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Abstract - A configurable dual-core embedded 
system for multimedia application of System-on-Chip 
(SoC) was introduced in this paper, in which we 
described a SoC consisting of a master processor and 
a slave processor. The master processor is 
represented by the simulator of SimpleScalar. In 
addition, the slave processor collocates with Xtensa 
processor, which is able to establish excellent 
multimedia application than the traditional designs. 
This proposed architecture can be configured in 
multiprocessors architecture, and verified by a 
provided simulation program. We get benefit in cost 
control of arbiter restructure. The characteristics of 
IP reused and portable architecture are exactly 
corresponded to modern complicate SoC design. The 
main functional blocks integrated in this system 
includes dual cores, local memory, cache memory, 
shared memory, shared bus, and so forth.  
 
Keywords - SimpleScalar simulation, configurable 
processor, instruction set simulators, and dual-core. 
 
1. Introduction 
The demand of multimedia communication embedded 
systems in mobile and portable devices application is 
growing nowadays. To realize multimedia 
communication, the implementations of audio and 
video compression standards are essential. More than 
that, a system demanding better performance requires 
higher clock frequency. Such that, multiple-function 
handhold devices are often challenged by 
power-saving, clock, speed, and heat dissipation. 

To achieve higher performance with flexibility, the 
hybrid architecture has been proposed. The 
Operation-intensive functions are implemented with 
hardwired blocks, while other functions of less 
complexity are implemented with software which is 
executed by an application specific instruction 
processor. Current multimedia handhold devices are 
often using build-in multi-core approaches [1]. The 
system control and multimedia computation are 
executed by separated cores. Although heterogeneous 
cores reduce burdens by pre-defined tasks [10], but 
maintaining two sets of developing environments 
requires significant cost and manpower. 

For example, multimedia on OMAP Solution, 
which combined an ARM processor with TI’s digital 
signal processor (DSP) [12], implemented every 
function with software using an accelerated instruction 
set for multimedia processing while keeping the 
flexible software structure [6]. However, it is 

worthwhile to point out that OMAP is not designed 
only for multimedia embedded processor [12].  

In this paper, we implement a dual-core system, 
and a shared memory bus arbitration dealing with 
shared memory accesses. Other components, like 
another core or hardware accelerators, can be added to 
this simulator system for co-simulation as long as they 
have a shared memory bus interface. 

This paper is organized as follows. In Section 
describes the used simulation tools. Section 3 issues 
the proposed architecture of dual cores for applying to 
multimedia system. In Section 4 represents the 
implementation methodologies. Finally, we remark the 
conclusions and point out the future works.   
 
2. Simulation Tools  
A new configurable processor called Xtensa has been 
recently developed by Tensilica [11]. The Xtensa 
processor is based on instruction set architecture (ISA) 
that includes the basic instruction set, and an 
extensible function of adding user-defined instruction 
sets. It also allows the configuration of options, like 
interface options, memory subsystem options [5], and 
various OS options.  

By generating the processor from the high-level 
language description, the platform designer regains the 
control over the cost, performance, and function 
attributes of the processor subsystem without being a 
microprocessor design expert [8]. The four hard-wired 
configurable categories [15] of Xtensa is shown in 
Table 1.  

 
Table 1 Configurable Hard-wired of Xtensa 

Configurable Hard-wired Description 
Instruction Set 
Architecture 

- ALU functions on 
general registers 
- Floating-point unit, 
registers, state, interface 
- Coprocessors with new 
application specific data 
types configuration 
- High performance 
parallel arithmetic and 
DSP 
- Five or seven pipeline 
stages 
- One or two Load Store 
Units 
- Tensilica Instruction 
Extension (TIE) 16 and 
24-bit instructions 

Memory System 
 

- Instruction cache size, 
associativity, line size 
- Data cache size, 
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associativity, line size, 
write policy 
- Memory protection, 
translation 
Instruction, data RAM, 
ROM size, address range 

Interface 
 

- External bus width, 
protocol, address maps 
- Direct connection of 
system registers, queues, 
multi ported memories to 
internal data ports 
- Multiprocessor 
interconnect 
- JTAG debug and trace 
ports 

