
Issued a Novel Method for Multimedia Processors

Szu-Hsiung Ko Jih-Fu Tu

St. John’s University, Taiwan St. John’s University, Taiwan
96N04008@student.sju.edu.tw tu@mail. sju.edu.tw

Abstract - A configurable dual-core embedded
system for multimedia application of System-on-Chip
(SoC) was introduced in this paper, in which we
described a SoC consisting of a master processor and
a slave processor. The master processor is
represented by the simulator of SimpleScalar. In
addition, the slave processor collocates with Xtensa
processor, which is able to establish excellent
multimedia application than the traditional designs.
This proposed architecture can be configured in
multiprocessors architecture, and verified by a
provided simulation program. We get benefit in cost
control of arbiter restructure. The characteristics of
IP reused and portable architecture are exactly
corresponded to modern complicate SoC design. The
main functional blocks integrated in this system
includes dual cores, local memory, cache memory,
shared memory, shared bus, and so forth.

Keywords - SimpleScalar simulation, configurable
processor, instruction set simulators, and dual-core.

1. Introduction
The demand of multimedia communication embedded
systems in mobile and portable devices application is
growing nowadays. To realize multimedia
communication, the implementations of audio and
video compression standards are essential. More than
that, a system demanding better performance requires
higher clock frequency. Such that, multiple-function
handhold devices are often challenged by
power-saving, clock, speed, and heat dissipation.

To achieve higher performance with flexibility, the
hybrid architecture has been proposed. The
Operation-intensive functions are implemented with
hardwired blocks, while other functions of less
complexity are implemented with software which is
executed by an application specific instruction
processor. Current multimedia handhold devices are
often using build-in multi-core approaches [1]. The
system control and multimedia computation are
executed by separated cores. Although heterogeneous
cores reduce burdens by pre-defined tasks [10], but
maintaining two sets of developing environments
requires significant cost and manpower.

For example, multimedia on OMAP Solution,
which combined an ARM processor with TI’s digital
signal processor (DSP) [12], implemented every
function with software using an accelerated instruction
set for multimedia processing while keeping the
flexible software structure [6]. However, it is

worthwhile to point out that OMAP is not designed
only for multimedia embedded processor [12].

In this paper, we implement a dual-core system,
and a shared memory bus arbitration dealing with
shared memory accesses. Other components, like
another core or hardware accelerators, can be added to
this simulator system for co-simulation as long as they
have a shared memory bus interface.

This paper is organized as follows. In Section
describes the used simulation tools. Section 3 issues
the proposed architecture of dual cores for applying to
multimedia system. In Section 4 represents the
implementation methodologies. Finally, we remark the
conclusions and point out the future works.

2. Simulation Tools
A new configurable processor called Xtensa has been
recently developed by Tensilica [11]. The Xtensa
processor is based on instruction set architecture (ISA)
that includes the basic instruction set, and an
extensible function of adding user-defined instruction
sets. It also allows the configuration of options, like
interface options, memory subsystem options [5], and
various OS options.

By generating the processor from the high-level
language description, the platform designer regains the
control over the cost, performance, and function
attributes of the processor subsystem without being a
microprocessor design expert [8]. The four hard-wired
configurable categories [15] of Xtensa is shown in
Table 1.

Table 1 Configurable Hard-wired of Xtensa

Configurable Hard-wired Description
Instruction Set
Architecture

- ALU functions on
general registers
- Floating-point unit,
registers, state, interface
- Coprocessors with new
application specific data
types configuration
- High performance
parallel arithmetic and
DSP
- Five or seven pipeline
stages
- One or two Load Store
Units
- Tensilica Instruction
Extension (TIE) 16 and
24-bit instructions

Memory System

- Instruction cache size,
associativity, line size
- Data cache size,

mailto:96N04008@student.sju.edu.tw�
mailto: tu@mail. sju.edu.tw�

associativity, line size,
write policy
- Memory protection,
translation
Instruction, data RAM,
ROM size, address range

Interface

- External bus width,
protocol, address maps
- Direct connection of
system registers, queues,
multi ported memories to
internal data ports
- Multiprocessor
interconnect
- JTAG debug and trace
ports

