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Abstract

The web cluster has been commonly used in popular
web sites because of its high availability and scalability.
Many researches on web clusters have focused on
content-aware request distribution because dispatching
requests from clients to servers according to the content
of request (i.e. URI) can obtain better system
performance and achieve high locality in back-end
servers’ main memory caches. In our previous work, we
have proposed the TCP Rebuilding mechanism and the
fast handshaking mechanism to build a content-aware
web cluster named LVS-CAD on Linux kernel 2.4.

In this paper, to gain performance improvement from
new features in kernel 2.6, we have implemented the LVS-
CAD on kernel 2.6.18. Besides, in order to make LVS-
CAD platform easier to maintain and debug, we have
also implemented the related mechanisms as Linux
loadable kernel modules that can be dynamically
loaded/unloaded into/from Linux kernel. Moreover, we
have proposed and implemented a mechanism to reduce
excess multiple handoffs under persistent connection to
further improve performance of a web cluster. This
enhanced LVS-CAD is named LVS-eCAD. Experimental
results show that LVS-CAD on Linux kernel 2.6 can
perform 158.22% better than LVS-CAD on Linux kernel
2.4 and LVS-eCAD can outperform LVS-CAD and LVS
by 25% on Linux kernel 2.6.
Keywords: Web Cluster, Content-aware
Distribution, Multiple Handoffs
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1. Introduction

Because of the popularization of internet, many
popular web sites need to deal with large amount of
requests in a short period of time. Web clusters consisting
of multiple web servers connected by a high-speed LAN
have been widely adopted due to the advantages of load
sharing or balancing, scalability, and high availability.

The general web cluster employs a layer-4 web switch
[4] in the point of view of network layers to distribute
requests among back-end servers with request
distribution policies. A web cluster with a layer-4 web
switch is also called a content-blind platform, in which

the web switch is not aware of HTTP contents of requests.

So the layer-4 web switch is not sufficient while the

cluster needs to provide different quality of services or
dispatch requests based on request contents (i.e. URI). In
contrast, a web cluster with a layer-7 web switch [4] can
distribute requests according to the request contents and
is called content-aware web cluster [4].

The architecture of the content-aware web cluster can
be classified into one-way and two-way. In the two-way
architecture, back-end servers receive requests from
front-end server and all response packets have to pass
through the front-end server. Whereas, in the one-way
architecture, back-end servers receive requests from
front-end server and respond to clients directly. Thus,
web cluster can perform better in one-way architecture.

Some researches [4,8] have proposed techniques to
construct a layer-7 web switch with one-way or two-way
architecture. In our previous work [8], we have
implemented a content-aware dispatching web cluster
called LVS-CAD on Linux with kernel 2.4.18. This
cluster is efficient since it belongs to one-way
architecture and uses the light-weight TCP Rebuilding
mechanism [8] in back-end servers to rebuild the
connection with client and the fast handshaking
mechanism in front-end server to establish connection
with client.

In recent years, many new features in kernel 2.6 make
a web server more stable and efficient [6], including
Native POSIX Thread Library (NPTL) [5], O(1)
scheduler [1], and some I/O improvements [6]. To gain
performance improvement from new features in kernel
2.6 [6], in this research, we have transplanted the LVS-
CAD on Linux kernel 2.6.18. Different from our previous
work, we have implemented these two mechanisms as
loadable kernel modules that can be dynamically
loaded/unloaded into/from Linux kernel, to make the
LVS-CAD platform more flexible and easier to maintain
and debug. Experimental results show that LVS-CAD in
Linux kernel 2.6.18 can outperform the original LVS-
CAD in Linux kernel 2.4.18 by 158.22%. Moreover, we
have designed and implemented a mechanism to reduce
multiple handoffs under persistent connection to further
improve performance of a web cluster. Experimental
results show that this enhanced LVS-CAD named LVS-
eCAD can outperform LVS-CAD and LVS by 24.62%
and 24.55% respectively under Linux kernel 2.6.



