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Abstract–In this paper, we describe the speaker 
independent speech recognition of Chinese number 
speeches 0~9 based on HMM. 560 speech samples are 
recorded and processed. The results of inside and outside 
testing achieve 92.5% and 76.79%, respectively. 
Furthermore, to improve the performance, two important 
features of speech; MFCC and cluster number of vector 
quantification, are unified and evaluated with various 
values. The best performance achieve 96%and 81% on 
MFCC Number = 20 and VQ clustering number  =  64.  
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1.  Introduction 
In Speech processing, automatic speech recognition 

(ASR) is capable automatically of understanding the input 
of human speech for the text output with various 
vocabularies. ASR can be applied in a wide range of 
applications, such as: human interface design, speech 
Information Retrieval (SIR) [11,12], language translation, 
and so on. In real world, there are several commercial ASR 
systems, for example, IBM’s Via Voice, Mandarin 
Dictation System–the Golden Mandarin (III) of NTU in 
Taiwan, Voice Portal on Internet and 104 on-line speech 
queries systems. Modern ASR technologies merged the 
signal process, pattern recognition, network and 
telecommunication into a unified framework. Such 
architecture can be expanded into broad domains of 
services, such as e-commerce and wireless speech system 
of WiMAX.  
 The approaches adopted on ASR can be categorized as: 
1)Hidden Markov Model (HMM) [1,2,3,4], 2)Neural 
Networks [5,6,7], other method is the combination of two 
approaches above [8,9]. The Hidden Markov Model is a 
result of the attempt to model the speech generation 
statistically, and thus belongs to the first category above. 
During the past several years it has become the most 
successful speech model used in ASR. The main reason for 
this success is the powerful ability to characterize the 
speech signal in a mathematically tractable way. 

In a typical ASR system based on HMM, the HMM 
stage is proceeded by the parameter extraction. Thus the 
input to the HMM is a discrete time sequence of parameter 
vectors, which will be supplied to the HMM.  

Chinese is a tonal speech. There are 408 base Chinese 
speeches and more than 1300 various speeches with 5 tones 

(tone 1, 2, 3, 4 and 0). In this paper, we aimed on the 
speaker independent recognition of number speeches. Our 
models are constructed based on the Hidden Markov Model 
(HMM). First of all, the examples of Chinese speech are 
recorded, and the processes for detection of end-point and 
windowing are processed sequentially. The component 
feature of speech is then extracted for the following process.  

The organization of this paper is as follows. In Section 
II, we introduce the foundational pre-processes for ASR. In 
Section III, we illustrate our model of speech recognition 
based on HMM. The empirical results are presented and we 
will improve furthermore methods unifying two features in 
Section IV. Our conclusion and future works are presented 
in last section.  

2. Processes of Speech 
In this section, we will describe all the procedures for 

pre-processes. 
2.1 Processing Speech 

The analog voice signals are recorded thru microphone. 
It should be digitalized and quantified. The digital signal 
process can be described as follows: 
                                               ,                                           (1) 

where xp(t) and xa(t) denote the processed and analog signal. 
p(t) is the impulse signal. 

Each signal should be segmented into several short 
frames of speech which contain a time series signal. The 
features of each frame are extracted for further processes. 
The procedure of such pre-process is shown in Fig 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Pre-process of speech recognition 
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2.2  Pre-emphasis 
Basically, the purpose of pre-emphasis is to increase, 

the magnitude of some (usually higher) frequencies with 
respect to the magnitude of other (usually lower) 
frequencies in order to improve the overall signal-to-noise 
ratio (SNR) by minimizing the adverse effects of such 
phenomena as attenuation distortion. The results signal 
before and after pre-emphasis is presented in Figure 2. 

s2(n) = s(n) - a*s(n-1) ,                                                   (2)

where s2(n) denotes the output signal ,value a ranges 
between  0.9 and 1.0.   

The Z transformation of filter is described as follows:
H(z)=1-a*z-1.                                                                  (3)
 

 
Figure 2: Comparison of before and after pre-emphasis 

2.3 Frame Blocking 
While analyzing audio signals, we usually adopt the 

method of short-term analysis because most audio signals 
are relatively stable within a short period of time. Usually, 
the signal will be segmented into time frame, say 15 ~ 30 
ms.  

