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Abstract-H.264/AVC is the newest video coding standard. 
Compared with MPEG-2, MPEG-4, and H.263, H.264/AVC 
provides highest coding efficiency and better video quality. 
Motion compensation is one of the techniques for 
enhancement video quality in video decoder standard that 
includes 6-tap FIR filter and 1/4-pel precision for 
luminance and 1/8-pel precision for chrominance. In 
H.264/AVC decoder, the motion compensation consumed 
39% decoding time, which is the most important influence 
of decoding system because of its complex computation. 
For this reason, in this paper, we proposed an efficient 
motion compensation interpolation architecture for 
reducing computational complexity in H.264/AVC decoder. 
Since the luminance computation occupies 80% of the 
whole motion compensation interpolation computation, 
consequently, we propose two algorithms to reduce the 
computational complexity for luminance component — the 
6-tap Mean Filter, which applies 6-tap FIR filter method 
and Mean concept, and the 4-tap Mean Filter, which 
applies 4-tap FIR filter method and Mean concept. 
Furthermore, we propose a novel data supply mechanism, 
called Snake Path, in order to save hardware area. 
Presently, we adopt parallel and pipelined architecture for 
our proposed method in hardware implementation. Through 
the software simulation, the reconstructed video quality 
shows approximate image quality compare with traditional 
6-tap FIR filter adopting our proposed 6-tap Mean Filter 
algorithm. Our designs are synthesized with TSMC 0.13 μm 
technology. The synthesized results show that two proposed 
algorithms with Snake Path control can save hardware cost 
48% and 68%, respectively. 

Keywords: Motion Compensation, H.264/AVC, FIR Filter, 
MC Interpolation, Snake Path 

1. Introduction 
    To come up against the rapidly growing demands of 
multimedia applications, many generations of video 
encoding/decoding standards, such as MPGE-1, MPEG-2 
and MPEG-4, swere developed by the ISO/IEC moving 
picture experts groups. For providing a video stream in 
higher quality via limited transmission resources, a better 
video coding standard, H.264/AVC, was jointly developed 

by ISO/IEC and International Telecommunications Union - 
Telecommunications Standardization Sector (ITU-T) with 
higher compression efficiency in stream bit-rate and better 
video quality. Compared with MPEG-4 advanced simple 
profile and H.263 high latency profile, H.264/AVC saved 
about 37% and 48% bit-rate with the same quality of video, 
respectively [1]. 

    H.264/AVC is a high efficiency coding standard based 
on a motion compensated hybrid Discrete Cosine 
Transform algorithm. To achieve the requirements of high 
quality and low bit rate, it adopts many advance and 
precision coding skills. The coding process of H.263/AVC 
consists of the following major tasks: Inversed Integer 
Discrete Cosine Transform, Context Adaptive Binary 
Arithmetic De-Coding, Context Adaptive Variable Length 
De-Coding, De-blocking Filter, Variable Block Size Motion 
Compensation (MC), and Quarter-pixel Precision Motion 
Vector [2, 3]. With deeper resolution of image 
reconstruction into level of Quarter Pixel, the 
computational complexity of MC interpolation is increased 
compared with previous video standards [4,5]. Lappalainen 
et al. [6] analyzed the execution behaviors of H.264 coding 
and decoding process and indicated that the decoder 
expanded large portion of computing power, over 39%, in 
performing the MC interpolation. Obviously the highly 
demanded computation resources for MC interpolation 
dominated performance of entire H.264/AVC decoder. 

    In this paper, we proposed two filtering algorithms and 
designed associated hardware with effective parallel 
computation mechanism for MC interpolation in 
H.264/AVC decoder. 