Peripherals 
 

- Timers 
- Interrupt controller: 
interrupt count, priority, 
type, fast switching 
registers 
- Exception vector 
addresses 
- Hardware breakpoint 
controls 

 
2.1 SimpleScalar 

The simulator, SimpleScalar, is a sim-outorder [13] 
and to use to simulate the master processor in this study. 
SimpleScalar is a set of execution-driven 
cycle-accurate instruction set simulators (ISS) of 
superscalar microprocessors. It comes with a complete 
development environment (compiler, debugger, and 
profiler) which allows the quick porting of any ANSI 
C application to SimpleScalar. The SimpleScalar 
toolset is composed of a GCC compiler, which was 
ported for SimpleScalar architecture and can generate 
SimpleScalar binary files. The assembler and loader 
along with the necessary libraries in the toolset 
produce SimpleScalar executables that can be fed 
directly into any of the simulators in SimpleScalar. 
The simulators themselves are compiled with the host 
platform’s native ANSI C compiler. The simulators 
are equipped with their own loaders, thus you do not 
need to build the GNU binary libraries to run 
simulation.  

The micro-architecture of SimpleScalar is derived 
from various ISA microprocessors. It supports 
speculative execution. The memory system has a 
load/store queue. The values are stored in this queue if 
it is speculative. Load instructions are dispatched to 
the memory system when the addresses of all previous 
stores are known. Loads may be completed either by 
the data from the memory system or by a value stored 
in the queue if their addresses match to each other. 
Speculative loads may generate cache misses but 
speculative TLB misses stall the pipeline until the 
branch condition is met. 
 
2.2 Xtensa Instruction Set Simulation 

Xtensa® Xplorer is an all-processor software 
development tool. This tool has an integrated 
graphical user interface. Used for processors new 

creations, simulation, Profile, debug and analysis 
program code. Tensilica's XCC C / C++ compiler [11] 
is an optimizing compiler with advanced optimization 
techniques, such as profile-directed feedback 
compilation, the process optimization, software 
pipeline analysis, static single assignment 
optimization, and reduce code size. The Xplorer DE 
[11] shows graphical results of Xtensa® Instruction 
Set Simulator (ISS) [11]. The program codes can 
accurately model the execution of processors, such as 
cache performance, execution cycle, branches, 
exceptions, pipeline states. The results are presented 
by forms and graphics. In addition, another tool, 
Xtensa® Modeling Protocol (XTMP) [11], is provided 
for modeling options. 
 
2.3 Xtensa Modeling Protocol  
The slave processor in this study was simulated with 
Xtensa ISS & Xtensa® XTMP. It provides a 
database-type application programming interface (API) 
to ISS, such that developers will be able to do 
complex hardware systems by getting the results from 
the simulation of the processors, and to complete the 
original concept of the model eventually. Xtensa 
XTMP is a set of software development tools which 
could create customized multi-thread simulation. A 
quick and accurate simulation of system-on-chip 
design consists of one or more processor cores 
become possible [9].  

According to the contents in [11], XTMP is used to 
simulate multi-processor subsystems, or a single 
processor with complex structure. An initial 
multi-processor system can be linked with customized 
peripheral devices by using XTMP. In the early stage 
of a new design, XTMP is able to debug, profile, and 
validate the integration of SoC and software 
architecture [7]. Because XTMP Simulator executes in 
a higher level description, the simulation time can be 
drastically reduced comparing to HDL simulations. 
 
3. Proposed Architecture 

The traditional structure [14] shown in Figure 1 is 
referring the dual-processor architectures in [9]. In this 
research, the Xtensa ISS is replaced by SimpleScalar2, 
and we proposed multimedia processor of Xtensa as 
slave processor [18]. The Xtensa processor ISA that 
includes the basic instruction set, an extensible 
function of DSP engine for multimedia applications. 

The simulator framework of we proposed is shown 
in Figure 2. The modules within the frame are 
implemented in our simulation. We chose to build the 
multi-core simulator based on SimpleScalar and 
Xtensa ISS, which are implemented in C language, all 
the components are implemented in SystemC which 
provide interfaces to be connected by SystemC 
channels. 
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Fig. 1. The architecture of Ref [14]. 
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Fig. 2. The proposed architecture. 

