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Abstract

A polygonal prism with 2n vertices, denoted by PPn,
is a product graph of a Cn and a K2. From the out-
ward appearance, a polygonal prism PPn consists of
two base faces and n lateral faces. Each lateral face
is an induced square, or a 4-cycle, of PPn. To distin-
guish all of the lateral faces of PPn, we color every
vertex in the graph. Two lateral faces are distinguish-
able in colors if one face cannot be obtained from the
other by rotating and flipping. As a result, the lo-
cal distinguishing number problem with respect to a
polygonal prism, or LDPP for short, is to determine
the minimum number of colors required to distinguish
each lateral face of the polygonal prism. The LDPP
is a variation of graph coloring problem. In this pa-
per, we propose a coloring algorithm and bound the
local distinguishing number of a polygonal prism.

Keyword: graph coloring problem, distinguishing
number problem, local distinguishing number prob-
lem, polygonal prism, product graph.

1 Introduction

The distinguish number of a graph G is the mini-
mum number of colors for which there exists an as-
signment of colors to the vertices of G, so that the
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position of each vertex can be distinguished. In [1],
a famous example about the distinguish number was
introduced. The problem encountered when a key
holder could not distinguish the keys on his/her key
ring and wanted to mark the keys using the mini-
mum number of colors. It has been shown that three
colors are required when the key ring contain 3,4,5
keys. However, only two colors are needed when the
number of keys is greater than 5.

In [3], the authors defined the i-th local distinguish-
ing number of a cycle, or i-LDC for short, as a varia-
tion of the distinguish number problem. Suppose that
every vertex in an n-cycle is colored, and each of the
vertices stands for the center of an induced (2i + 1)-
path in the cycle. Then, the i-LDC problem is to
determine the minimum number of colors required to
distinguish all the different types of (2i + 1)-paths in
the cycle. An upper bound for the i-LDC problem is
proposed in [3].

In this paper, we define a new type of local distin-
guishing number problem which is applied in a special
class of graphs, called polygonal prism. A polygonal
prism with 2n vertices, denoted by PPn, is a product
graph of Cn and K2. For example, PP6 is a product
graph of C6 and K2, as shown in Figure 1.

A polygonal prism PPn is also a planar graph.
From the outward appearance, PPn consists of two
base faces and n lateral faces. Each lateral face is
an induced square, or a 4-cycle, of PPn, while each
base face is an induced n-cycle of PPn. To distin-
guish all of the lateral faces of PPn, we have to color



(a) (b)

Figure 1: An example of polygonal prism with 12
vertices, PP6.

each vertex in the graph. Two lateral faces are dis-
tinguishable in colors if one face cannot be obtained
from the other by rotating and flipping. As a result,
the local distinguish number problem with respect to
a polygonal prism, or LDPP for short, is to determine
the minimum number of colors required to distinguish
each lateral face of the polygonal prism. Using Fig-
ure 1 as an example, the color set used in Figure 1(a)
and Figure 1(b) are a, b, c and a, b, respectively. The
coloring of PP6 is distinguishable in both Figure 1(a)
and Figure 1(b). Since two colors are used in Figure
1(b), the local distinguishing number of PP6 is two
instead of three.

A polygonal prism PPn contains n lateral faces.
Each of the lateral faces is marked with four col-
ored vertices and is denoted by a four-column tuple
[c1, c2, c3, c4], where c1,c2,c3,c4 are the color labels of
the four vertices. Note that c1 is chosen from any
vertex of the lateral face and c1,c2,c3,c4 can appear
in clockwise or anticlockwise order. For example, the
six lateral faces of PP6 in Figure 1(a) are [a, a, b, a],
[a, b, b, b], [b, b, c, b], [b, c, c, c], [c, c, a, c] and [c, a, a, a].
The representation of a lateral face in PPn is not
unique. For instance, the four lateral faces [a, a, b, a],
[a, b, a, a], [b, a, a, a], and [a, a, a, b] are identical. By
the definition of LDPP, we have the following prop-
erty.

Property 1 Let F1 = [x1, x2, x3, x4] and F2 =
[y1, y2, y3, y4] be two lateral faces in PPn. F1 and F2

are identical, or indistinguishable, if and only if (i)
color sets {x1, x3} = {y1, y3} and {x2, x4} = {y2, y4},
or (ii) color sets {x1, x3} = {y2, y4} and {x2, x4} =
{y1, y3}.