2. Background and Related Work 
    The key technique of motion compensation 
interpolation is based on n-tap FIR filtering for evaluating 
the value of quarter pixel to improve the quality of image 
with higher resolution. Before discussing computation 
behaviors for the interpolation in detail, we first explained a 
general executing flow of H.264/AVC decoder briefly. 
Since the interpolation process for both luminance (luma) 
and chrominance (chroma) components was very similar, 
we illustrated the process only for luma component as an 
example. 
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2.1 Basic concept of H.264/AVC decoder 
    The processing steps of a H.264/AVC decoder is 
consisted of Entropy Decoder (ED) , Reorder (RO), Inverse 
Scan and Quantization (IS/IQ), Inverse Discrete Cosine 
Transform (IDCT), Deblocking Filter (DBF), Intra 
Prediction (IP) and Motion Compensation (MC), as shown 
in Figure 1. The encoded bitstream comes from a broadcast 
system or video file source in a variable length coding style. 
After ED processed the bitstream, motion vectors and 
header information are isolated for MC and IP steps. One 
the other hand, the pixel data is sent to the RO, IS/IQ, and 
IDCT one by one to re-generate the image pixels in 
macroblocks. Based on motion vectors and header 
information, the MC and IP properly reconstruct the 
original pictures with one or more reference pictures. For a 
better video quality, a DBF is employed to remove blocking 
effect cause by DCT and Quantization. Finally, the 
resulting frame picture is shown in front of user via display 
devices.  

  
Figure 1. General Structure of a H.264 Decoder  

    H.264/AVC is a macroblock-based system adopted a 
tree structure motion compensation method. Unlike 
previous standards, such as MPEG-4 and H.263, 
H.264/AVC supports variable motion compensation block 
sizes which ranged from 4x4 to 16x16, and fine sub-pixel 
sample motion vectors [8]. Each macroblock and 
sub-macroblock partition in an inter-mode is predicted base 
on one or more previously encode video frames via motion 
estimation. In decoder, the predicted samples are generated 
according the motion vectors through motion compensation 
and according the residual data to produce the 
reconstructed macroblocks. Most of computations are 
executed on the sub-pixel sample interpolation process and 
the process was the most time consumed step of the 
decoder steps. 

2.1.1. Sub-pixel Sample Interpolation  
    The execution of sub-pixel sample interpolation is 
based on a 6-tap FIR filter with six filtering weights (1, -5, 
20, 20, -5, 1) [9]. Figure 2 shows the locations of 
integer-pixel, sub-pixel and quarter-pixel samples in the 
luma component interpolation scheme. The integer-pixel 
samples in the figure are labeled as A1-A6, B1-B6, C1-C6, 
D1-D6, E1-E6 and F1-F6. The outer sub-pixel samples, b, 
h, s and m, can be derived by applying 6-tap FIR filter 
using integer-pixel samples as inputs. For example, the 
horizontal sub-pixel b is computed according A3, B3, C3, 
D3, E3 and F3 by applying equation (2.1). The final 
prediction values b is derived through the Clip operation 
that clips the resulting value between [0, 255]. In the same 
manner, other sub-pixel samples s, h and m can be 
generated by using integer-pixel samples located in the 
same directions.  

 b1 = ( E3－5×F3＋20×A3＋20×B3－5×C3＋D3 ) 
 b = Clip(( b1＋16 ) >> 5 ) (2.1) 

    The inner sub-pixel sample j is derived by calculating 
the intermediate value denoted as j1 first by applying the 
6-tap FIR filter to the intermediate values of the adjacent 
six half sample positions in either the horizontal or vertical 
direction, as shown in (2.2). 

 j1 = ( cc－5×dd＋20×h1＋20×m1－5×ee＋ff ) 
 j1 = ( aa－5×bb＋20×b1＋20×s1－5×gg＋hh ) 
 j = Clip(( j1＋512 ) >> 10 )  
   (2.2) 

 
Figure 2. Integer-pixel and Sub-pixel Sample Locations in 

Luma Component Interpolation Scheme 

2.1.2. Quarter-pixel Sample Interpolation 
    The luma values at quarter sample positions can be 
derived by averaging one full nearest sample and one half 
nearest sample [10]. For example, the quarter-pixel a is 
computed by A3 and b as shown in equation (2.3). By 
averaging with upward rounding of the two neighboring 
samples located at integer and half sample positions, the 
samples located at quarter sample positions labeled as a, c, 
d, n, f, i, k, and q are calculated by applying the same 
formula. 

   a  = ( A3＋b＋1 ) >> 1                  (2.3) 

    By averaging with upward rounding of the two 
neighboring samples locate at half sample positions in the 
diagonal direction, the samples locate at quarter sample 
positions labeled as e, g, p, and r can be derived by 
applying equation (2.4).  

 e  = ( b＋h＋1 ) >> 1 (2.4) 

2.2 Related Works 
    For the execution flow of H.264/AVC decoder, many 
designs were proposed to improve the performance of the 
process. Wang and Lie were designed new architectures for 
executing interpolation and computational processes 



efficiently, respectively.    

