing on
four OSs. (2) Implement CWT-GL so that CWT
can be applied to more OSs other than Microsoft
Windows. (3) Demonstrate the high and consistent
rendering performance of CWT-GL experimentally
on four popular OSs.

Future extension includes more optimizations
on CWT-GL and applying our work to 3D game
development in Java. We will also implement new
Java AWT/Swing APIs introduced after version 1.1
to improve the usability of CWT.

Acknowledgements
The authors would like to thank the National
Science Council of the Republic of China for joint
financial support of this research under contract
number NSC 95-2622-E-009-008-CC3. Next, the
authors would like to thank ThinkNewIdea, Inc.
for providing the data required for this research.
Finally, the authors would also like to thank
Chin-Yi Cheng who contributed to the OpenGL
implementation of CWT.

References
[1] Alexander Wong and Andrew Kennings,

“Adaptive multiple texture approach to texture
packing for 3D video games,” Proceedings of the
2007 conference on Future Play, Toronto, Canada,
pp.189-196.

[2] Andrew Gray. GC Usage Statistics.
http://www.andrew-gray.com/dist/stats.shtml

[3] Internet Application Technology Lab. CYC
Window Toolkit. National Chiao-Tung University,
Taiwan. http://java.csie.nctu.edu.tw/cwt

[4] Jacob Marner, Evaluating Java for Game
Development, Dept. of Computer Science, Univ. of
Copenhagen, Denmark, 2002.

[5] Johannes Schaback, FengGUI, Java GUIs with
OpenGL. http://www.fenggui.org/

[6] Jon Meyer, Ben Bederson, and Jean-Daniel Fekete,
Agile2D. Human-Computer Interaction Lab,
University of Maryland, USA.
http://www.cs.umd.edu/hcil/agile2d/

[7] Sun Microsystems Inc., New Java 2D Features in
J2SE 5.0. Sun Microsystems Inc., 2004.

[8] Sun Microsystems Inc., Update: Desktop Java
Features in Java SE 6. Sun Microsystems Inc.,
2005.

[9] Sun Microsystems Inc., JSR 231: Java Binding for
the OpenGL API. Sun Microsystems Inc.
http://jcp.org/en/jsr/detail?id=231

[10] Tom McReynolds and David Blythe, Advanced
Graphics Programming Using OpenGL. Morgan
Kaufmann, February 2005.

[11] Yi-Hsien Wang, I-Chen Wu and Jyh-Yaw Jiang.
“A portable AWT/Swing architecture for Java
game development,” Software Practice and
Experience, vol. 37, issue 7, pp.727-745, June
2007.

http://www.andrew-gray.com/dist/stats.shtml
http://java.csie.nctu.edu.tw/cwt
http://www.fenggui.org/
http://www.cs.umd.edu/hcil/agile2d/
http://jcp.org/en/jsr/detail?id=231