2. LVS and LVS-CAD Web Clusters

Linux Virtual Server (LVS) [7] is a set of independent
Linux-based servers, which acts as a single server to
serve requests from clients. In LVS architecture, a web
cluster comprises a request-dispatching front-end server
and several request-handling back-end servers. The front-
end server is a layer-4 web switch which can perform
only content-blind request distribution that does not
consider request content (i.e. URI) in dispatching
requests from clients to servers.

In the content-aware LVS-CAD web cluster [8], the
TCP Rebuilding mechanism is applied on each back-end
server and the fast handshaking mechanism is
implemented on the front-end server. The front-end
server can use not only content-aware dispatching
policies, but also various content-blind dispatching
policies of LVS. The IPVS-CAD module is modified
from LVS’s IPVS module [7] to apply fast handshaking
mechanism. The fast handshaking mechanism can
perform three-way handshaking with clients at IP layer
instead of TCP layer so that it is more efficient than the
ordinary three-way handshaking.

Figure 1 shows the packet flow of LVS-CAD. In the
step 1, the IPVS-CAD module in the front-end server
performs three way handshaking with the client. The
front-end server then will receive the packet with HTTP
payload so that the front-end server can perform its
content-aware request dispatching policies. In the step 2,
the packets will be forwarded to the selected back-end
server without any modification. In the step 3, the back-
end server performs TCP Rebuilding to rebuilding the
connection when it receives the packet and then responds
to the client directly.
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Figure 1: Packet flow of LVS-CAD

LVS-CAD is efficient not only because it belongs to
one-way architecture, but also the front-end server does
not have to modify those packets forwarded to the target
back-end server. Especially, the front-end server does not
have to send extra packets to the target back-end server
for TCP state transfer so that the internal network will not
be full of extra packets for TCP connection transfer.
Besides, the back-end server’s response packets do not

have to be modified, so the back-end server can be more
efficient to send response packets to clients.

3. Implementation of LVS-CAD on Linux
Kernel 2.6

3.1 Front-end Server Implementation

This section introduces our major works of the front-
end server implementation including the fast handshaking
module implementation in IPVS module on Linux kernel
2.6.18, major changes of IPVS module from Linux kernel
2.4 to 2.6, and the connection state machine issue in
IPVS-CAD module.

In LVS-CAD of our previous work, to enable the
front-end server to adopt content-aware request
dispatching policies, at first the front-end server has to
perform three-way handshaking to establish connection
with client when it receives a SYN request from client.
After the connection has been established, the front-end
server then can receive the following request packet with
PSH flag and parse the content of the request to perform
content-aware dispatching. Therefore, the fast TCP
module handshaking [8] is proposed and implemented to
perform three-way handshaking with clients at network
layer instead of transport layer in IPVS-CAD module.
The fast handshaking mechanism is implemented in the
modified IPVS module named IPVS-CAD module [8].

In this paper, we have implemented this fast
handshaking mechanism from Linux kernel 2.4.18 to
Linux kernel 2.6.18 and implemented it as a loadable
kernel module. For easier to debug and maintain, we
implement the fast handshaking mechanism as a single
module instead of in the IPVS module, but the IPVS
module still has to be modified due to the export function
problems described in Section 3.2.3 and the connection
state machine problem described in Section 3.1.2. The
modified IPVS module is still named IPVS-CAD module.
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Figure 2. Simplified Neftfilter packet flow with
Netftfilter hooks in the implementation of the fast
handshaking module

Figure 2 depicts the packet flow with Netfilter hooks
(except the NF _IP FORWARD hook) in the



implementation of the fast handshaking module of the
front-end server. In LVS-CAD, since fast handshaking
module has to deal with three-way handshaking with the
client before the incoming SYN packet is forwarded by
IPVS-CAD module, the fast handshaking module is
hooked in front of the IPVS-CAD module.

3.1.1 Content-Aware Routing

In the original IPVS module of LVS, the dispatching
policy is invoked when the SYN packet is arrived for
connection establishment and the connection information
is stored in a connection table including the information
of the selected back-end server. Therefore, the following
packets in a persistent connection will be forwarded to
the target server without calling the dispatching policy.
Under a persistent connection, it is efficient to call
scheduler once and for all. However, if the front-end
server wants to perform content-aware routing, it has to
call dispatching policy when each request arrives. Thus,
the fast handshaking module calls conn_schedule when
each request arrives and changes the destination server
information is stored in the connection table if necessary.

