
A Concurrent Ubiquitous Video Streaming Platform Design Using SVC
Techniques and Multi-core Parallelism Programming

Chung-Ming Huang,IEEE Senior Member, Wan-Ping Tsai and Chung-Wei Lin,IEEE Student Member
Laboratory of Multimedia Mobile Networking

Department of Computer Science and Information Engineering
National Cheng Kung University, Tainan, Taiwan, R.O.C.

Correspondence: huangcm@locust.csie.ncku.edu.tw

Abstract—In the decade, CPU manufacture industries are
highly prompting multi-core CPU products, e.g., Intel Core2
Duo and AMD Athlon64 x2. The merit of the multi-core CPU
is able to dispatch multiple tasks in distinct CPU cores and
boost the execution speed in parallel. In this paper, we design a
Concurrent Ubiquitous Video streaming platform using Multi-
Core parallelism programming and the scalable extension of
H.264/AVC, which is called MC-CUV. The proposed streaming
platform is able to serve lots of heterogeneous users who mayuti-
lize distinct terminals through distinct network interfac es to get
on-demand videos from an ISP streaming server at meanwhile.In
our experiments, distinct video’s spatiotemporal resolutions and
SNR quality are presented depending on the device capability and
network condition. Comparing with the multi-core single-thread
streaming approach, the average execution time can decrease
effectively because multiple streaming tasks can be executed in
parallel using a proposed task dispatcher through multipleCPU
cores.

Index Terms—Multi-core parallelism programming, the scal-
able extension of H.264/AVC, ubiquitous video streaming.

1. INTRODUCTION

In 1965, Gordon Moore predicted the number of transis-
tors on a chip would double every 12 months in the near
future (a.k.a. Moore’s Law) [1]. The Moore’s Law depicted a
roadmap for the product engineer when they design the layout
of electronics transistors. In addition to the increased number
of transistors, the CPU clock frequency also doubled every
18 months in the series of Intel Pentium processor (1993-
2003) [2]. However, because of increased power consumption
(heating) and design complexity, the CPU clock frequency has
the bottleneck around 4GHz. To overcome the bottleneck of
the processing speed, many CPU manufacture industries are
highly promoting distinct processor architectures, e.g.,CMP
(Chip-level Multi Processing) and SMT (Simultaneous Multi
Threading) [3]. It is noted that the emerging multi-core CPU
belongs the CMP architecture. The merit of the multi-core
CPU is able to assign multiple tasks to be executed in distinct
CPU cores, such that the overall processing time can decrease
effectively. Thus, emerging multi-core programming is able to
make multiple tasks be executed in parallel, in which paral-
leled algorithms are frequently implemented using OpenMP
[4]. Unfortunately, the most of current softwares, e.g., games,

*This research is supported by the National Science Councilof the Re-
public of China, Taiwan under the contract number NSC 97-2219-E-006-002,
Information & Communications Research Labs (ICL), Industrial Technology
Research Institute (ITRI), Taiwan, ROC, and Intel Microelectronics Asia Ltd.,
Taiwan Branch.

computer vision, and Internet applications [5][6][7], arestill
developed based on the single-core processing architecture,
instead of the multi-core processing architecture. That is, no
data parallelism or function parallelism are considered inthe
most of software development.

In this paper, we design a concurrent ubiquitous video
streaming platform using multi-core parallelism programming
and Scalable Video Coding (SVC) techniques, called MC-
CUV. Considering the coming era of ubiquitous video stream-
ing, lots of heterogeneous users may utilize distinct terminals,
e.g., PDA, Laptop and desktop computer, through distinct
network interfaces, e.g., wired, Wi-Fi, 3G and Wi-Max, to get
on-demand videos from an ISP streaming server at meanwhile.
In order to satisfy distinct users’ quality requirements, one
of the MC-CUV server functions is able to generate specific
spatiotemporal resolutions and fidelity video bitstreams using
novel scalable video coding, e.g., the scalable extension of
H.264/AVC. Lots of heterogeneous users, routine maintenance
tasks, session mobility management and complicated quality
adaptation may result in heavy server loading in practical.
Thus, in MC-CUV, distinct users’ streaming tasks are designed
to be processed by distinct CPU cores through a proposed task
dispatcher.