Peripherals

- Timers
- Interrupt controller:
interrupt count, priority,
type, fast switching
registers
- Exception vector
addresses
- Hardware breakpoint
controls

2.1 SimpleScalar

The simulator, SimpleScalar, is a sim-outorder [13]
and to use to simulate the master processor in this study.
SimpleScalar is a set of execution-driven
cycle-accurate instruction set simulators (ISS) of
superscalar microprocessors. It comes with a complete
development environment (compiler, debugger, and
profiler) which allows the quick porting of any ANSI
C application to SimpleScalar. The SimpleScalar
toolset is composed of a GCC compiler, which was
ported for SimpleScalar architecture and can generate
SimpleScalar binary files. The assembler and loader
along with the necessary libraries in the toolset
produce SimpleScalar executables that can be fed
directly into any of the simulators in SimpleScalar.
The simulators themselves are compiled with the host
platform’s native ANSI C compiler. The simulators
are equipped with their own loaders, thus you do not
need to build the GNU binary libraries to run
simulation.

The micro-architecture of SimpleScalar is derived
from various ISA microprocessors. It supports
speculative execution. The memory system has a
load/store queue. The values are stored in this queue if
it is speculative. Load instructions are dispatched to
the memory system when the addresses of all previous
stores are known. Loads may be completed either by
the data from the memory system or by a value stored
in the queue if their addresses match to each other.
Speculative loads may generate cache misses but
speculative TLB misses stall the pipeline until the
branch condition is met.

2.2 Xtensa Instruction Set Simulation

Xtensa® Xplorer is an all-processor software
development tool. This tool has an integrated
graphical user interface. Used for processors new

creations, simulation, Profile, debug and analysis
program code. Tensilica's XCC C / C++ compiler [11]
is an optimizing compiler with advanced optimization
techniques, such as profile-directed feedback
compilation, the process optimization, software
pipeline analysis, static single assignment
optimization, and reduce code size. The Xplorer DE
[11] shows graphical results of Xtensa® Instruction
Set Simulator (ISS) [11]. The program codes can
accurately model the execution of processors, such as
cache performance, execution cycle, branches,
exceptions, pipeline states. The results are presented
by forms and graphics. In addition, another tool,
Xtensa® Modeling Protocol (XTMP) [11], is provided
for modeling options.

2.3 Xtensa Modeling Protocol
The slave processor in this study was simulated with
Xtensa ISS & Xtensa® XTMP. It provides a
database-type application programming interface (API)
to ISS, such that developers will be able to do
complex hardware systems by getting the results from
the simulation of the processors, and to complete the
original concept of the model eventually. Xtensa
XTMP is a set of software development tools which
could create customized multi-thread simulation. A
quick and accurate simulation of system-on-chip
design consists of one or more processor cores
become possible [9].

According to the contents in [11], XTMP is used to
simulate multi-processor subsystems, or a single
processor with complex structure. An initial
multi-processor system can be linked with customized
peripheral devices by using XTMP. In the early stage
of a new design, XTMP is able to debug, profile, and
validate the integration of SoC and software
architecture [7]. Because XTMP Simulator executes in
a higher level description, the simulation time can be
drastically reduced comparing to HDL simulations.

3. Proposed Architecture

The traditional structure [14] shown in Figure 1 is
referring the dual-processor architectures in [9]. In this
research, the Xtensa ISS is replaced by SimpleScalar2,
and we proposed multimedia processor of Xtensa as
slave processor [18]. The Xtensa processor ISA that
includes the basic instruction set, an extensible
function of DSP engine for multimedia applications.

The simulator framework of we proposed is shown
in Figure 2. The modules within the frame are
implemented in our simulation. We chose to build the
multi-core simulator based on SimpleScalar and
Xtensa ISS, which are implemented in C language, all
the components are implemented in SystemC which
provide interfaces to be connected by SystemC
channels.

 SimpleScalar1 C SimpleScalar2 C

SystemC SystemC

NOR/ NAND
Flash Memory

Off-Chip Memory

Simulation I/FSimulation I/F

IO Device

SystemC

Share memory

SystemC

Bus Arbiter

Loader
Memory
Cache1

Loader
Memory
Cache2

Fig. 1. The architecture of Ref [14].