In other words, lateral face F1 can be obtained
from lateral face F2 by rotating and flipping if and
only if condition (i) or (ii) holds. Consequently, color
sets {x1, x3} and {x2, x4} can identify a lateral face
[x1, x2, x3, x4]. Furthermore, if r colors are used, the
maximum number of distinguishable lateral faces can
be calculated.

Property 2 Let r be the number of colors and r ≥ 4.
The maximum number of distinguishable lateral faces
may be up to r4+2r3+3r2+2r

8 .

If two colors are chosen from r colors and the two
colors are not necessarily different each other, then
there are m = (r+1

2 ), or r(r+1)
2 , different pairs of

colors. Based on Property 1, the number of dif-
ferent ways to coloring a lateral face is (m+1

2 ), or
r4+2r3+3r2+2r

8 . For examples, if r = 2, then the maxi-
mum number of distinguishable lateral faces is 6. Fig-
ure 1(b) shows the case. If r = 3, then the maximum
number of distinguishable lateral faces is 21. Using
our coloring method, a PP21 with 21 distinguishable
lateral faces can be constructed. However, in case of
r = 4, although the maximum number of distinguish-
able lateral faces is 55, we can just construct a PP54

with 54 distinguishable lateral faces.

The LDPP is a variation of graph coloring problem.
In this paper, we propose a coloring algorithm and
bound the local distinguishing number of a polygonal
prism. The difference between the maximum number
and the number of lateral faces obtained from our
coloring algorithm is (r

4), or r4−6r3+11r2−6r
12 .

This paper is organized as follows. Section 2 pro-
poses the main results. Section 3 proves the correct-
ness of the results. Finally, section 4 gives the con-
cluding remarks.
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2 Main results

In this section, we shall show how to efficiently color
PPn and make its n lateral faces distinguishable.

Suppose r colors (r ≥ 4) are used to color the four
vertices of a lateral face in PPn. There are four types
of literal faces, i.e., 1-colored lateral faces, 2-colored
lateral faces, 3-colored lateral faces, and 4-colored lat-
eral faces. Clearly, we call a lateral face colored by s

colors, 1 ≤ s ≤ 4, an s-colored lateral face. The four
types of literal faces are enumerated as follows:
(i) Choosing only one color x, then we can identify r

distinguishable lateral faces, like [x, x, x, x].
(ii) Choosing two colors x and y to color a face, there
are four distinguishable lateral faces can be identified,
i.e., [x, x, y, x], [x, x, y, y], [x, y, x, y] and [y, y, x, y].
Thus, we can distinguish (r

2) quartettes of lateral faces
if two colors are chosen.
(iii) Choosing three colors x, y and z to color a face,
there are six distinguishable lateral faces can be iden-
tified, i.e., [x, y, z, x], [x, y, x, z], [y, x, z, y], [y, x, y, z],
[z, x, y, z] and [z, x, z, y]. Thus, we can distinguish (r

3)
groups of six lateral faces if three colors are chosen.
(iv) Choosing four colors x, y, z and w to color a face,
there are three distinguishable lateral faces can be
identified, i.e., [x,w, z, y], [y, z, x, w] and [x, y, w, z].
Thus, we can distinguish (r

4) groups of three lateral
faces.

The total number of identified lateral faces is r +
4(r

2)+6(r
3)+3(r

4), or r4+2r3+3r2+2r
8 , that is the same as

what we have mentioned in Property 2. The purpose
of the algorithm described in this section is to arrange
these lateral faces to form a PPn and make n as large
as possible. Thus, we call the algorithm the LFA

(Lateral Faces Arrangement) algorithm. The input
of the LFA algorithm is the number of colors, while
the output of the algorithm is a PPn that satisfies
the local distinguishing requirement.

The first step of the LFA algorithm is to arrange
all the 1-colored and 2-colored lateral faces. We sum-
marize the approach as follows:
(1) Construct a complete graph Kr.

(2) If r is even, then remove a maximum matching
edge set from Kr to make it Eulerian, denoted by
K∗

r .
(3) Find a Eulerian circuit in Kr or K∗

r such that
the lateral faces can be arranged from [x, x, x, x] to
[y, y, y, y], and so forth. For example, the Eulerian
circuit in Figure 2 is (a, b, c, a). That is, we ar-
range the lateral faces from [a, a, a, a] to [b, b, b, b], to
[c, c, c, c], and then turn back to [a, a, a, a]. Similarly,
the Eulerian circuit in K∗