There are always overlap between neighboring frames 
to capture subtle change in the audio signals. The 
overlapping size may be 1/3~1/2 of frame. The 3D curves 
of speech signal processed with hamming window are 
shown in Figure 3. 

 
Figure 3: 3D curves of Chinese number speech 0. 

2.4 Hamming Window 
In signal processing, the window function is 

a function that is zero-valued outside of some 
chosen interval. The Hamming window is a weighted 

moving average transformation used to smooth the 
periodogram values. 

Supposed that original signal s(n) is as follows:  
s(n), n = 0,…N-1.               (4)

The original signal s(n) is multiplied by hamming 
window w(n),  we will obtain s(n)* w(n), w(n) can be 
defined as follows: 

w(n)  =  (1 - α) – α*cos(2πn/(N-1)), 0≦n≦N-1,             
(5) 

where N denotes the sample number in a window. 

The curves with respect to various α are shown in 
Figure 4. It is apparent that different hamming curve will 
affect the signal for overlapping frame. 

 
Figure 4:  Hamming curves for various α values. 

2.5 Zero Crossing Rate 
Zero crossing rate (ZCR) is another basic acoustic 

feature. It is equal to the number of zero-crossing of the 
waveform within a given frame. The short-time zero 
crossing rate is defined as the weighted average of the 
number of times the speech signal changes sign within the 
time window. The ZCR for number “9” (ㄐㄧㄡˇ) is 
shown in Figure 5. It is significant that ZCR is higher for 
the consonant “ㄐ” of speech “9”, however relatively lower 
for vowel “ㄧ”, “ㄡ” and some noise in speech signal. 

 
Figure 5: ZCR for Chinese number “9”. 

2.6 Detection of Ending Points 
Our algorithm for detecting end points of speech is 

based upon measurement of two parameters: the short-time 
energy and zero crossing rate (ZCR). These measurements 
are given by the average value and standard deviation of 
the ZCR figure, as well as average energy. Among which 
relationships expressed by empirical parameters exist, three 
thresholds are needed and established: a value for the ZCR 



 

figure and two values (a lower and an upper one) for 
energy.  

The energy and ZCR are subsequently computed for the 
whole input signal over frames. The execution begins by 
locating, starting from the first frame, the point at which the 
energy profile overcomes both the lower and the upper 
energy thresholds, it should not descend below the lower 
energy threshold before having overcome the upper one. 
Such point, upon being identified by the lower threshold is 
provisionally marked as initial end point of the word.  As 
shown in Figure 6, energy and ZCR are used to detect the 
end points of speech. In the figure, red and green vertical 
lines denote the starting and ending location of a number 
speech. 

 
Figure 6: detection of end points. 

 
2.7 Mel-frequency cepstral coefficients 

Mel Frequency Cepstral Coefficient (MFCC) is one of 
the most effective feature parameter in speech recognition. 
For speech representation, it is well known that MFCC 
parameters appear to be more effective than power 
spectrum based features. MFCCs are based on the human 
ears' non-linear frequency characteristic and perform a high 
recognition rate in practical application. 

o  lower frequency, human  hear more acute. 

o  higher frequency, human hear less acute.  

As shown in Figure 7, MFCC are presented as: 

mel(f)=1125*ln(1+f/700)                                                (6)
 

 
Figure 7: feature curve of mel cepstral frequency. 

 
3. Acoustic Model of Recognition   

3.1 Vector Quantification 
Foundational vector quantifications (VQ) were 

proposed by Y. Linde, A. Buzo, and R. Gray in 1980, So-
called LBG algorithm. LBG is based on k-means clustering 
[2,5], referring to the size of codebook G, training vectors 
will be categorized into G groups. The centroid Ci of each 
Gi will be the representative for such vector of codeword. 
In principal, the category is tree based structure. The 
procedure of VQ can be summarized as follows:  

1. All the training vectors are merged into one cluster. 
2. Select cluster features and the cluster of lowest 

level of tree will be divided into two parts,  then 
executing the k-means clustering method.    