Figure 3 shows the flow of fast handshaking module.
First, the incoming packet (step 1) has to be examined to
check if it is served by this cluster. If not, the packet is
past to the upper layer (step 2.a). Otherwise (step 2.b), if
the packet is a SYN packet for connection establishment
(step 3.b), fast handshaking handling will send SYN-
ACK packet (step 4) to establish a connection with the
client. If the packet belongs to an established connection,
the designated dispatching policy (step 3.a) will be used
to select a back-end server to serve the request and send
the request to IPVS-CAD module (step 5.b). If front-end
server has to perform multi-handoff, the fast handshaking
module will send a RST packet (step 5.a) to the current
connected back-end server to terminate the connection.
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Figure 3. Packets flows in the fast handshaking
module

The client may send different requests to the web
cluster for receiving different web files in a persistent
connection. When a client sends two requests for
receiving two web files which are served by different
back-end servers in a persistent connection, the front-end

server has to send the first request to one back-end server
to serve the request. Then, the front-end server has to
handoff the client connection to another back-end server
to serve the second request. Therefore, a persistent
connection between a client and a back-end server may
be hand off several times by the front-end server if
needed. Therefore, to support persistent connection, the
front-end server has to perform multi-handoff mechanism.
Figure 4 is an example of connection handoff between
back-end servers that is transparent to clients. The front-
end server simply sends reset packet (i.e. RST packet) to
the current connected back-end server 2 to terminate the
connection and then sends the request with PSH flag to
the newly selected back-end server 1 to serve the request.
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Figure 4. An example of multi-handoff

3.1.2 Connection State Machine in IPVS module

The front-end server uses its designated request
dispatching policy to select a back-end server for serving
the request. Some request dispatching policies (e.g.
Weighted Least Connection policy) need information (e.g.
the number of connections) on back-end servers to select
a proper back-end server to serve a request. Thus, the
connection state should be maintained in front-end server.
As shown in Figure 5, IPVS module in front-end server
will maintain the connection state for each connection
and each connection’s state will be changed depending
on the incoming packet. In IPVS module, before each
packet is forwarded to the selected back-end server, the
connection state will be maintained by calling the
state_transition function and the parameter is the
received packet.

Since in LVS-CAD for the port 80, the three-way
handshaking has been handled by our fast handshaking
module, the IPVS-CAD module will not receive the SYN
and ACK packets. Therefore, the connection state of each
connection will never be the ESTABLISHED state and
the information of established connection (i.e. active
connection) numbers in back-end servers will not be
correct. To make the connection state of every connection
work properly, when each fast three-way handshaking
has been performed and the IPVS-CAD has received a
packet with PSH flag, we first set the SYN flag on in the
received packet and call the state transition function
twice. In the first call, since the received packet’s SYN
flag is set, the connection state will be the SYN_RECV



state. In the second call, since the ACK flag is also set in
the received packet, the connection state will be
ESTABLISHED. After the connection state is
ESTABLISHED, we set the packet’s SYN flag off and
continue the processing in IPVS-CAD.

Receive
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Figure 5. Simplified IPVS state machine in IPVS
module

However, the connection state is recorded in a
connection entry created in IPVS-CAD module and the
state_transition function must been referenced in kernel
instead of modules, so we can not change the connection
state in fast handshaking module. To solve this problem,
we simply use a patch file to patch IPVS-CAD module to
make connection state of each connection work properly
by using above method so that the IPVS-CAD module
can maintain the correct information of established
connections in back-end servers.

3.2 Back-end Server Implementation

We mainly implement TCP Rebuilding mechanism in
the back-end servers of LVS-CAD. This section presents
our implementation and some problems we solve.

3.2.1 Different Layers Problem

TCP  Rebuilding  mechanism is  originally
implemented at transport layer in kernel 2.4, as shown in
Figure 6. In this paper, we have implemented it as the
kernel module hooked at NF_IP_ LOCAL IN in kernel
2.6. Like fast handshaking module, the TCP Rebuilding
module is also hooked by Netfilter at the network layer.