The rest of this paper is organized as follows. Section 2
surveys the multi-core processor architecture, the usage of
OpenMP and the scalable extension of H.264/AVC. Section
3 introduces the proposed MC-CUV architecture. Section 4
introduces algorithms of the MC-CUV streaming parallelism.
Section 5 exhibits experiment results and Section 6 has con-
cluding remarks.

2. RELATED WORKS

In this Section, we mainly survey the multi-core processor
architecture, the usage of OpenMP and the scalable extension
of H.264/AVC.

2.1. The multi-core processor architecture

In these years, multi-core processors are highly-promoted
by Intel and AMD, and has rapidly grew when single-core
processors reach physical bottleneck. To date, in the Top100
supercomputers, more and more processors fall into the multi-
core processor family. The multi-core CPU (a.k.a. chip-level
multiprocessing, CMP) is a single CPU package that consists
of two or more independent processing cores, and then each
program thread is executed on distinct CPU cores. Distinct

CMP package technologies can be classified as follows: (i) all
cores on one die, e.g., Athlon 64 x2 and (ii) multiple dies each
with several cores, e.g., Core 2 Quad. It is noted that caches,
bus or memory are or are not communicated among distinct
CPU cores.

In addition to CMP, SMT is the other feasible processor
architecture that enables a single core to execute multiple
threads simultaneously. Intel Pentium 4 3.06GHz model re-
leased in 2002 was the first desktop processor that support
two-thread SMT engines (a.k.a. Hyper-Threading Technology
(HT)). From the experiment results, up to a 30% speed
improvement can be gained in comparison with other non-
SMT Pentium 4 CPUs. In the future, combined CMP and SMT
that allow an individual CPU core to execute multiple threads
is the trend.

2.2. The introduction to OpenMP

The OpenMP (Open Multi-Processing) is a parallel
multiprocessing API that is used for multi-platform shared-
memory programming in C and Fortran. In the OpenMP
parallelism, the master program is able to fork (split) several
slave threads and allocate them to different processor cores
using high-level instruments. The OpenMP instrument can be
formatted commonly by

”#pragma ompdirective [clause]”.

where (1) directive provides links to directives used in
the OpenMP API, e.g.,for, parallel, sections, etc.; (2)clause
provides links to clauses used in the OpenMP API, e.g.,
if, nowait, num threads, etc. More detail information of
OpenMP instruments can be found in MSDN [8].

It is noted that a good parallelism programming algorithm
is able to improve the application performance as OpenMP
is used. Data-domain and task-domain parallelism algorithms
are two common approaches to parallelize programs. The
data-domain parallelism algorithm is able to fragment data
into several independent sub-data, which require similar com-
putation cost; the task-domain parallelism algorithm is able
to decompose the original computation into multiple thread-
stages. D.E. Culler, et. al. considered that the data-domain
parallelism is more scalable than the task-domain parallelism
because less load-imbalance and shared-data synchronization
occurred in the data-domain parallelism [9].

2.3. The scalable extension of H.264/AVC

In consideration of network heterogeneity and device diver-
sity, streamed video quality should be adapted to distinct spa-
tiotemporal resolutions and SNR quality. To achieve the goal,
many approaches of scalable video coding were proposed, e.g.,
FGS (fine-granular scalability), FGST and the novel scalable
extension of H.264/AVC. The reference software of the scal-
able extension of H.264/AVC named JSVM (Joint Scalable
Video Model) aims at providing the combined scalabilities,
error robustness and graceful degradation for a variety of
network conditions and applications [10]. JSVM utilizes a 2-D
spatial decimation that generates the lower spatial-resolution

signal, e.g., from 4CIF to CIF/QCIF, to enable the spatial scal-
ability. Using the technique of the inter-layer prediction, higher
spatial-resolution motion information and texture signals can
be predicted for the intra-block prediction and motion coding.
JSVM utilizes the hierarchical B picture prediction structure
to achieve the temporal scalability, in which the last picture of
each GOP (Group of Picture) can be coded either as an I or
P picture. Besides, FGS is realized by repeatedly decreasing
the quantization parameter and applying the modified entropy
coding process. Nowadays, SVC is currently being developed
by the joint effort from both ITU-T VCEG and ISO/IEC
MPEG.

