
Generating Elementary Cycles in Maximal Reducible

Flowgraphs†

Kuo-Hua Kao1 Jou-Ming Chang1,2,‡ Yuwen Cheng3

1 Graduate Institute of Business Administration, National Taipei College of Business,

Taipei, Taiwan, ROC

2 Department of Information Management, National Taipei College of Business,

Taipei, Taiwan, ROC

3 Department of Mathematics, National Taitung University, Taitung, Taiwan, ROC

Abstract

Reducible flowgraphs serve as useful vehicle in data
flow analysis of computer programs. A reducible
flowgraph is maximal (MRF for short) if no more
edge can be added without violating reducibility.
Based on a decomposition theorem of MRFs pro-
posed in [Congr. Numer. 139 (1999) 9–20], a for-
mula for counting the number of elementary cycles
in MRFs is derived. Moreover, we propose an al-
gorithm for generating all elementary cycles of an
MRF when its corresponding decomposition tree is
given.

Keywords: elementary cycles; reducible flowgraphs;
graph decomposition; enumeration algorithms;

1 . Introduction

Flowgraphs occur naturally in connection with con-
trol flow and code optimization of computer pro-
grams [1, 2]. A flowgraph G = (V,E, s) is a di-
graph (V,E) with a distinguished vertex s, called
its source, such that every vertex of G is reach-
able from s. In particular, G is called a directed
rooted tree with s as its root if |E| = |V | − 1. Also,
({s}, ∅, s) is called a trivial flowgraph. For a given
flowgraph G = (V,E, s), if a spanning subgraph
T = (V,E′, s) of G is a directed rooted tree with s

†This work was supported by the National Science
Council of Taiwan under the contract NSC94-2115-M-
141-001.

‡All correspondence should be addressed to Profes-
sor Jou-Ming Chang, Department of Information Man-
agement, National Taipei College of Business, No. 321,
Section 1, Tsi–Nan Road, Taipei, Taiwan. (Email:
spade@mail.ntcb.edu.tw).

as its root, we simply call T a directed rooted span-
ning tree (DRST). Further, T is a depth-first search
tree (DFST) if T is a DRST and there is a preorder
numbering on V such that for every (directed) edge
(u, v) ∈ E \E′, either v is a descendant of u in T , or
the preorder number of v is less than the preorder
number of u. Hereafter, an edge e = (u, v) in G is
called a back edge if e ∈ E\E′ and there is a directed
path from v to u in T , and e is called a forward edge
otherwise. Note that the classification of edges de-
pends on the spanning tree T which can be obtained
from a depth-first search (DFS) on G starting at s.
Let G = (V,E, s) be a flowgraph and B the back
edge set of G with respect to a DFST T . Then the
spanning subgraph dagT (G) = (V,E−B, s) is called
the directed acyclic graph of G with respect to T .
We omit the subscript T in the notation dagT (G)
when no ambiguity arises. Obviously, dag(G) is
acyclic and adding any edge of B into dag(G) will
create a cycle.

For example, Figure 1(a) shows a flowgraph G.
Two DRSTs of G are shown in Figure 1(b) and Fig-
ure 1(c), respectively. In T and T ′, vertices are la-
beled according to a preorder numbering. It is easy
to check that T is a DFST, and thus with respect
to T , G has back edge set {(3, 2), (4, 2), (4, 3)} and
forward edge set {(1, 2), (2, 3), (2, 4), (3, 4)}. How-
ever, T ′ is not a DFST since there is an edge (3, 4)
in G such that node 4 is not a descendant of node
3 in T ′. Also, the directed acyclic graph of G with
respect to T is shown in Figure 1(d).