3. If the number of cluster on lowest level on tree is 
less than expected number of codebook, go back to 
step 2.  

4. Calculate the centroid Ci on lowest level on tree, 
which can represent each vector in cluster.  

    
In Figure 8, X is the training vectors, O is the centroid 

and Gi is cluster i.  
 

 
Figure  8:  centroid in VQ clustering. 

 
3.2 Hidden Markov Model 

A Hidden Markov Model (HMM) is a statistical model 
in which is assumed to be a Markov process with unknown 
parameters. The challenge is to find all the appropriate 
hidden parameters from the observable states.  HMM can 
be considered as the simplest dynamic Bayesian network. 

In a regular Markov model, the state is directly visible 
to the observer, and therefore the state transition 
probabilities are the only parameters. However, in a hidden 
Markov model, the state is not directly visible (so-called 
hidden), while the variables influenced by the state are 
visible. Each state has a probability distribution over the 
output. Therefore, the sequence of tokens generated by an 
HMM gives some information about the sequence of states. 

A  complete HMM can be defined as follows: 

B)A,,(πλ =  .                                                     (7)
HMM model can be defined as (π , A, B) : 

1.  Π (Initial state probability): 
Ni1      )}Sprob(q{ i1 i ≤≤=== ππ  .      (8)

2.   A (State transition probability): 

Ni1   
 )}S q |Sprob(q{aA itj1tij

≤≤

==== +     (9) 

3.   B (Observation symbol probability): 



 

}S,,.....S,S ,S{S N321=

}q,,.....q,q ,q{q T321=

Ni1     )}S q |prob(O)O({b B jtttj ≤≤===  ,              (10

where                                            is the  observation. 
                                                  is state symbols and  

                                          is observation states and T 
denote the length of observation, N is the number of states.  

For reducing computation, the Markov Chain can be 
simplified based on left-right model. Probability density 
function is defined as follows: 
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where N denotes the degree of feature vectors and         
 denotes the feature vectors for training or testing signals 
with respect to ith probability of mixture. Ri is the ith  
Covariance Matrix.  

 HMM with 2 and 3 states are shown in Figure 9 and 
Figure 10, respectively.  

 

 
 

Figure 9: HMM with 2 states 
 

 
Figure 10: HMM with 3 states 

 
3.3  System Models 

The recognition system is composed of two main 
functions: 1) extracting the speech features, including 
frame blocking, VQ, and so on,  2) constructing the model 
and recognition based on the HMM, VQ and Viterbi 
Algorithm. 

It is apparent that short speech signal varied sharply and 
rapidly, whereas longer signal varied slowly. Therefore, we 
use the dynamic frame blocking rather than fixed frame for 
different experiments. 

The algorithm of dynamic frame blocking is defined 
as: 

Input:  speech vector    y(i), i = 1 to n 
Output: frame size  frameSize  
Setup frame size: frameNum = 40;  
Calcupating the overlapping size offrame:    

overlap = 384 - floor(length(y)/frameNum); 
Count the skip size:    

 frameStep = round((length(y)-overlap)/frameNum); 
Getting size frame: 

 frameSize = frameStep+overlap; 
 

Note that 384 is decided while frameSize =512 and  3/4 
overlapping frame. However, supposed that fs = 11025Hz, 
frameNum is defined 40, all the features will be as follows: 

Min. size of speech vector  y(i) = 512 
Frame size        frameSize = 376 
Number of skip frame   frameStep = 4 
Number of overlapping  overlap = 372 
 
Max. size of speech vector  y(i)=15360 
Frame size       frameSize = 384 
Number of skip frame   frameStep = 384 
Number of overlapping  overlap = 0 
 

 4. Experiments and Improvement 
4.1 Recognition System Based on HMM 

In the paper, we focus on speaker independent speech 
recognition of Chinese number speeches 0~9. All the 
samples with 44100 Hz/16 bits are recorded by three male 
adults. Total 560 samples are divided into two parts, 280 
for training and 280 for testing. After complete the pre-
process, such as pre-emphasis, frame boloking, VQ, the 
codebook is shown in Figure 11 for number speeches 0~9. 

 
Figure 11: Distribution of Codeword & All MFCCs.  