3. THE MC-CUV SYSTEM ARCHITECTURE

In the proposed MC-CUV, multi-core parallelism program-
ming is used to increase the processing speed when lots
of heterogeneous users’ requests are concurrently coming
and requesting streaming services; the scalable extensionof
H.264/AVC is used to provide distinct spatiotemporal resolu-
tions and bitrates of transmitted videos for satisfying device
diversity and network conditions. The complicated tasks of
MC-CUV contain SVC video data delivering, network con-
gestion prediction and session management. Referring to Fig.
1, major components of the MC-CUV streaming platform are
as follows:

(1) The MC-CUV management system: The MC-CUV
system provides a web portal (user interface) that manages up-
loaded videos and compresses these videos to SVC bitstreams
based on the user’s encoding configuration. The encoded
SVC data are stored in the large movie repository. Partial
management functions of MC-CUV, e.g., SVC encoding and
session mobility, were appeared in our previous paper [11].

(2) The socket interface: In MC-CUV, socket protocols, i.e.,
SIP/SDP and TCP, are used for session signaling and data
delivering, respectively. SIP is mainly responsible for creat-
ing/managing/terminating sessions and delivering the movie
menu, which is implmented using the eXosip library [12].

(3) The network-congestion detection module: The network-
congestion detection module mainly contains U-BEKF
(Bandwidth Estimation Using Kalman Filter for Ubiquitous
Video Streaming) for predicting the currently available band-
width. U-BEKF is our previous investigation w.r.t. the band-
width estimation using the Kalman filter [13]. According to
the packet RTT and loss-rate reported in the RTCP packet, the
precise available bandwidth (AvB) can be predicted based on
the results of the prediction and measurement models. In the
proposed MC-CUV task dispatcher, AvB is a critical factor
for determining each user’s transmission priority.

(4) The quality adaptation module: The quality adapta-
tion module mainly contains two kernels: (i) the Quality-of-
Presentation (QoP)-decision kernel and (ii) the real-timeSVC
bitstream extractor. The QoP-decision kernel is responsible
for determining the proper spatial resolution, frame rate and
transmission bitrate. Referring to Fig. 2, the spatial resolution
depends on the hardware monitor, the frame rate depends on
the memory capacity/CPU core, and the bitrate is truncated
based on the available bandwidth (AvB). According to the

Fig. 1. The system architecture of MC-CUV.

(PDA/Smartphone)

(UMPC/Notebook)

(Desktop)

< 512MB

< 1GB

< 2GB

Embedded CPU

~1G

~2G

~ 3G

Multi Core

WLAN

LAN

QCIF

CIF

4CIF

Spatial resolution Temporal resolution Bit-rate

Class A
memory <

512MB

Class B
memory

512MB- 1G

Class C
memory
1G - 2G

3.75 fps for 1G CPU

1.875 fps for Embedded CPU

3.75 fps for 1G CPU

7.5 fps for 2G CPU

15 fps for 3G CPU

15 fps for 2G CPU

30 fps for multi-core CPU

7.5 fps for 2G CPU

7.5 fps for 1G CPU

Fig. 2. The proposed hybrid QoP-decision rule.

QoP-decision result, the real-time SVC bitstream extractor
extracts the proper quality of SVC bitstreams, including base-
layer and partial enhancement-layer bitstreams. With the ad-
vances of SVC, QCIF/CIF/4CIF (spatial resolution), 1.875fps-
30fps (temporal resolution) and any transmission bitrate can
be combined arbitrarily for the user QoP requirement.