For a flowgraph G = (V,E, s) and u, v ∈ V , we
say that u dominates v (or v is dominated by u)
if every path from s to v passes through u. If u
dominates v and u 6= v then u is a dominator of
v. In particular, u is the immediate dominator of
v, denoted by u = idom(v), if u is a dominator of v
and every other dominator of v dominates u. The

mailto:spade@mail.ntcb.edu.tw

s s

s

(a) G (b) T

1

1

2

2

3

3

4

4

s 1

2

3 4

(c) T
′ (d) dag(G)

Figure 1: (a) A flowgraph G; (b) A DFST T of G;
(c) A DRST T ′ of G that it is not a DFST; (d) The
dag(G) with respect to T .

dominance relation in a flowgraph G = (V,E, s) is
a partial order on V , and its Hasse Diagram is a
rooted tree, called the dominator tree of G. For
example, consider the flowgraph G shown in Fig-
ure 1(a) again. Then the dominator tree of G is
isomorphic to T ′ shown in Figure 1(c).

In most of characterizations of flowgraphs, a
property called reducibility due to [4, 5] is the most
important. In the flowgraph representations of
structured programs, there are no jumps into the
middle of the loops from outside. This suggests
that all the loops are single-entry and such a group
of nodes in a loop can be considered as a single
node during the data flow analysis. Therefore, we
can “reduce” a group of nodes into a single node
using successive applications of some well defined
transformations [5]. The flowgraphs which can be
reduced so to a single node are called reducible flow-
graphs. Much of the researches in data flow analysis
are centered around this class of graphs. The fol-
lowing are equivalent definitions of reducible flow-
graphs [4, 5]:

(1) G = (V,E, s) is a reducible flowgraph.
(2) Every DFS on G starting at s determines the

same back edge set B.
(3) The dag(G) = (V,E −B, s) is unique.
(4) For every back edge (u, v) ∈ B, v dominates u.

(5) G does not contain the subflowgraph
SP (s, x, y, z) depicted as Figure 2.

(6) Every cycle of G has a vertex which dominates
the other vertices of the cycle.

s x

y

z

Figure 2: The forbidden subflowgraph
SP (s, x, y, z), where a dashed line from u to
v represents that there is a path from u to v in G.

For a digraph G = (V,E), a path of length k
is a set of edges of the form {(vi, vi+1) ∈ E | i =
0, 1, . . . , k − 1}, a cycle is a path with v0 = vk.
A path is elementary if it encounters no vertex
twice. An elementary cycle is similarly defined. Re-
searches have been done on algorithms to list up all
elementary cycles in directed as well as undirected
graphs [3, 7, 9, 10, 13, 14]. In this paper, we study
the cycle structures on an interesting subclass of
reducible flowgraphs, called the maximal reducible
flowgraphs (referred as MRFs for short). Based on
a decomposition theorem, we deduce a formula for
counting the number of elementary cycles in MRFs.
Moreover, we also propose an algorithm for enu-
merating all elementary cycles of an MRF when its
corresponding decomposition tree is available.

2 . Maximal reducible flow-
graphs and their decompo-
sitions

In this section, we review the relevant properties of
MRFs. A reducible flowgraph is maximal if it be-
comes irreducible by the addition of an extra edge.
Formally, G = (V,E, s) is an MRF if G is reducible
and G+(x, y) is not reducible for every pair of ver-
tices x, y ∈ V such that x 6= y and (x, y) /∈ E. A
trivial flowgraph is also considered as an MRF. The
significance of MRFs lies in the fact that they can
be used to derive or prove upper (or lower) bounds
on the properties of reducible flowgraphs.

In [11], the following binary operation is defined
on flowgraphs for characterizing MRFs. Let G1 =
(V1, E1, s1) and G2 = (V2, E2, s2) be two flowgraphs
such that V1∩V2 = ∅. The product ⊗ of G1 and G2

is the flowgraph defined as

G1 ⊗G2 =
(V1 ∪ V2, E1 ∪ E2 ∪ (V1×{s2}) ∪ (V2×{s1}), s1),

where all vertices and edges of G1 and G2 are pre-
served under ⊗, and the new edges are added from
every vertex of G1 to s2 (i.e., the forward edges)
and from every vertex of G2 to s1 (i.e., the back
edges). Using the definition, Vernet and Marken-
zon [11] characterize MRF as follows:

Theorem 1. (Decomposition Theorem)
A non-trivial flowgraph G is maximal reducible if
and only if there exist unique maximal reducible
flowgraphs G1 and G2 such that G = G1 ⊗G2.