4.2 Comparison for fixed and Dynamic Frame Size 
According to our empirical results, comparing the fixed 

and dynamic frame size, recognition rate of fixed frame 
size achieves 76.79%, and superior to the other with75.71%, 
as shown in Table 1. 

Table 1: comparing the frame size, (SymbolNum=64) 

 wave
Num

Mfcc 
time 

VQ 
time 

HMM 
training 

Symbol
Num 

rate(%)

fixed 
I 280

32.9 5.77 3.44 64 
90.36 

O 280 76.79*

dynamic
I 280

32.0 3.31 2.42 64 
92.50*

O 280 75.71 

PS.  I and O denote the inside and outside testing, respectively 

4.3. Further Improvement 
4.3.1Improving the Samples of Speech 
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According to our empirical results, recognition rate 
achieve better results while cluster number=64. Inside and 
outside testing are 92.5% and 76.79%, respectively. 

To improve the performance, we analyze all the speech 
wavelet. There are many samples affected by boost noise 
derived from human speaking or environment, as shown in 
Figure 12. In such a situation, the end points of boosted 
speech cannot be usually detected correctly. It leads to 
degrade the performance of system. 

Usually, detecting end points judged on ZCR and 
energy of speech, as shown in Figure 12. However, it is 
significant that we need extra features to detect for noise 
situation. Based on experimental results and observation, 
the improvement rules are summarized as follows:  

Input:    X(n) , n = 1 to j 
Output: Y(m),1 <= m <= j 
1. segment the speech X(n): framedY = framed (X(n)) 
2. calculate the ZCR and energy for each frame. 
3.smooth the curves for both  ZCR and energy 
4.calculate the average of first 10 frames, and 

multiplying 1.2. The average value will be used as 
the threshold for detecting process. 

5. ZCR is valid only if framedY is larger than 100, as 
shown in Figure 13. 

6. the speech will be effective only if the size is larger 
than 3ms. 

7. the starting energy of speech should be larger than 
threshold.  

8. the energy for continuous 5 frames of speech should 
be increased  progressively. 

Referring to the improvement, the speeches number 8 
(ㄅㄚ) with boost noise can be detected, as shown in Figure 
13. The improvement of detection will leads to better 
results for following recognition process.  
4.3.2 Better Combination of Various Features 

To improve furthermore the performance, two features, 
MFCC and cluster number, of speeches are unified and 
evaluated. MFCC degree varied from 8 to 36 with interval 
4 and cluster number varied on 32 to 256 with interval 32. 
We evaluated all the combination for these two features 
with various numbers. The process times needed for 
computation are shown in Table 2.  

Table 2: processed time with VQ = 64. 

MFCC 
degree 8 12 16 20 24 28 32 36

MFCC 15.8 16.9 18.6 23.5 25.3 27.2 28.5 29.9

 VQ 1.0 2.6 3.3 3.4 3.8 4.9 5.3 6.6 

HMM 1.7 1.7 1.8 1.8 1.8 1.8 1.9 1.9 

The best results can achieve on MFCC Number= 20 
and VQ clustering number = 64. The inside and outside 
testing of recognition achieve 96% and 81% shown in 
Figure 14 and the net. results are upgraded up to 3.5% and 
4.2%, respectively. Because of the limit of pages size, we 
just list the results with VQ = 64.   

 

Figure 12: before improvement, Chinese number 8 (ㄅㄚ). 

 

 
Figure 13: after improvement, Chinese number 8 (ㄅㄚ).  

Figure 14:  performance with VQ = 64, MFCC degrees 
varied between 8 and 36. 

5. Conclusion 
In this paper, we address the speaker independent 

speech recognition of Chinese number speeches based on 
HMM. 480 speech samples are recorded and pre-processed. 
the results of outside testing achieves  76.79%. 

To improve furthermore the performance, two 
features of speeches; MFCC and VQ cluster number, are 
combined and evaluated. The best performance achieve 
on MFCC Number = 20 and VQ clustering number = 64. 
The final inside and outside testing of recognition achieve 
96% and 81%  

Several works will be researched in future: 
1) Improving the selection of speech feature used 

for recognition. 
2) Employing other effective methods to merging 

our approach in the paper to enhance the 
performance. 

3) Expanding the methods into Chinese speech. 
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