 Master Processor Slave Processor

SimpleScalar Xtensa ISS
ARM ISA
SystemC

Xtensa ISA
XTMP

Share memoryShare memoryAddress Decoder

NOR/ NAND
Flash Memory

Off-Chip Memory

 Audio Engine
MMU

IO Device

 Video Engine

BUS I/F
BUS I/F

Loader
Memory
Cache1

Loader
Memory
Cache2

Fig. 2. The proposed architecture.

3.1 Memory Design
This proposed system uses a shared memory, shown
in Table 7. In this simulation system, the common
memory can be configured into different sizes. The
same procedure will be executed in the simulation
systems of different memory sizes, and it will cause
different speed performance. Memory units can be
configured into different widths and sizes in order to
meet the requirement of data accuracy and bandwidth.
However, if the memory size is huge, its cost will be
higher than the core.

Table 2 Memory Management

Region Protection Description
Memory Region The 4G space is divided

into 8 equally sized
regions with 512M bytes

Memory Region Access
Mode

Through Access-Mode
setting. Bypass, Allocate,
and No Allocate,
Write-Back,
Write-Through

The cache memory speed is configured into

optimal values to improve the performance of local
memory. When local memory or cache is configured,
the impact to their processors will be taken into
consideration [17]. The performance is the tradeoff

between area, power consumption, and speed. Cache
miss uses more bandwidth. We adjusted the cache and
local memory configuration to optimize the
performance. Memory management shown in Table 2
is performed by the MMU configuration. If memory
configuration adds a virtual memory unit, it allows
processor to handle more complex programs. If virtual
memory does not exist, the application programs will
be located in fast memory. We use MMU to utilize
master processor efficiently and shown in Figure 2.

3.1.1 Memory Model The defaults of memory model
and the cache model are shown in Table 3 and Table 4,
respectively. Both are used to sim-cache for the split
organization.

Table 3 Local Memory Model

Local Memory
Model

Description

Inst-RAM [0,2] Size 128Kbytes
Inst-ROM [0,1] Size 256Kbytes
Data-RAM [0,2] Size 128Kbytes
Data-ROM [0,1] Size 256Kbytes
RAM Access Width 64 bits
RAM Access Latency 1 Cycle of access latency

Table 4 Cache Model

Cache Model Description
L1 Inst-Cache size 16 Kbytes
L1 Data-Cache size 16 Kbytes
L2 unified cache size 256 Kbytes
Cache Write Policy alternate Write-Back and Write

Through for Data-Cache
Write Buffer 16 Entries
Cache Replacement L1 and L2:LRU policy
Associative L1:2-way set associative caches

L2: 4-way
Line Size L1:Cache locking per line, line

size 32 bytes
L2:64 bytes

Cache Access Width 64 bits
Cache Memory
Access latency

L1:1 cycle of access latency
L2:10 cycle of access latency

3.1.2 Memory Mapping The specific purpose
functions of this proposed multi-core processor are
allocated in the memory addresses shown in Table 5,
and the memory management unit and shared memory
model are listed in table 6 and Table 7, divisionally..

Table 5 Memory Mapping

Memory Mapping Description
Data RAM 0 0x3FFE 0000
Data RAM1 0x3FFC 0000
RAM0 0x4000 0000
System ROM 0x5000 0000
Reset Vector 0x5000 0000
System RAM 0x6000 0000
Double Exception 0x6000 03C0
Window Vectors 0x6000 0000
L5 Interrupt 0x6000 0240
L4 Interrupt 0x6000 0200
L3 Interrupt 0x6000 01C0

L2 Interrupt 0x6000 0180
L1 (User Interrupt) 0x6000 0340
Kernel Exception 0x6000 0300
Debug Exception 0x6000 0280
NMI 0x6000 02C0

Table 6 MMU Model

MMU Description
Memory
Management
Terms

Page Table Entry, Isolate, Identify
Map, Static, Wired, Auto-Refill, Ring,
and Address Space Identifiers

Translation
Look aside
Buffer (TLB)

I-TLB with 64 entries fully associative
D-TLB with 128 entries fully
associative

MMU for OS Linux provides demand paging and
memory protection

Table 7 Shared Memory Model

Shared Memory Description
ROM Size 16Mbytes

3.2 Bus Design
Communication bus is an important interface.
According to the conclusion of [14], the channel width
and access speed can be configured independently. We
designed this bus as master-slave architecture. If
master device needs to communicate with others, it
will send a request signal to the arbitration mechanism.
When the permission is obtained, master device gets
the right to access the bus. On the other hand, the
slave device is not titled to send request signals. They
are waiting for requests passively.