The above characterization suggests that there is
a tree structure associated with the decomposition
process of an MRF. Let G = (V,E, s) be an MRF.
The decomposition tree of G, denoted by DT (G), is
an extended binary tree and it can be recursively
constructed as follows:

If G is a trivial flowgraph then
DT (G) := G

else
assume G = G1 ⊗G2

create a root for DT (G)
set DT (G1) as the left subtree of the root
set DT (G2) as the right subtree of the root

endif

Figure 3(a) shows an MRF and its decomposi-
tion process, and Figure 3(b) shows the correspond-
ing decomposition tree. Conversely, given an ex-
tended binary tree T , it is possible to construct a
unique MRF G by traversing T in postorder such
that DT (G) = T . Based on the decomposition
theorem, several graph problems in MRFs are effi-
ciently solved [12], including hamiltonian paths and
cycles, testing isomorphism, and minimum cardi-
nality feedback edge sets.

3 . Counting the number of ele-
mentary cycles in MRFs

Throughout the rest we assume that G is an MRF.
From the structure of decomposition process, we
can see that every internal node (respectively, leaf)
of DT (G) corresponds to a nontrivial (respectively,
trivial) subgraph of G. Thus, for each node x ∈
DT (G), we write G(x) as its corresponding sub-
graph of G. Also, for each internal node x, we use
xL and xR to denote the left child and the right
child of x, respectively. By decomposition theo-
rem, G(x) = G(xL)⊗G(xR). Let sx be the source

DT (G)

0

1 2

3

4 5

(b)

G 0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

5

5

5

(a)

Figure 3: An MRF, its decomposition and the as-
sociated decomposition tree.

of G(x), and we denote p(G(x), v) the number of
distinct elementary paths from sx to a vertex v in
G(x). For convenience, we treat a single vertex as a
path with length 0. Thus, p(G(x), sx) = 1. We now
define p(x) =

∑
v∈G(x) p(G(x), v) as the total num-

ber of elementary paths starting from sx in G(x).

Lemma 1. For each node x ∈ DT (G), p(x) can be
computed recursively as follows:

p(x)=

{
1, if x is a leaf in DT (G)

p(xL)·
[
1 + p(xR)

]
, otherwise.

Proof. We may assume that x is an internal node.
Observe that (1) if v ∈ G(xL), then every elemen-
tary path from sx to v cannot pass through G(xR);

(2) if v ∈ G(xR), then every elementary path from
sx to v must pass through the source of G(xR) (i.e.,
the source of G(xR) dominates v in G(x)). More-
over, every vertex of G(xL) is connected by an edge
to the source of G(xR). Thus,

p(G(x), v)=



p (G(xL), v) , if v ∈ G(xL)

 ∑
u∈G(xL)

p (G(xL), u)

· p (G(xR), v) ,

if v ∈ G(xR).

Consequently,

p(x)

=
∑

v∈G(xL)

p (G(xL), v) +

∑
v∈G(xR)

 ∑
u∈G(xL)

p (G(xL), u)

 · p (G(xR), v)

=
∑

v∈G(xL)

p (G(xL), v) +

 ∑
u∈G(xL)

p (G(xL), u)

·
 ∑

v∈G(xR)

p (G(xR), v)


=

∑
v∈G(xL)

p (G(xL), v) ·

1+
∑

v∈G(xR)

p (G(xR), v)


= p(xL) · [1 + p(xR)] �

For each node x ∈ DT (G), we denote c(x) as the
number of elementary cycles in G(x). By Lemma 1,
we are easily to compute c(x) using the following
formula.

Lemma 2. For each node x ∈ DT (G), c(x) can be
computed recursively as follows:

c(x)=

{
0, if x is a leaf in DT (G)
c(xL) + c(xR) + p(xL) · p(xR), otherwise.