2.2.1. Interpolation Architecture [11] 
    Wang use multi-stage sub-pixel interpolation 
architecture for luma component. The sub-pixel 
interpolation architecture is composed of reference data 
buffer and reference data feeding architecture. 9x9 pixels 
valid reference data is stored into reference data buffer in 
order to correspond with one 4x4 luma data interpolation. 
The reference data feeding architecture composed of four 
parts as show in Figure 3. According to the experimental 
result and our observation shows the multi-stage sub-pixel 
interpolation architecture is realized with traditional 6-tap 
FIR filter may consume more hardware cost. 

 
Figure 3. Reference Data Feeding Architecture 

2.2.2. Computational Architecture [12] 
    Lie proposed an alternative design using 4-tap 
diagonal FIR filter for MC interpolation in luma component. 
The luma values at half-pixel sample positions are derived 
by applying a 4-tap FIR filter with filter weights (-1, 5, 5, 
-1). Noticeable, the samples located at half sample position 
labeled as j can be derived by using diagonal integer pixels 
C2, B3, A4, and F5. Compared with traditional 6-tap FIR 
filter, Lie's algorithm has disadvantage on quality 
degradation in image PSNR performance because of the 
mismatched filtering structure between encoder and 
decoder. According the software simulation results, the 
reconstructed frames may cause the sharpen effect, as 
shown in the following. Figure 4 (a) is an original CIF 
(352x288) frame of News and Figure 4 (b) is using 4-tap 
diagonal filter FIR interpolation frame. Obviously, the 
newscaster's face is sharpened of reconstructed frame 
compared with original frame. 

    
 (a) Original          (b) 4-tap Diagonal Filter 

Figure 4. Original Frame and 4-tap Diagonal Filter 
Interpolation Frame 

3. Design 
    Under considerations of hardware implementation, we 
employed a parallel and pipelined architecture to 
implement the MC interpolation. The architecture, as 
shown in Figure 5, is consisted of Reference Data Buffer 
(RDB), Input Data Array (IDA), Pipeline Controller (PC), 
and Fractional Interpolation Pipeline Architecture (FIPA). 

 
Figure 5. Motion Compensation Interpolation Architecture 

3.1. Proposed Algorithms for MC Interpolation 
    We proposed two algorithms, STM Filter and FTM 
Filter, to retain the reconstructed video with the same level 
of quality as the video processed by traditional 6-tap FIR 
filter and moreover to improve the computational efficiency. 
The concept of STM filter is applying a 6-tap FIR filter 
method and Mean concept. The luma values at half-pixel 
sample positions can be derived by applying a 6-tap FIR 
filter with filter weights (1, -5, 20, 20, -5, 1) and by 
averaging four nearest samples at half sample positions. 
The inner half sample position labeled as j in Figure 2 is 
derived by averaging with upward rounding of the four 
closest samples locate at half sample positions as shown in 
(3.1). 

 j = (( b＋h＋s＋m＋2 ) >> 2 ) (3.1) 
    The STM filter, on the other hand, applies a 4-tap FIR 
filter method and Mean concept. The luma values at 
half-pixel sample positions can be derived by applying a 
4-tap FIR filter with filter weights ( -1, 5, 5, -1 ) and 
averaging four neighboring samples at half sample 
positions.  