Table 8 shows the bus model of Xtensa. We also
consider using a share bus, which is able to have many
devices and arbitration to share with, not only
communication method should be considered. The bus
interface needs suitable bandwidth for high
performance hard-wired needs.

The bus arbitration mechanism is central parallel
arbitration. When two or more masters at the same
time to have a request, arbitration mechanism will do
the permission response in order in accordance with
pre-define priority code.

Table 8 Bus Model

Bus Model Description
Bus Interface 64 bit Width

32 Interrupt mechanism
Master-Slaver Architecture

Communication
Mechanism

Shared memory allocation,
Deletion, Mail box services

Arbitration
Mechanism

Central Parallel Arbitration
32 bit Programmable Register

3.2.1 Communication Mechanism According to the
conclusion [14], they can take shared memory as the
inter-processor communication media to work with
the synchronization scheme in our simulator
framework. Any processing component that wants to
access the shared memory should implement special
load/store instructions. We assume that all the
processing components are connected to the shared

memory using a shared memory bus. A dedicated bus
can ensure fast access and communications. At the
same time, bus arbitration is provided to avoid conflict.
The shared memory module is written in SystemC.

In Table 9 shows the communication mechanism,
we also provide a library of shared memory related
communication services to facilitate parallel
computing tests. The services are designed for share
memory allocation, deletion and mail box services.
Other services are to be added in the near future, such
as semaphore and message queue.

Table 9 Communication Mechanism

Communication
Mechanism

Description

Shared Memory
Allocation

Allocate a piece of memory
space in the shared memory
and return the index id of
this piece of memory.

Shared Memory
Deletion

Free a piece of memory
space in the shared memory
according to the index id.

Mail Box Services Wait/Send a message from/to
the Mail box services

3.2.2 Arbitration Mechanism According to the
conclusion [14], the safest approach to dual-core
synchronization is round-robin. Round-robin allows
every processor to run cycle-by-cycle alternately.

Our experiment synchronizes one SimpleScalar
module and one Xtensa ISS running in Central
Parallel Arbitration approach. A method is needed for
inter-core synchronization to get well communication
performance while guarantees the accuracy. In this
paper, we designed a communication based
synchronization approach.

In this approach, synchronization between dual
cores and optional I/O devices are achieved when
communication is necessary. We can integrate this
synchronization mechanism into the arbitration
mechanism.

When a shared memory access instruction from
processors is decoded, the shared memory access
request and the simulation cycle count will be sent to
the arbitration. Arbitration compares the current cycle
number of all the processing components in the
system, and grants the one with the smallest cycle
number access to the shared memory.

Table 10 Central Parallel Arbitration

Processing components Number Description
Processor_1 Master Processor
Processor_2 Slaver Processor
I/O Device_1 USB (Optional)

I/O Device_2 Ethernet (Optional)

I/O Device_3 DMA (Optional)

Reversed component_1 (Optional)

Reversed component_2 (Optional)

Reversed component_3 (Optional)

Reversed component_4 (Optional)

Reversed component_5 (Optional)

We proposed the priority from 0 to 5 decreases, the
priority of 0 processing component is the highest.

Table 11 Priority of two processing components

PT. 0 (Hi) 1 2 3 4 5 (Lo)

0000 Opt. Slaver Opt. Opt. Opt. Master

0001 Opt. Opt. Slaver Opt. Opt. Master

0010 Opt. Opt. Opt. Slaver Opt. Master

0011 Opt. Opt. Opt. Opt. Slaver Master

0100 Master Slaver Opt. Opt. Opt. Opt.
0101 Master Opt. Slaver Opt. Opt. Opt.
0110 Master Opt. Opt. Slaver Opt. Opt.
0111 Master Opt. Opt. Opt. Slaver Opt.
1XXX Res. Res. Res. Res. Res. Res.