To implement TCP Rebuilding mechanism in network
layer as a kernel module, we have to solve some
problems. In Linux kernel, each packet is represented by
a socket buffer. The variables in a socket buffer will be
changed when the socket buffer is past to different layers.
As shown in Figure 7, the data pointer of the socket
buffer (i.e. skb->data) points to IP header in the network
layer and points to TCP header in the transport layer. In
our implementation of the TCP Rebuilding module, we

reuse some functions which are originally used by TCP
module to rebuild the connection. However, transport
layer functions used in network layer may cause
unexpected errors because the data pointer of the socket
buffer refers to different headers in different layers.
Hence, we have to modify the socket buffer structure so
that we can reuse TCP functions to perform TCP
Rebuilding mechanism at the network layer. To do so, we
use skb_pull function which is used to move the data
pointer of a socket buffer from IP header to TCP header
before performing TCP Rebuilding mechanism and use
skb_push function which is used to move the data pointer
of a socket buffer from TCP header to IP header to
modify the packet after finishing the operations of TCP
Rebuilding mechanism. Therefore, we can reuse some
functions which are originally used by TCP module to
rebuild the connection in the network layer.
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Figure 6. Implementation of TCP Rebuilding in
different kernels and different layers
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Figure 7. The socket buffer at different layers

3.2.2 Implementation of TCP Rebuilding Module
Figure 8 shows the packet flow in TCP Rebuilding
module. In our previous work of implementation in
kernel 2.4, the fake SYN packet and fake ACK packet are
made at transport layer for spoofing the TCP module to
rebuild the connection by conjecturing the sequence
number from the received PSH packet. In the
implementation of the TCP Rebuilding module in kernel
2.6, when a packet arrives for port 80, the module first
checks the TCP state to see if the TCP Rebuilding needs
to be performed (step 1). If the state is LISTEN and the
PSH flag is set in the packet, TCP Rebuilding is
performed (step 2). Then, a fake SYN packet will be



produced by copying the received packet (step 3). Some
TCP functions will then be called for establishing the
connection. The fake ACK packet will then be produced
to accomplish the connection (step 4). Finally, the
received PSH packet will be sent to the upper transport
layer (step 5).

Transport Layer

[ Modified TCP module

benchmark to generate requests and send requests to the
web cluster. All computers are connected to a ZyXEL
Dimension GS-1124 switch. We wuse the publicly
obtainable trace named WorldCup98 trace [2] from
Internet Traffic Archive [10]. The average file size is 161
Kbytes. The maximal file size is 2,824 Kbytes and the
total file size is 1,703,428 Kbytes.

Table 1. Hardware/Software Environment

TCP Rebuilding module tl

Network Layer

Figure 8. The packet flow with TCP Rebuilding
module

3.2.3 Other Kernel Modifications

In kernel 2.6, a kernel module can not call all
functions in the kernel and only the exported functions
can be used by a kernel module. Therefore, we have to
export some essential kernel functions for them to be
used by TCP Rebuilding module by wusing the
EXPORT SYMBOL macro. To export these functions,
we implement a patch file for users to patch the kernel to
include the EXPORT SYMBOL macros at first so that
TCP Rebuilding module can use these functions to
rebuild connections.

Besides, compared to kernel 2.4, some function
names in kernel 2.6 have been changed. Therefore, when
we transplant the TCP Rebuilding codes from kernel 2.4
to kernel 2.6, we must modify the TCP Rebuilding codes
to invoke correct functions for the changes of function
names. For example, the inet_protocol structure which is
used to register network protocol in kernel 2.4 has been
changed to net protocol in kernel 2.6 and some related
variables have also been changed. In addition, Linux 2.6
kernel supports more network protocols like DCCP and
SCTP. These new supported protocols may overlap some
source codes with the existent TCP or UDP protocols. To
avoid the duplicated source codes, TCP module also has
some code changes in kernel 2.6. For example, the
__tep_v4_lookup function used to access sock structure is
changed to  imet lookup function. So, the DCCP
protocol can also uses the  inet lookup function to
access sock structure. For the same reason, the
tcp v4_synq add function which is used to record
received SYN packet is changed to
inet_csk reqsk queue hash _add.