3.2. Reference Data Buffer and Input Data Array 
    In order to achieve the parallel requirements, we 
divided the reference data into two parts, the reference data 
buffer store the reference data for a 4x4 luma block 
interpolation and the input data array store the necessary 
integer pixels for fractional interpolation pipeline 
architecture, as shown in Figure 6. According the formula 
of 6-tap FIR filter, the filter requires a larger area of pixel 
data for interpolating a 4x4 block area. Two-pixel extension 
on the left and top side of the 4x4 block and three-pixel 
extensions on both right and bottom sides are required.     
Therefore, the hardware needed to buffering sixty-five 
neighboring pixels in registers for possible references. In 
order to handle the frame whose boundaries or size are not 
a multiple of four or eight, we divided the large block size 
into multiple 4x4 blocks, and then the frame edges are 
filled with the duplicates boundary pixels to receive straight 
reference data in the filtering [13].  



    The FTM filter method is based on 4-tap FIR filter, 
when enforced a 4x4 block interpolation, the original 4x4 
block needs to plus one-pixel extension to the left and top 
and 2-pixel extension to the right and bottom except 4 
pixels of four corners. Consequently, the hardware needs to 
buffer forty-five neighboring pixels in registers for possible 
references. Similarly, we used input data array between 
reference data buffer and fractional interpolation pipeline 
architecture.  

 
Figure 6. RDB and IDA of MC Interpolation Architecture 

3.3. Pipeline Controller of MC Interpolation 
Architecture 
    We proposed a new concept for pipeline controller, 
which controlled and managed the data updating procedure, 
called Snake Path, thereinafter abbreviation S Path. In STM 
filter method, as show in Figure 7, the blue dot-real 
rectangle represents S Path proceeding. That consists of 
two streams, the red dotted line represents control stream, 
and black arrow represents data stream that includes three 
parts, the data input from reference data buffer by three 
directions, the inner data stream of input data array, and 
output data to FIPA by horizontally directions (second and 
third row) and vertically directions (second and third 
columns). In FTM filter method, because of using 4-tap 
FIR filter for fractional sample interpolation, only 
forty-five pixels reference data and twelve pixels reference 
data is supplied for RDB and IDA, respectively. The 
structure of Snake Path for FTM filter shows in Figure 8.  

 
Figure 7. Structure of Snake Path for STM Filter 

    The S path of STM filter method can be divided into 
three portions: Shift-up, Shift-left and Shift-down. In FTM 
filter method, the operations are the same as STM filter 
method except the reference data buffer with forty-five 
integer pixels and twelve integer pixels input data array.  

3.4. Fractional Interpolation Pipeline Architecture 
(FIPA) 
    To achieve design simplicity, we chose pipeline 

architecture to implement the fractional interpolation. For 
pipeline interpolation architecture, we divide the fractional 
interpolation process into three stages: Half-level, Center 
half-level and Quarter-level.  

 
Figure 8. Structure of Snake Path for FTM Filter 

    The block diagram of fractional interpolation pipeline 
architecture was shown in Figure 9. First, "Half-level" 
handles two vertical and on second and third row column 
and two horizontal on second and third row of input data 
array by the SixTapFilterArray or FourTapFilterArray in 
parallel; middle values of half-level future deliver to 
"Center half-level" to enforce the intermediate half-pixel 
filter by the MeanFilter; afterward, if the goal is the 
quarter-pixel sample location then two half-pixel samples 
or one half-pixel and one integer-pixel sample are filtered 
by BilinearFilter. According to current motion vector, the 
multiplexer choice which one of the samples on 
integer-pixel sample location or sub-pixel sample location 
output to next stage. The input data array, pipeline 
controller, and PelOut are also included to compose of a 
complete pipelined architecture. The detailed design of 
each stage except BilinearFilter in the architecture is 
explained in the following paragraphs. As for the design of 
BilinearFilter, it is the same as that of the bilinear filter in 
the related work. 

 
Figure 9. Block Diagram of Fractional Interpolation        
     Pipeline Architecture 

3.5. Architecture of SixTapFilterArray 
    In STM filter design, we divide the half-pixel 
interpolation process into two parts, SixTapFilterArray and 
MeanFilter. For the half-level stage, we combine four 6-tap 
FIR filter into a SixTapFilterArray to correspond with 
half-pixel samples interpolation in horizontal and vertical 
direction. Figure 10 shows that the architecture of 



SixTapFilterArray, the input reference data is loading from 
input data array, E3 to D3 and E4 to D4 are loading from 
second and third row; B1 to B6, and A1 to A6 are loading 
from second and third column, and output two horizontal (b, 
s) and vertical (m, h) half-pixel samples to next stage.  