4. THE MC-CUV STREAMING PARALLELISM ALGORITHM

As mentioned before, a good parallelism algorithm is able
to increase the multi-core system performance. Thus, MC-
CUV tasks should be firstly identified and classified, e.g., SIP
session management, TCP/UDP data transmission and quality
adaptation. Fig. 3 shows the execution flowchart of MC-CUV,
which mainly consists of ’Menu’, ’Extract’ and ’Streaming’
stages. The ’Menu’ stage is responsible for delivering the
on-demand movie menu to multiple clients using the SIP
protocol. The ’Extract’ stage (quality adaptation) is responsible
for extracting SVC bitstreams based on the user preference
(manually) or the result of the proposed QoP-decision rule
(automatically). The ’Streaming’ stage is responsible fortrans-
mitting SVC bitstreams to multiple clients through a task
dispatcher in parallel. It is noted that ’Menu’, ’Extract’ and
’Streaming’ are regarded as task independecy because more

time-consumption of SVC streaming stage are required than
’Menu’ and ’Extract’ stages in our experience. In MC-CUV,
each client’s data delivery is independent in the ’Streaming’
stage.

Thus, the major obstacle that should be addressed is how
to design the concurrent ubiquitous video streaming platform
to make multiple streaming tasks be performed in parallel
in distinct CPU cores. The proposed MC-CUV streaming
parallelism algorithm contains a task dispatcher and OpenMP
programming, which are detailed as follows:

(1) Task dispatcher design: The task dispatcher is able to
select multiple coming user connections to deliver SVC video
data they preferred based on a weighted priority (κ). The
higher connection speed (τ), smaller video quantity (ς) and
longer waiting time (γ) will result in the higher weighted
transmission priority, i.e.,κ∞τ ∞γ∞1/ς. In the operating
system, the CPU scheduling theory points out the shortest-
job-first (SJF) algorithm is an optimal solution to schedule
the process queued in the CPU and decrease the waiting time
of each process. Like SJF, the proposed task dispatcher is
able to select user connection requests with top-n transmission
priorities from a socket queue.

(2) OpenMP programming: when multiple clients’
connections are selected, they will enter into parallelized

Fig. 3. Parallelized tasks in MC-CUV (black boxes: code sections that are able to be executed in parallel).

sections that is made using OpenMP. The directive of
OpenMP sections is able to identify code section to be
assigned among all threads, e.g.,

#pragma omp parallel sections numthreads(n)
{

#pragma omp section
{

MC-CUV streaming (0)
}

.
#pragma omp section
{

MC-CUV streaming (n-1)
}

}

Then, Operating System will assign these sections
codes (multiple MC-CUV streaming tasks) into distinct CPU
cores automatically, and thus these streaming tasks can be
performed in parallel.

5. EXPERIMENTAL RESULTS

In this Section, we will exhibit the snapshot of the MC-CUV
execution among heterogeneous networks and devices, the
SIP usage, and the performance of the MC-CUV streaming.
The experimental equipments are HP Compaq Notebook (Intel
Core2 Duo 2.4GHz, 2GB memory ram) and Acer desktop
computers (Intel Core2 Quad 2.4GHz, 2GB memory ram).

In the MC-CUV streaming platform, when the quality of
streamed videos are determined using the proposed QoP-
decision rule, the SVC bitstream extractor is able to ex-
tract specific quality sub-bitstreams (base-layer plus partial
enhancement-layers) accordingly. Referring to Fig. 4, distinct
on-demand video qualities are decoded and presented for dis-
tinct devices, e.g., CIF (desktop computer) and QCIF (PDA).
In addition, SIP is used for delivering the movie menu, and
its SIP/SDP message can be observed by Ethereal, which is
also shown in Fig. 4.

In addition, the proposed MC-CUV is compared with the
multi-core single-thread application. In our simulations, 10,
100, 1000 user connections are performed concurrently, and
the average execution times are compared when the same
on-demand videos are requested under the same assumption
of network conditions. Referring to Table I, when 100 user
connections are coming concurrently, the average execution
time is 815.1 seconds for the video transmission at the MC-
CUV streaming platform, and the execution time is 1413.6
seconds at the multi-core single-thread streaming application.
About 31%-43% gain can be obtained. Besides, balanced CPU
loading (near to 100% utilization) is also observed in the MC-
CUV streaming server side, which is shown in Fig. 5.

6. CONCLUSION

In this paper, we propose a Concurrent Ubiquitous Video
(CUV) streaming platform using multi-core parallelism pro-
gramming and the scalable extension of H.264/AVC (SVC). To
achieve the ubiquitous video streaming among heterogeneous
networks and devices, scalable layered on-demand videos that

Fig. 4. Distinct quality-of-presentation videos using thebitstream extractor
and the SIP/SDP message capture.