4. Performance Evaluation

Table 1 shows the hardware and software
environment. Our web cluster includes eight back-end
servers and one front-end server. Besides, ten computers
are used as clients and each client runs httperf [9]

Front-end | Back-end Client
CPU (Hz) P43.4G P42.4G
P3 800M
RAM 1G | 256/128MB 256MB
NIC(Mbps) Intel Pro 100/1000 Reltek RTL8139
Intel Pro100/1000
D-LinkDGE-530T
IPVS 1.0.4/1.21 | X X

Red Hat Linux 8.0/ 2.4.18, Gentoo Linux / 2.6.18

4.1 Platform Performance

We present the scalability comparison between the
original LVS-CAD in Linux kernel 2.4.18 and the
transplanted LVS-CAD in Linux kernel 2.6.18. Both
LVS-CADs use Weighted Round-Robin (WRR) [7]
policy to dispatch requests. Figure 9 shows that new
features and improvement in Linux kernel 2.6 really
make web server more efficient. The translated LVS-
CAD in Linux kernel 2.6 greatly outperforms LVS-CAD
in kernel 2.4. Even there is only one back-end server in
web cluster, the throughput in Linux kernel 2.6 is still
twice higher than the throughput in kernel 2.4. Especially,
in web cluster with eight back-end servers, LVS-CAD in
kernel 2.6 outperforms LVS-CAD in kernel 2.4 by
158.22%.
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Figure 9. Scalability comparison

4.2 Reducing Multiple Handoffs

Because excessive multiple handoffs can degrade the
performance of the whole web cluster under persistent
connection, so we integrate the idea of reducing multiple
handoffs into LVS-CAD. This new platform is named
LVS with efficient Content-Aware Dispatching platform
(LVS-eCAD). That is, no matter what policies have been




adopted by the front-end server, LVS-eCAD always
attempts to reduce excess multiple handoffs.

Figure 10 shows the flow of reducing multiple
handoffs in LVS-eCAD. If the current request-handling
server’s number of active connections subtracts the new
selected server’s number of active connection is less than
a, the request will be dispatched to the current request-
handling server. This means that the difference of the
loads between the current request-handling server and the
newly selected back-end server is not obvious and not
large enough, so it is not beneficial to hand off the
connection to the selected back-end server. Otherwise,
the request will be dispatched to the newly selected
server. Therefore, o is used to determine if the request
should be handed off to the selected back-end server.

TFetch arequest

Select a back-end server
from request dispatching
policy

s it worth to handoff connection?
(current_backend’s active connection — Yes
selected_backend’s active connection >=q

Handoff to the selected
back-end server

Dispatch to current
connected back-end server

Figure 10. LVS-eCAD reduces multiple handoffs

Figure 11 shows the performance comparison of
LVS-eCAD with different o value under the content-
blind WRR policy. Besides, Figure 11 compares the
LVS-eCAD with LVS and LVS-CAD under persistent
connection environment and each connection contains ten
requests. The performance of LVS is only slightly better
than that of LVS-CAD policy under content-blind WRR
policy. LVS-CAD is worse than that of the LVS platform.
This is due to the fact that excessive multiple handoffs in
LVS-CAD increase the server overhead to rebuild
connections with clients. However, the throughput of
LVS-eCAD platform is better than that of LVS-CAD and
LVS platform by 24.62% and 23.17% respectively when
the a is set to 1. Thus, reducing multiple handoffs can
really improve the performance of a web cluster even if
the request distribution policy is a content-blind policy.
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Figure 11. Performance comparison

5. Conclusions and Future Work

We have successfully transplanted the LVS-CAD
platform from Linux kernel 2.4.18 to Linux kernel 2.6.18
to gain new features and performance improvement on
Linux kernel 2.6. We have also implemented an efficient
content-aware platform name LVS-eCAD to reduce
excess multiple handoffs under persistent connection.
Based on the LVS-eCAD platform, several issues could
be further explored or enhanced, such as supporting the
front-end server to transfer some TCP options negotiated
during three-way handshaking to the selected back-end
server, session persistence, etc.
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