 
Figure 10. Architecture of SixTapFilterArray 

3.6. Architecture of FourTapFilterArray 
    In FTM filter design, we also divide the half-pixel 
interpolation process into two parts, FourTapFilterArray 
and MeanFilter. We integrate four 4-tap FIR filter to build a 
FourTapFilterArray in order to correspond with half-pixel 
sample interpolation in horizontal and vertical direction of 
half-level stage. Figure 11 shows that the architecture of 
FourTapFilterArray, twelve integer samples are loaded 
from input data array, F3 to C3 and F4 to C4 are loaded 
from second and third row; B2 to B5 and A2 to A5 are 
loaded from second and third column, then output a 4x1 
half-pixel array to next stage. 

 
Figure 11. Architecture of FourTapFilterArray 

3.7. Architecture of MeanFilter 
    The mean filter is used for intermediate half-pixel 
sample interpolation process on center-location. Figure 12 
shows the related position of the reference and fractional 
interpolation pixels of mean filter. The gray blocks 
represent the sample on full-pixel location and green block 
represent the sample on half-pixel location. In our design, 
the center half-pixel interpolation process needs adjacent 
four half-pixel samples on horizontal and vertical location 
to produce one center sample on half-pixel location. The 
function representations of mean filter with one time filter 
coefficient and the regulative result can be written as 
equation (3.2). The architecture of mean filter with four 
adders and one shifter is shown in Figure 13. 

 j = (( b＋s＋m＋h )＋2 ) ÷ 4 )   
  j = (( b＋s＋m＋h )＋2 ) >> 2 ) (3.2) 

 
Figure 12. Related Pixels of Mean Filter 

 
Figure 13. Architecture of Mean Filter 

    Our proposed methods use four 6-tap filters; each 
6-tap filter with 7 adder (add.) and 3 shifter (shif.), or four 
4-tap filters; each 4-tap filter with 5 adder and 2 shifter, and 
one mean filter with 4 adder and 1 shifter, and one bilinear 
filter with 2 adder and 1 shifter, and two cross registers 
structure for storing unfiltered pixels. Obviously, our 
methods can reduce half hardware cost compared with 
6-tap FIR filter method. The number of filters, adders, 
shifters, and registers may mirror the bulk of hardware cost. 
Figure 14 illustrated the input data transfer and how the 
luma filter worked of STM filter method. We sequentially 
read in integer pixels from reference data buffer to input 
data array. As soon as, we obtained enough data, we can 
start to filter the integer pixels. For example, red blocks 
represent 4x4 luma partition, black block represent 
reference data extension, and circular number shows MC 
interpolation location. First read four pixels A1, B1, A2, 
and B2 form the first and second row. We needed to read 
successive integer pixels until we got twenty pixels from 
the first to the sixth row. Then, we had enough data to filter 
and output the interpolation data while reading and filtering 
integer pixels. 

    For FTM filter method, we will need fewer cycles for 
interpolating integer pixels and there was slight different in 
data transfer, such as read data from second and third row 
in cycle 0 and cycle 1 respectively, and read data from first 
and fourth row in cycle 2 as show in Figure 15. 

 
Figure 14. Reference Data Supplying Architecture of STM 

Filter 



 
Figure 15. Reference Data Supplying Architecture of FTM 

Filter 

    The time management of one 4x4 block of STM filter 
method was shown in Figure 16. We needed 4 cycles for 
reading reference data. Then, after finish reading, we 
started to process interpolation. The interpolation pipeline 
delay is consumed 4 cycles, among process periods, the last 
cycle overlapped the first interpolation output pixel of 
interpolation computing, and 16 cycles consumed on full 
luma pixel interpolation computing. After we complete 
interpolation, we start to process the next block. 