4 is (a, b, c, d, a), as shown in
Figure 3.
(4) According to the Eulerian circuit, merge the 1-
colored and 2-colored lateral faces using a template
like these types: [x, x, x, x], [x, y, x, x], [y, x, y, x],
[y, x, x, y], [y, y, x, y] and [y, y, y, y]. See Figure 2 for
an example of r = 3.
(5) In case that r is even, the 2-colored lateral faces
related to the removed edge set in Kr are not ar-
ranged yet. If an edge (x, z) is removed in step (2),
we insert all lateral faces related to (x, z) into the po-
sition between [x, x, x, x] and [x, y, x, x] using a tem-
plate like these types: [x, z, x, x], [z, x, z, x], [z, z, x, z]
and [x, x, z, z]. For example, all the 2-colored lateral
faces related to (a, c) and (b, d) are inserted into a
feasible positions as shown in Figure 3.

Figure 2: Arrange lateral faces identified in condi-
tions(i) and (ii) for r = 3.

Next, the LFA algorithm deals with the 3-colored
lateral faces if the number of colors is greater than
two. Every group of six lateral faces colored by x, y

and z can be properly inserted into a feasible posi-
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Figure 3: Arrange lateral faces identified in condi-
tions(i) and (ii) for r = 4.

tion between [x, y, x, x] and [y, x, y, x]. This inser-
tion is done by using a template like these types:
[z, x, y, x], [y, x, x, z], [z, y, x, y], [z, x, y, z], [y, z, x, z]
and [y, x, z, y]. Besides, the lateral faces between
[y, x, z, y] and [y, y, y, y] should be flipped in order
to meet the coloring requirement. See Figure 4 for
an explanation. Notice that, after the insertion, an-
other group of six lateral faces colored by x, y and
w can be inserted into a position between [x, y, x, x]
and [z, x, y, x].

Figure 4: Insert the lateral faces identified in condi-
tion (iii).

Finally, the LFA algorithm takes the 4-colored lat-
eral faces into considerations. Although there are
three lateral faces are identified, only two of them,
i.e., [y, z, x, y] and [x,w, z, y], are suitable for insert-
ing into a position between [w, x, ∗, ∗] and [∗, ∗, x, w]
(where * stands for any color of x, y, z and w). The
lateral faces between [x,w, z, y] and [∗, ∗, t, t] should
be flipped before the insertion. See Figure 5 for an
explanation.

Figure 5: Insert the lateral faces identified in condi-
tion (iv).

3 Correctness proofs

In this section, we show that the LFA algorithm can
be applied to color all PPn for n ≥ 21, and that if
r colors are used in the LFA algorithm, then r is an
upper bound of the LDPP.

Let f(r) be the number of literal faces obtained
from the LFA algorithm using r colors (r ≥ 4). From
the explanation of the above section, we have the
following lemma.

Lemma 3 For all r ≥ 4, f(r) = r4+6r3−r2+6r
12 , and

r is an upper bound of the local distinguishing number
of PPf(r).

Proof. The value of f(r) is the summation of the
number of lateral faces which could be arranged in
conditions (i), (ii), (iii) and (iv). That is, f(r) =
r + 4(r

2) + 6(r
3) + 2(r

4). This formula can be reduced
to r4+6r3−r2+6r

12 .

Clearly, PPf(r) is the largest possible polygonal
prism that the LFA algorithm can obtain using r col-
ors. In property 2, we have learned that the maxi-
mum number of lateral faces distinguished by r colors
(r ≥ 4) is r4+2r3+3r2+2r

8 , which is greater than f(r).
Thus, the local distinguishing number of PPf(r) may
be less then or equal to r. �

The LFA algorithm can be applied to color all PPn
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for n ≥ 21, and make all of the n lateral faces dis-
tinguishable. This work is done by removing some
lateral faces from PPf(r) and keeping the remains
distinguishable.

Lemma 4 If f(r)−2(r
4) ≤ n < f(r) and r ≥ 4, then

r bounds the local distinguishing number of PPn.

Proof. The if condition can be expressed with an-
other form, i.e., either n = f(r) − 2i or n = f(r) −
2i + 1 with 1 ≤ i ≤ (r

4).

In case of n = f(r) − 2i, PPn can be obtained by
removing i pairs of the 4-colored lateral faces from
PPf(r). Each pair of the 4-colored lateral faces looks
like [y, z, x, w] and [x, w, z, y], which have been in-
serted into the PPf(r) in the LFA algorithm. We just
reverse the procedure and thus keep n lateral faces
distinguishable.