 
3.1 Memory Design  
This proposed system uses a shared memory, shown 
in Table 7. In this simulation system, the common 
memory can be configured into different sizes. The 
same procedure will be executed in the simulation 
systems of different memory sizes, and it will cause 
different speed performance. Memory units can be 
configured into different widths and sizes in order to 
meet the requirement of data accuracy and bandwidth. 
However, if the memory size is huge, its cost will be 
higher than the core. 
 
Table 2 Memory Management  

Region Protection Description 
Memory Region The 4G space is divided 

into 8 equally sized 
regions with 512M bytes 

Memory Region Access 
Mode 

Through Access-Mode 
setting. Bypass, Allocate, 
and No Allocate, 
Write-Back, 
Write-Through 

 
The cache memory speed is configured into 

optimal values to improve the performance of local 
memory. When local memory or cache is configured, 
the impact to their processors will be taken into 
consideration [17]. The performance is the tradeoff 

between area, power consumption, and speed. Cache 
miss uses more bandwidth. We adjusted the cache and 
local memory configuration to optimize the 
performance. Memory management shown in Table 2 
is performed by the MMU configuration. If memory 
configuration adds a virtual memory unit, it allows 
processor to handle more complex programs. If virtual 
memory does not exist, the application programs will 
be located in fast memory. We use MMU to utilize 
master processor efficiently and shown in Figure 2. 

 
3.1.1 Memory Model The defaults of memory model 
and the cache model are shown in Table 3 and Table 4, 
respectively. Both are used to sim-cache for the split 
organization. 
 
Table 3 Local Memory Model 

Local Memory 
Model 

Description 

Inst-RAM [0,2] Size 128Kbytes 
Inst-ROM [0,1] Size 256Kbytes 
Data-RAM [0,2] Size 128Kbytes 
Data-ROM [0,1] Size 256Kbytes 
RAM Access Width 64 bits 
RAM Access Latency 1 Cycle of access latency 

 
Table 4 Cache Model 

Cache Model Description 
L1 Inst-Cache size 16 Kbytes 
L1 Data-Cache size 16 Kbytes 
L2 unified cache size 256 Kbytes 
Cache Write Policy alternate Write-Back and Write 

Through for Data-Cache 
Write Buffer 16 Entries 
Cache Replacement  L1 and L2:LRU policy 
Associative L1:2-way set associative caches 

L2: 4-way 
Line Size L1:Cache locking per line, line 

size 32 bytes 
L2:64 bytes 

Cache Access Width 64 bits 
Cache Memory 
Access latency 

L1:1 cycle of access latency 
L2:10 cycle of access latency 

 
3.1.2 Memory Mapping The specific purpose 
functions of this proposed multi-core processor are 
allocated in the memory addresses shown in Table 5, 
and the memory management unit and shared memory 
model are listed in table 6 and Table 7, divisionally.. 
 
Table 5 Memory Mapping 

Memory Mapping Description 
Data RAM 0 0x3FFE 0000 
Data RAM1 0x3FFC 0000 
RAM0 0x4000 0000 
System ROM 0x5000 0000 
Reset Vector  0x5000 0000 
System RAM 0x6000 0000 
Double Exception 0x6000 03C0 
Window Vectors 0x6000 0000 
L5 Interrupt 0x6000 0240 
L4 Interrupt  0x6000 0200 
L3 Interrupt  0x6000 01C0 



L2 Interrupt  0x6000 0180 
L1 (User Interrupt) 0x6000 0340 
Kernel Exception   0x6000 0300 
Debug Exception 0x6000 0280 
NMI  0x6000 02C0 

 
Table 6 MMU Model 

MMU Description 
Memory 
Management 
Terms 

Page Table Entry, Isolate, Identify 
Map, Static, Wired, Auto-Refill, Ring, 
and Address Space Identifiers 

Translation 
Look aside 
Buffer (TLB) 

I-TLB with 64 entries fully associative
D-TLB with 128 entries fully 
associative 

MMU for OS Linux provides demand paging and 
memory protection 

 
Table 7 Shared Memory Model 

Shared Memory Description 
ROM Size 16Mbytes 

 
3.2 Bus Design  
Communication bus is an important interface. 
According to the conclusion of [14], the channel width 
and access speed can be configured independently. We 
designed this bus as master-slave architecture. If 
master device needs to communicate with others, it 
will send a request signal to the arbitration mechanism. 
When the permission is obtained, master device gets 
the right to access the bus. On the other hand, the 
slave device is not titled to send request signals. They 
are waiting for requests passively. 