 
Figure 16. Time Management of One 4x4 Block of STM 

Filter 

4. Experimental Results 
    The verification environment of our designs was based 
on H.264 reference software JM11.0 at High profile which 
was providing by JVT [14]. All sequences was make up of 
only one I-frame at the starting of a sequence, and two 
B-frames were inserted between each two uninterrupted 
P-frames, the QP of three types were set to 25. Full search 
motion estimation with a range of ±16 and hadamard 
transform was used. The test samples, includes eight QCIF 
and CIF sequences : "Akiyo", "Carphone", "Mobile", 
"Foreman", "News", "Coastguard", "Container", "Silent", 
one QCIF sequence : "Salesman", and two CIF sequences : 
"Stefan", "Football" were used for tests. Each sequence, 
composed of 100 QCIF (176x144 pixels) frames and 300 or 
258 CIF (352x288 pixels) frames. Other specification such 
as frame rate was set to 30, entropy coding was set to 
CABAC, and the RD-optimized mode decision is disabled.  

    Since the H.264/AVC has been become the standard, 
in the software simulation, we kept the interpolation 
method of encoder and investigate the feasibility of 
adopting different interpolation filters (i.e., 4-tap diagonal 

FIR filter [9] and our proposed FTM filter and STM filter) 
in MC interpolation of decoder. 

    We modified the source code of H.264/AVC decoder, 
using 4-tap diagonal filter [9] and our proposed methods 
instead of traditional 6-tap filter algorithm in MC 
interpolation. The peak signal-to-noise ratio (PSNR) 
performance for the QCIF sequences and the CIF 
sequences are shown in Table 1 and Table 2. We only 
compare the PSNR performance of luma element (PSNRY) 
between the frames constructed by using 6-tap filter, 4-tap 
diagonal filter, FTM filter, and STM filter. The gain of table 
is the difference in PSNRY between 6-tap filter and 
employing interpolation methods. Form simulation results, 
the 4-tap diagonal filter caused average 4.65 dB and 8.2 dB 
PSNRY degradation for reconstructed video quality of 
QCIF sequences and CIF sequences, respectively. 
Relatively, our proposed FTM filter and STM filter average 
less than 4.47 dB and 2.02 dB of QCIF sequences, and less 
than 7.39 dB and 3.18 dB of CIF sequences. 

    Table 1. PSNR Performance for the QCIF Sequences 

6-tap 4-tap 
diagonal FTM STM 

Sequence PSNRY 
(dB) 

PSNRY 
(gain) 

PSNRY 
(gain) 

PSNRY 
(gain) 

Akiyo 40.84 38.04 
(-2.80) 

37.90 
(-2.94) 

39.88 
(-0.96) 

Carphone 39.50 34.10 
(-5.00) 

34.56 
(-4.94) 

37.50 
(-2.00) 

Mobile 36.07 25.38 
(-10.69) 

24.38 
(-11.69) 

27.99 
(-8.08) 

Foreman 38.56 30.82 
(-7.74) 

31.97 
(-6.59) 

35.41 
(-3.15) 

News 39.21 36.28 
(-2.93) 

36.96 
(-2.25) 

38.16 
(-1.05) 

Coastguard 36.56 33.01 
(-3.55) 

32.92 
(-3.64) 

34.88 
(-1.68) 

Container 38.51 33.94 
(-4.57) 

33.95 
(-4.56) 

38.46 
(-0.05) 

Silent 38.22 35.94 
(-2.28) 

36.09 
(-2.13) 

37.53 
(-0.69) 

Salesman 38.07 36.18 
(-1.89) 

36.51 
(-1.56) 

37.53 
(-0.54) 

Average 38.39 33.74 
(-4.65) 

33.92 
(-4.47) 

36.37 
(-2.02) 

   Subsequently, we further discussed the restructured 
video quality of different interpolation methods. We could 
obviously realized not only the PSNRY degradation as 
show in above tables, but also damaged and caused the 
sharpen effect for reconstructed frame. Such as the roof and 
the eyes of foreman sequence, and the newscaster faces of 
news sequence. There are two reasons may cause the 
effects, first reason was the mismatch between encoder and 
decoder, another was the 4-tap diagonal filter using 
diagonal direction integer-pixel samples to process 
intermediate half-pixel sample, which may created lower 
correlation with 4-tap filter coefficients compared with 
using horizontal or vertical direction integer-pixel samples 
with 6-tap filter coefficients in traditional 6-tap filter. This 
signifies the reconstructed frame may cause larger error 
under mismatch situations, nevertheless since the FTM 



filter using four nearest half-pixel samples with mean 
method to deal with the intermediate half-pixel sample, that 
enhanced the correlation about interpolation pixel, 
accordingly, there were lower sharpen influence for 
reconstructed frame beside 4-tap diagonal filter. 