Proof. Again, we consider only internal node.
Note, by definition, c(xL) and c(xR) are the num-
bers of elementary cycles that contain only the ver-
tices of G(xL) and of G(xR), respectively. Thus,
we need to compute the number of elementary cy-
cles that contain vertices from both G(xL) and
G(xR). Let sL and sR be the sources, respectively,
in the subgraphs G(xL) and G(xR). For any pair
of vertices u ∈ G(xL) and w ∈ G(xR), there are
p(G(xL), u) distinct elementary paths from sL to
u in G(xL) and there are p(G(xR), w) distinct ele-
mentary paths from sR to w in G(xR). These paths

together with the edges (u, sR) and (w, sL) produce
p(G(xL), u) ·p(G(xR), w) distinct elementary cycles
in G(x) (see Figure 4 for illustration). Thus, the
total number of cycles in G(x) is

c(x)

= c(xL)+c(xR)+
∑

u∈G(xL)
w∈G(xR)

p (G(xL), u) · p (G(xR), w)

= c(xL) + c(xR) + ∑
u∈G(xL)

p (G(xL), u)

·
 ∑

w∈G(xR)

p (G(xR), w)


= c(xL) + c(xR) + p(xL) · p(xR). �

G(xL)
G(xR)

sL
sRu w

Figure 4: Illustration of Lemma 2.

For example, consider the MRF G shown in Fig-
ure 3 again. Recursively, applying the formulas
given by Lemma 1 and Lemma 2, the number of
elementary cycles of G can be computed in DT (G)
from bottom to up. Figure 5 shows the result.

c = 3

c = 1

c = 0

c = 1

c = 0 c = 0

c = 0

c = 0 c = 0

s

a b

c

d e
p = 1

p = 1

p = 1

p = 1 p = 1

p = 1

p = 2

p = 4

p = 5 p = 2

p = 15

c = 18

c = 7

Figure 5: The calculation of the number of elemen-
tary paths and cycles in an MRF.

4 . An enumeration algorithm

In this section, we shall propose an enumeration al-
gorithm for generating all elementary cycles of an
MRF. Indeed, we have a quite natural algorithm
to do this according to the recursive formulas es-
tablished in previous section. However, in gen-
eral, the recursive process requires more space to
preserve a set of node listings for representing the
elementary paths in each subgraph G(x). In the
following, we provide another solution that uses
only a linear space to generate all elementary cy-
cles of an MRF. We take DT (G) as input and as-
sume that for each node x ∈ DT (G), there are
two fields LL(x) and RL(x) to record the leftmost
leaf and the rightmost leaf in the subtree rooted
at x, respectively. We initialize the both fields of
leaves in DT (G) to 0, 1, . . . , n−1 from left to right.
Since every vertex of G corresponds to a leaf of
DT (G), this means that the vertices of G are num-
bered from 0 to n − 1. For simplicity, LL(x) and
RL(x) also denote the corresponding vertex of G.
Note that LL(x) = LL(xL) for every internal node
x ∈ DT (G), where xL is the left child of x. The fol-
lowing lemmas are related to the elementary cycles
of MRFs.

Lemma 3. For each internal node x ∈ DT (G), let
v0 be the source of G(x). If C = (v0, v1, . . . , vk, v0)
is an elementary cycle in G(x), then C contains
only one back edge (vk, v0) (i.e., all other edges
(vi, vi+1), i = 0, 1, . . . , k − 1, are forward edges).

Proof. Since v0 dominates vk in G(x), (vk, v0) is
a back edge. Suppose, contrarily, that there exists
0 6 i 6 k − 1 such that (vi, vi+1) is a back edge in
G(x). Then vi+1 dominates vi in G(x) (i.e., every
path from v0 to vi in G(x) must pass through vi+1).
Thus vi+1 is contained in the path (v0, v1, . . . , vi),
a contradiction to the assumption that C is an ele-
mentary cycle. �

Lemma 4. For each internal node x ∈ DT (G), let
u, v be any two vertices such that u dominates v
in G(x). Suppose that C is an elementary cycle in
G(x) that contains the source of G(x). If v ∈ C,
then so is u ∈ C.