Table 8 shows the bus model of Xtensa. We also 
consider using a share bus, which is able to have many 
devices and arbitration to share with, not only 
communication method should be considered. The bus 
interface needs suitable bandwidth for high 
performance hard-wired needs. 

The bus arbitration mechanism is central parallel 
arbitration. When two or more masters at the same 
time to have a request, arbitration mechanism will do 
the permission response in order in accordance with 
pre-define priority code.  
 
Table 8 Bus Model 

Bus Model Description 
Bus Interface 64 bit Width 

32 Interrupt mechanism 
Master-Slaver Architecture 

Communication 
Mechanism 

Shared memory allocation, 
Deletion, Mail box services 

Arbitration 
Mechanism 

Central Parallel Arbitration 
32 bit Programmable Register 

 
3.2.1 Communication Mechanism According to the 
conclusion [14], they can take shared memory as the 
inter-processor communication media to work with 
the synchronization scheme in our simulator 
framework. Any processing component that wants to 
access the shared memory should implement special 
load/store instructions. We assume that all the 
processing components are connected to the shared 

memory using a shared memory bus. A dedicated bus 
can ensure fast access and communications. At the 
same time, bus arbitration is provided to avoid conflict. 
The shared memory module is written in SystemC. 

In Table 9 shows the communication mechanism, 
we also provide a library of shared memory related 
communication services to facilitate parallel 
computing tests. The services are designed for share 
memory allocation, deletion and mail box services. 
Other services are to be added in the near future, such 
as semaphore and message queue. 
 
Table 9 Communication Mechanism 

Communication 
Mechanism 

Description 

Shared Memory 
Allocation 

Allocate a piece of memory 
space in the shared memory 
and return the index id of 
this piece of memory. 

Shared Memory 
Deletion 

Free a piece of memory 
space in the shared memory 
according to the index id. 

Mail Box Services Wait/Send a message from/to 
the Mail box services 

 
3.2.2 Arbitration Mechanism According to the 
conclusion [14], the safest approach to dual-core 
synchronization is round-robin. Round-robin allows 
every processor to run cycle-by-cycle alternately.  

Our experiment synchronizes one SimpleScalar 
module and one Xtensa ISS running in Central 
Parallel Arbitration approach. A method is needed for 
inter-core synchronization to get well communication 
performance while guarantees the accuracy. In this 
paper, we designed a communication based 
synchronization approach. 

In this approach, synchronization between dual 
cores and optional I/O devices are achieved when 
communication is necessary. We can integrate this 
synchronization mechanism into the arbitration 
mechanism.  

When a shared memory access instruction from 
processors is decoded, the shared memory access 
request and the simulation cycle count will be sent to 
the arbitration. Arbitration compares the current cycle 
number of all the processing components in the 
system, and grants the one with the smallest cycle 
number access to the shared memory. 
 
Table 10 Central Parallel Arbitration  

Processing components Number Description
Processor_1  Master Processor 
Processor_2  Slaver Processor 
I/O Device_1  USB (Optional) 

I/O Device_2  Ethernet (Optional) 

I/O Device_3  DMA (Optional) 

Reversed component_1  (Optional) 

Reversed component_2  (Optional) 

Reversed component_3  (Optional) 

Reversed component_4  (Optional) 

Reversed component_5  (Optional) 



We proposed the priority from 0 to 5 decreases, the 
priority of 0 processing component is the highest. 
 