We proposed the arbitration register is physical
address. The register description is shown in Table12.

Table 12 Programmable Register Description

Register Description
Arbitration Register 32 bit Access Width
Physical Address 0x01000000
Reset Value 0x00000000

4. Schematics Methodology
We proposed the architecture of dual processor using
SimpleScalar and Xtensa tool [2]. The combination of
these two complicated simulators raises several issues.
We proposed some novel ways to solve these issues as
follows:
 1). Xtensa Processor is lack of WinCE operating
system (OS) support. To solve this problem, we
designed another processor, simulated with
SimpleScalar, which is rich in popular OS support.
SimpleScalar also provide ARM ISA simulator, too.
 2). SimpleScalar simulator does not support modern
dual-core neither simple DSP. Currently, the demands
of multimedia application, such as TI's OMAP
TMS320C30 DSP for fast processing [12], are
growing. Such that we replaced the SimpleScalar2
processor by Xtensa ISA core. The DSP engine of
Xtensa ISA core is configurable. The proposed
architecture is shown in Figure 2, in where this
multimedia processor is a slave processor of this
proposed system.
 3). The inter-processor communication of dual-core
was implemented with bi-directional mailbox
primitives. The mechanism of communication is very
important. We design a bus interface to simulate the
protocol between two processors.

4.1 System Processing
The master processor includes basic ARM instruction
sets. It is represented by SimpleScalar simulator. In
order to support popular OS, the processor has to
consist of the options, such as MMU, memory map,

cache policy, interrupts, debug interface, and
except-instruction set. The schematic is shown in
Figure 2 as above.

4.2 Multimedia Processing
The slave processor, using Xtensa instructions, is
proposed for multimedia processing [3] [4]. The
application software is cross-compiled with
instructions and data code on the host PC. All the tool
chains of slave processor are provided by Tensilica.
We can monitor the results of the program through the
JTAG interface on the host PC. Xtensa® Xplorer is one
of software development tools, which are an
integrated graphical user interface for processors new
creations, simulation, profile, debug and program code
analysis.

The memory system for multimedia software has
different parameters. We issued a baseline profile in
this paper. We can implement processors with various
configurations by the tradeoff of area, cost and power
in the future.

5. Conclusion and Future Works
We issued a novel method of an embedded dual-
processor design for multimedia applications with a
configurable processor in this paper. We have referred
the dual core architecture in [9] and replace its
SimpleScalar 2 with Xtensa [10] furthermore to
support the new configurable processor, in where uses
Xtensa as the slave processor (referring to Figure 2).

We proposed a mechanism of arbitration is exactly
met the cost control of SoC design. We issued a
programmable register in the bus model, which
supports ten processing components, there are two
processors, three I/O Devices (Optional) and five
reserved components (Optional). The shared bus is
multiplexed (instead of a three-state approach), and
every one of these ten processing components can
request the shared bus without any limitations.
Arbitration for those accesses is performed by the
programmable register.

Future, we will use ARM926-EJS processor as a
master processor to handle system processing. It is
rich in the operating system support. We can use the
test chip with WinCE kernel to manage and control
I/O. A standard extensible interface to record and
playback the video and audio data from external I/O is
used for reproducible real-time experiments. We can
demonstrate fast processing of video and audio
workloads with FPGA [16].

The inter-core communications between these
processing cores was implemented with bi-directional
mailbox primitives. That will be described in our
future research paper. We will show the experimental
results in the FPGA and ARM emulation workload by
using system software provided.

References
[1] Chien-Chang Wang, “A Dual RISC Core SoC

Platform,” The Master Thesis of Department of
electrical engineering, National Cheng-Kung
University, Taiwan, June 2004.

[2] Chen-Chien Wang, “Design and Implementation of a
dual-ISA embedded microprocesso,” The Master
Thesis of Computer and Communications
Engineering, National Cheng-Kung University
electrical engineering Institute , Taiwan, June 2004.