Proof. Suppose v ∈ C. Then, C contains a path P
from the source of G(x) to v. Since u is a dominator
of v in G(x), P must pass through u, and therefore
u ∈ C. �

We now introduce a two-pass tree-traversal pro-
cedure to compute LL(x) and RL(x) for every in-
ternal x ∈ DT (G). These fields contain the local in-
formation about the dominance relation of G. Con-
sider a node x ∈ DT (G) with LL(x) = i. Then, i is

the source of G(x). Further, LL(x) and RL(x) also
indicate the range (i.e., the lower and the upper)
of vertices which can be dominated by i in G(x).
In addition, the procedure uses an auxiliary array
Dom of size n to store the overall dominance of G.
The assignment Dom[i] = j means that the range
of vertices dominated by i in G is between i and j.

Procedure Dominance

1. i← 0;
2. Apply the preorder to traverse DT (G) and do

the following:
if the visited node x is an internal node then

LL(x)← i;
else

i← i + 1;
3. Apply the postorder to traverse DT (G) and do

the following:
if the visited node x is a leaf then

j ← RL(x);
else

RL(x)← j;
Dom[LL(x)]← RL(x);

It is easy to construct the dominator tree of G
using the field LL(x) for nodes x ∈ DT (G) in linear
time. The constructing rule relies on the following
lemma.

Lemma 5. Let x ∈ DT (G) be an internal node
and xR be the right child of x. Then LL(x) =
idom(LL(xR)).

Proof. Suppose LL(x) = i and LL(xR) = j. By
Theorem 1, G(x) = G(xL)⊗G(xR). Thus j ∈ G(x).
Let s be the source of G. Since i is the source of
G(x), every path from s to a vertex v ∈ G(x) must
pass through i. This shows that i dominates j in G.
If i is not the immediate dominator of j, then there
is a vertex k 6= i such that k = idom(j) in G. In this
case, k must be the source of some subgraph G(y),
where y is a descendant of x and is also an ascendent
of xR in DT (G). This leads a contradiction. �

Now to demonstrate the usage of the procedure,
let’s consider the decomposition tree DT (G) shown
in Figure 3. Figure 6(a) shows the values of LL(x)
and RL(x) for nodes x ∈ DT (G). The variance of
Dom during the execution of Dominance is shown
in Figure 6(b). By Lemma 5, it can be seen from
Figure 6(a) that 0 is the immediate dominator of 1
and 4, 1 is the immediate dominator of 2 and 3, and
4 is the immediate dominator of 5. Therefore, the
dominator tree of G can be shown as in Figure 6(c).

In what follows, we sketch our enumeration al-
gorithm for generating all elementary cycles of an
MRF and then give the details.

(a)

(b)

(c)

0

1

3

4

52

DT (G)

0/0

1/1 2/2

3/3

4/4 5/5

0/3

0/5

1/2

1/3

4/5

0 1 3 4 52i

0 1 3 4 52

3 2

5 3

5Dom[i]

Figure 6: (a) LL(x)/RL(x) for nodes x ∈ DT (G);
(b) The contents of Dom and their variance; (c)
The dominator tree of G.

Algorithm Enumerating-Cycles

1. Perform Dominance to compute LL(x), RL(x)
for all x ∈ DT (G) and Dom[i], i = 1, . . . , n;

2. Apply a tree-traversal to visit the nodes of
DT (G) and for each internal node x, it
produces the set C (x) containing all elementary
cycles of G(x) that pass through the source of
G(xL) and the source of G(xR), simultaneously.

Obviously, C ∈ C (x) if and only if C is an el-
ementary cycle of G such that the following two
conditions are satisfied: (1) every vertex v ∈ C is
within the range between LL(x) and RL(x) and
(2) C contains two particular vertices LL(xL) and
LL(xR). To represent a cycle C ∈ C (x) starting
from the source of G(x) (i.e., LL(x)), we omit the
unique back edge because it has been shown that
the back edge is pointed to the source of G(x) by
Lemma 3. Also, since the leaves of DT (G) are