Table 11 Priority of two processing components 

PT.  0 (Hi) 1  2  3  4  5 (Lo)

0000  Opt. Slaver  Opt. Opt. Opt. Master

0001  Opt. Opt. Slaver Opt. Opt. Master

0010  Opt. Opt. Opt. Slaver Opt. Master

0011  Opt. Opt. Opt. Opt. Slaver Master

0100  Master Slaver Opt. Opt. Opt. Opt. 
0101  Master Opt. Slaver Opt. Opt. Opt. 
0110  Master Opt. Opt. Slaver Opt. Opt. 
0111  Master Opt. Opt. Opt. Slaver Opt. 
1XXX Res. Res. Res. Res. Res. Res. 

 
We proposed the arbitration register is physical 
address. The register description is shown in Table12. 
 
Table 12 Programmable Register Description 

Register Description 
Arbitration Register 32 bit Access Width 
Physical Address 0x01000000 
Reset Value 0x00000000 

 
 
4. Schematics Methodology 
We proposed the architecture of dual processor using 
SimpleScalar and Xtensa tool [2]. The combination of 
these two complicated simulators raises several issues. 
We proposed some novel ways to solve these issues as 
follows:  
  1). Xtensa Processor is lack of WinCE operating 
system (OS) support. To solve this problem, we 
designed another processor, simulated with 
SimpleScalar, which is rich in popular OS support. 
SimpleScalar also provide ARM ISA simulator, too.  
  2). SimpleScalar simulator does not support modern 
dual-core neither simple DSP. Currently, the demands 
of multimedia application, such as TI's OMAP 
TMS320C30 DSP for fast processing [12], are 
growing. Such that we replaced the SimpleScalar2 
processor by Xtensa ISA core. The DSP engine of 
Xtensa ISA core is configurable. The proposed 
architecture is shown in Figure 2, in where this 
multimedia processor is a slave processor of this 
proposed system.  
  3). The inter-processor communication of dual-core 
was implemented with bi-directional mailbox 
primitives. The mechanism of communication is very 
important. We design a bus interface to simulate the 
protocol between two processors. 

 
4.1 System Processing  
The master processor includes basic ARM instruction 
sets. It is represented by SimpleScalar simulator. In 
order to support popular OS, the processor has to 
consist of the options, such as MMU, memory map, 

cache policy, interrupts, debug interface, and 
except-instruction set. The schematic is shown in 
Figure 2 as above.  

 
4.2 Multimedia Processing 
The slave processor, using Xtensa instructions, is 
proposed for multimedia processing [3] [4]. The 
application software is cross-compiled with 
instructions and data code on the host PC. All the tool 
chains of slave processor are provided by Tensilica. 
We can monitor the results of the program through the 
JTAG interface on the host PC. Xtensa® Xplorer is one 
of software development tools, which are an 
integrated graphical user interface for processors new 
creations, simulation, profile, debug and program code 
analysis. 

The memory system for multimedia software has 
different parameters. We issued a baseline profile in 
this paper. We can implement processors with various 
configurations by the tradeoff of area, cost and power 
in the future.  

 
5. Conclusion and Future Works 
We issued a novel method of an embedded dual- 
processor design for multimedia applications with a 
configurable processor in this paper. We have referred 
the dual core architecture in [9] and replace its 
SimpleScalar 2 with Xtensa [10] furthermore to 
support the new configurable processor, in where uses 
Xtensa as the slave processor (referring to Figure 2).  
 
We proposed a mechanism of arbitration is exactly 
met the cost control of SoC design. We issued a 
programmable register in the bus model, which 
supports ten processing components, there are two 
processors, three I/O Devices (Optional) and five 
reserved components (Optional). The shared bus is 
multiplexed (instead of a three-state approach), and 
every one of these ten processing components can 
request the shared bus without any limitations. 
Arbitration for those accesses is performed by the 
programmable register. 
 
Future, we will use ARM926-EJS processor as a 
master processor to handle system processing. It is 
rich in the operating system support. We can use the 
test chip with WinCE kernel to manage and control 
I/O. A standard extensible interface to record and 
playback the video and audio data from external I/O is 
used for reproducible real-time experiments. We can 
demonstrate fast processing of video and audio 
workloads with FPGA [16].  

The inter-core communications between these 
processing cores was implemented with bi-directional 
mailbox primitives. That will be described in our 
future research paper. We will show the experimental 
results in the FPGA and ARM emulation workload by 
using system software provided.  
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