Table 2. PSNR Performance for the CIF Sequences 
6-tap 4-tap 

diagonal FTM STM 
Sequence 

PSNRY 
(dB) 

PSNRY 
(gain) 

PSNRY 
(gain) 

PSNRY 
(gain) 

Akiyo 41.91 32.61 
(-9.30) 

34.39 
(-7.52) 

39.11 
(-2.80) 

Carphone 39.69 31.32 
(-8.37) 

32.56 
(-7.13) 

37.11 
(-2.58) 

Mobile 36.58 22.63 
(-13.95) 

23.18 
(-13.40) 

27.99 
(-8.59) 

Foreman 38.43 31.11 
(-7.32) 

32.66 
(-5.77) 

35.79 
(-2.64) 

News 40.35 32.62 
(-7.73) 

33.60 
(-6.75) 

38.27 
(-2.08) 

Coastguard 37.03 28.57 
(-8.46) 

29.48 
(-7.55) 

32.26 
(-4.77) 

Container 38.35 27.97 
(-10.38) 

28.06 
(-10.29) 

37.53 
(-0.82) 

Silent 38.11 32.81 
(-5.30) 

34.29 
(-3.82) 

37.02 
(-1.09) 

Stefan 37.75 28.03 
(-9.72) 

28.27 
(-9.48) 

32.15 
(-5.60) 

Football 38.22 36.71 
(-1.51) 

35.99 
(-2.23) 

37.35 
(-0.87) 

Average 38.64 30.44 
(-8.20) 

31.25 
(-7.39) 

35.46 
(-3.18) 

    For the same reason as FTM filter method, the STM 
filter using nearest four half-pixel samples to process the 
intermediate half-pixel sample, and the four half-pixel 
samples in horizontal and vertical direction were processed 
by using 6-tap FIR filter, hence, the sharpen effect may be 
improved for reconstructed frame. Such combination may 
create almost video quality for reconstructed frames 
contrast with traditional 6-tap filter and reduced the 
consumption of hardware cost. Obviously, not all of the 
PSNR performances are superiority of the reconstructed 
frames by STM filter over the reconstructed frames by 
4-tap diagonal filter. The video quality by STM filter was 
nearly with original frame and reconstructed frame by other 
interpolation methods. Considering the nearly video quality 
for H.264/AVC decoder, STM filter was the better choices 
on the lower computing complexity video decoding system. 

5. Conclusion 
    In this paper, we proposed two luma interpolation 
algorithms for MC interpolation in H.264/AVC 
decoder--FTM filter and STM filter and designed effective 
parallel and pipelined hardware architecture for the 
proposed algorithms, which included a new data supply 
method--Snake Path controller for realization in hardware. 
The average PSNR performance of luma element in FTM 
filter, by which that is less than 7.39 dB and higher than 
0.81 dB compared with 6-tap FIR filter and 4-tap diagonal 
FIR filter at penalty of slightly sharpen effect; the average 

PSNR performance in STM filter, by which that was less 
than 3.18 dB and higher than 5.02 dB compared with 
traditional 6-tap FIR filter and 4-tap diagonal FIR filter at 
nearly video quality. Both the FTM and STM MC 
interpolator were synthesized with TSMC 0.13 um 
technology. Our design employs fewer adders, shifters, and 
registers for realization in hardware, the hardware cost of 
FTM filter and STM filter could save 68% and 48% 
compared with 6-tap FIR filter, and that could save 21% 
and increase 29% compared with 4-tap diagonal FIR filter. 
If the computational complexity was a top priority and the 
video quality was next consideration, the FTM filter may 
be a better choice with lower hardware cost design; but if 
the video quality is a top priority and the computational 
complexity is next consideration, the STM filter may be 
another better choice with nearly reconstructed video 
quality design. 
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