[3] Chin-Ming Chen, “ MPEG Audio Codec Design
Using High Frequency, “The Master Thesis of
Institute of Electronics and Information Engineering,,
National Yunlin University of Science and
Technology. Taiwan, June 2004.

[4] Jia-Hsiung Huang , “MPEG-2/4 low-complexity
advanced audio coding optimization and
implementation on dual-core processor” 。 The
Master Thesis of Electrical and Computer
Engineering, National Chiao Tung University,
Hsinchu, Taiwan, July 2006.

[5] Grant Martin, “Recent Development in Configurable
and Extensible Processor”, Application-specific
Systems, Architectures and Processors, IEEE, pp.
39 - 44. 2006

[6] Yu-Yuan Su “Design and Analysis of a DSP
Scheduler and a Dynamically Partitioned H.264
Encoder on Dual-Core Platforms”。 The Master
Thesis of Institute of Computer Science and
Engineering, National Chiao Tung University 。

Hsin-Chu, Taiwan, June 2006.

[7] Albert Wang, Earl Killian, Dror Maydan, Chris
Rowen, “Hardware/Software Instruction Set
Configurability for System-on-Chip Processors”,
Design Automation Conference, IEEE, 2001, pp. 184
- 188.

[8] David Goodwin, Chris Rowen, Grant Martin,
“Configurable Multi-Processor Platforms for Next
Generation Embedded Systems” Computer Design.
Proceedings. International Conference, IEEE, Sept
17-20, 2000, pp. 335 – 342.

[9] Fei Sun, Srivaths Ravi, Anand Raghunathan, and
Niraj K. Jha. “A Synthesis Methodology for Hybrid
Custom Instruction and Co-processor Generation for
Extensible Processors” Computer-Aided Design of
Integrated Circuits and Systems, IEEE, Volume 26,
Issue 11, Nov. 2007, pp. 2035 – 2045.

[10] Fei Sun, Srivaths Ravi, Anand Raghunathan, and
Niraj K Jha. “Application-Specific Heterogeneous
Multiprocessor Synthesis Using Extensible
Processors”. Computer-Aided Design of Integrated
Circuits and Systems, IEEE, Volume 25, Issue 9, Sept.
2006, pp. 1589 – 1602.

[11] http://www.tensilica.com/products/xtensa_overview.h
tm.

[12] http://focus.ti.com/general/docs/wtbu/OMAP
Platform.

[13] http://www.simplescalar.com
[14] Rongrong Zhong, Yongxin Zhu, Weiwei Chen,

Mingliang Lin “An Inter-core Communication
Enabled Multi-core Simulator Based on
SimpleScalar” AINAW07.The 21st International
Conference on Advanced Information Networking
and Applications Workshops, 2007, Volume 1, Issue ,

21~23 May 2007 pp. 758-763.
[15] Chris Rowen, Dror Maydan “Automated Processor

Generation for System-on-Chip”. The proceedings of
the 27th European Solid-State Circuits Conference on
2001. ESSCIRC 2001, 18-20 Sept. 2001 .pp.464-469.

[16] Jin Ho Han, Mi Young Lee, Young hwan Bae, and
Hanjin Cho “Application Specific Processor Design
for H.264 Decoder with a Configurable Embedded
Processor” ETRI Journal, Volume 27, Number 5,
October 2005, pp.491-496.

[17] Mohsen Soryani, Mohsen Sharifi, Mohammad
Hossein Rezvani. “Performance Evaluation of Cache
Memory Organizations in Embedded Systems,”
International Conference on Information Technology
(ITNG'07), 2006, pp.491-496.

[18] Szu-Hsiung Ko and Jih-Fu Tu, “The Configurable
Architecture Design of Multimedia Processor,” The
proceeding of conference on 2008 Asia Pacific High
Speed Circuit Design. July 22~July 23, 2008, Taiwan,
pp. 130-137.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43�
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4351994�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43�
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=35128�
http://www.tensilica.com/products/xtensa_overview.htm�
http://www.tensilica.com/products/xtensa_overview.htm�
http://www.simplescalar.com/�

	References