In case of n = f(r)−2i+1, PPn can be obtained by
removing i−1 pairs of the 4-colored lateral faces and
one 1-colored lateral face from PPf(r). A 1-colored
lateral face looks like [x, x, x, x].

Since r is an upper bound of PPf(r), if f(r−1) ≤ n,
r is an upper bound of local distinguishing number
of PPn. �

Lemma 5 If f(r)−2(r
4)−6(r

3) ≤ n < f(r)−2(r
4) and

r ≥ 4, then r bounds the local distinguishing number
of PPn.

Proof. The if condition can be rewritten as follows:
n = f(r) − 2(r

4) − 3j or n = f(r) − 2(r
4) − 3j + 1 or

n = f(r)− 2(r
4)− 3j + 2, where 1 ≤ j ≤ 2(r

3).

In case of n = f(r) − 2(r
4) − 3j, PPn can be ob-

tained by removing (r
4) pairs of the 4-colored lat-

eral faces and j groups of three 3-colored lateral
faces from PPf(r). Let x, y, z be the chosen col-
ors. Each group of the 3-colored lateral faces looks
like [y, x, x, z], [z, x, y, z], [y, x, z, y], or [z, x, y, x],
[y, z, x, z], [x, y, z, y]. Note that the former three lat-
eral faces are removed in advance, as shown in Figure
6.

Figure 6: The procedure of removing 3-colored lateral
faces.

In case of n = f(r)−2(r
4)−3j +1, PPn is obtained

by removing (r
4) pairs of the 4-colored lateral faces,

j − 1 groups of three 3-colored lateral faces and two
1-colored lateral faces from PPf(r).

In case of n = f(r) − 2(r
4) − 3j + 2, PPn is be

obtained by removing (r
4) pairs of the 4-colored lateral

faces, j−1 groups of three 3-colored lateral faces and
one 1-colored lateral faces from PPf(r).

Since r is an upper bound of PPf(r), if f(r−1) ≤ n,
r is an upper bound of local distinguishing number
of PPn. �

Lemma 6 If f(r)−2(r
4)−6(r

3)−r ≤ n < f(r)−2(r
4)−

6(r
3) and r ≥ 4, then r bounds the local distinguishing

number of PPn.

Proof. The if condition can be rewritten as n =
f(r)−2(r

4)−6(r
3)−k with 1 ≤ k ≤ r. In this case, PPn

can be obtained by removing all of the 4-colored and
3-colored lateral faces, and k 1-colored lateral faces
from PPf(r).

Since r is an upper bound of PPf(r), if f(r−1) ≤ n,
r is an upper bound of local distinguishing number
of PPn. �

We summarize Lemmas 4, 5, 6 and 7 as the follow-
ing theorem.
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Theorem 7 For all n, f(r − 1) < n ≤ f(r) and
r ≥ 4, r bounds the local distinguishing number of
PPn.

Proof. The only condition that we do not take into
consideration is f(r−1) ≤ n < f(r)−2(r

4)−6(r
3)− r,

or f(r− 1) < n < 4(r
2). Since f(r− 1) is greater than

4(r
2) for r ≥ 5, we only have to consider the case of

r = 4.

When all 4-colored literal faces absent in the LFA
algorithm, we can make 21 literal faces distinguish-
able. That is, f(3) = 21. Based on the LFA algo-
rithm and Lemma 6, we can make 24 2-colored literal
faces distinguishable when 4 colors are used. Thus,
in case of r = 4, we only have to consider the cases
of n = 22 and 23.

A pair of 2-colored lateral faces like [x, y, x, x] and
[y, x, y, x] can be merged into a lateral face [y, x, x, x]
and keep it distinguishable. Consequently, PP22 and
PP23 are obtained from PP24 by merging lateral
faces.

Since r is an upper bound of PPf(r) and, for all
f(r − 1) < n ≤ f(r) and r ≥ 4, we can make the n

lateral faces of PPn distinguishable using r colors, r

is an upper bound of the LDPP. �

4 Concluding remarks

We have proved that the LFA algorithm can bound
the local distinguishing number of a PPn for n ≥ 21.
As a matter of fact, for 3 ≤ n < 21, the LDPP has
been solved by an enumerating method that is sim-
ilar to the LFA algorithm. The local distinguishing
number of PPn is 2 for 3 ≤ n ≤ 6, while the local
distinguishing number of PPn is 3 for 7 ≤ n ≤ 21.

The local distinguishing number problems are in-
teresting and could be applied to other graph classes
with different styles. They could have applications
on electronic keys, object identification, and so on.
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