Fig. 5. The comparisons of the CPU utilization at (a) the multi-core single-
thread streaming application (45%-70%) and (b) the multi-core multi-thread
MC-CUV streaming platform (95%-100%).

TABLE I
THE COMPARISON OF EXECUTION TIME FOR THE PROPOSEDMC-CUV

AND SINGLE-THREAD STREAMING PROGRAMS.

Total concurrent MC-CUV Single thread Gain
connections execution time execution time

10 83.6 120.7 31%
100 815.1 1413.6 43%
1000 8512.3 13532.4 37%

are compressed using SVC are provided. Distinct Internet
protocols, e.g., TCP/UDP and SIP, are used for data delivering
and session message exchanges, respectively. In addition,to
serve lots of heterogeneous users who may utilize distinct
terminals through distinct network interfaces to get on-demand
videos from an ISP streaming server at meanwhile, a paral-
lelized MC-CUV streaming programming are developed using
OpenMP. Different user tasks can be assigned into distinct
CPU cores using the proposed task dispatcher in consideration
of user connection speed, quantity of transmitted videos and
its waiting time. In our experiments, the proposed MC-CUV
is able to make CPU loading more balanced, increase the
CPU utilization and decrease the execution time about 31%-
43% effectively. In the future, a multi-core computer server
cluster will be designed to increase the streaming efficiency
and achieve the goal of the load-sharing further.

REFERENCES

[1] G. E. Moore, ”Cramming More Components onto Integrated Circuits”,
Electronics, April 19, 1965.

[2] J. Parkhurst, J. Darringer, B. Grundmann, ”From single core to multi-
core: preparing for a new exponential”,Proceedings of the IEEE/ACM
International Conference on Computer-aided Design, pp. 67-72, Novem-
ber 2006.

[3] R. Noronha and D.K. Panda, ”Improving Scalability of OpenMP Appli-
cations on Multi-core Systems Using Large Page Support”,Proceedings
of the IEEE International Symposium on Parallel and Distributed Pro-
cessing, pp. 1-8, March 2007.

[4] Ommi OpenMP Compiler Project. [on-line] http://phase.hpcc.jp/Omni/
[5] T. P. Chen, D. Budnikov, C. J. Hughes, Y. K. Chen, ”Computer Vision on

Multi-Core Processors: Articulated Body Tracking,”Proceedings of the
IEEE International Conference on Multimedia and Expo, pp. 1862-1865,
July 2007.

[6] Q. Zhang, Y. Chen, J. Li, Y. Zhang and Y. Xu, ”Parallelization and
Performance Analysis of Video Feature Extractions on Multi-Core Based
Systems,”Proceedings of the IEEE International Conference on Parallel
Processing, September 2007.

[7] W.H. Li, A. M. Zhang, L and Kleeman, ”Real Time Detection and
Segmentation of Reflectionally Symmetric Objects in Digital Images,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4867-4873, October 2006.

[8] [on-line] http://msdn.microsoft.com/zh-tw/library/2kwb957d.aspx
[9] D.E. Culler, J. Pal Singh and A. Gupta, ”Parallel Computer Architecture:

A Hardware/Software Approach”, Morgan Kaufmann Publishers, 1999.
[10] [on-line] The SVC reference software JSVM, http://ftp3.itu.ch/av-

arch/jvt-site/2005
[11] C.M. Huang, T.Y. Wang, H.J. Lai and C.W. Lin, ”An H.264 SVC-based

Robust Video Streaming System Using the Adaptive Interleaving Coding
Technique and Unequal Error Protection”,Proceedings of Workshop on
Consumer Electronics and Signal Processing, pp. 90-96, November 2007.

[12] [on-line] http://www.gnu.org/software/osip/
[13] C.M. Huang, C.W. Lin and X.Y. Lin, ”A Predictive Video-on-Demand

Bandwidth Management Using the Kalman Filter 4 over Heterogeneous
Networks”, The Computer Journal, doi:10.1093/comjnl/bxn011, March
2008.