numbered 0, 1, . . . , n − 1 from left to right, every
forward edge in C has label from a smaller ver-
tex to a larger vertex. Thus, an elementary cy-
cle C ∈ C (x) can be viewed as an increasing se-
quence starting from LL(x) and growing within the
range between LL(x) and RL(x). As a result, a
simple approach based on constructing of all advis-
able increasing sequences can be used to generate
all elementary cycles of C (x). Although all increas-
ing sequence within the range between LL(x) and
RL(x) are candidates, some of them are unadvis-
able. We use the technique of constructing power
sets to produce the desired candidates. For elimi-
nating the unadvisable sequences, it can be achieved
by using the information about dominance relation.
Many textbooks contain implementations of gener-
ating the entire power set of n values. The primary
expositions on this topic include [6, 8].

Let I(x) = {i ∈ N |LL(x) 6 i 6 RL(x)} and
J(x) = I(x)\{LL(xL), LL(xR)}, where x ∈ DT (G)
is an internal node. The semi-power set of J(x),
denoted by P(x), is a collection of all subsets of
J(x) such that Ĵ ∈ P(x) if and only if whenever
u, v ∈ J(x) and u dominates v in G(x), we have
u ∈ Ĵ implies v ∈ Ĵ . Now, by lemma 4, every
elementary cycle of C (x) can be considered as an
increasing sequence of integers obtained from I(x)
by removing the elements of some set Ĵ ∈P(x).

For example, we suppose that the algorithm
Enumerating-Cycles takes the decomposition
tree in Figure 6(a) as input and consider x to be
the root of the tree. Then LL(x) = LL(xL) = 0,
RL(x) = 5, and LL(xR) = 4. From the above defi-
nitions, we have

I(x) = {0, 1, 2, 3, 4, 5},

J(x) = {1, 2, 3, 5},

and

P(x) = {∅, {5}, {3}, {3, 5}, {2}, {2, 5}, {2, 3},
{2, 3, 5}, {1, 2, 3}, {1, 2, 3, 5}}.

It should be noted that since 1 dominates 2 and 3
in G, if 1 presents in a set Ĵ , so are 2, 3 ∈ Ĵ . Thus,
all elementary cycles of C (x) are listed as follows:

(0, 1, 2, 3, 4, 5), (0, 1, 2, 3, 4), (0, 1, 2, 4, 5),
(0, 1, 2, 4), (0, 1, 3, 4, 5), (0, 1, 3, 4),
(0, 1, 4, 5), (0, 1, 4), (0, 4, 5), (0, 4).

In real implementation, we generate semi-power
set with inclusion property. That is, if Ĵ , J̃ ∈P(x)
and Ĵ ⊂ J̃ , then Ĵ must be generated before J̃ .
In fact, most of algorithms proposed in the litera-
ture enumerate power sets with lexicographic order,

which imply that they possess the inclusion prop-
erty. Suppose J(x) = {j1, j2, . . . , jk} with ji 6 ji+1

for all i = 1, . . . , k − 1 and let Ĵ = {ji1 , ji2 , . . . , jil
}

be any subset of J(x) such that jim 6 jim+1 for
all m = 1, . . . , l − 1. When Ĵ is to be generated
by the algorithm, it invokes two processes, one is
the set-extending and the other is the membership-
checking. The former extends Ĵ into a larger set, if
possible, such that the result is a candidate of the
members in P(x). The latter decides whether the
candidate is indeed a set in P(x). The above two
processes can be implemented together and rely on
the dominance relation for checking. For efficiency,
we don’t need to explore the dominance relation be-
tween any two elements of J(x). We only need to
inspect the dominance relation for pairs of succes-
sive vertices in increasing order. The following is
the principle: if there exists m ∈ {1, . . . , l− 1} such
that Dom[jim

] > jim+1 , then Ĵ /∈ P(x). Other-
wise, we extend Ĵ by adding the vertices between
jim

and Dom[jim
] for each m ∈ {1, . . . , l − 1}.

For instance, consider Ĵ = {1, 5} and J̃ =
{1, 2, 5} in the above example. By inclusion prop-
erty, we generate Ĵ before J̃ . When Ĵ is to be
generated by the algorithm, since Dom[1] = 3 < 5,
vertices 2 and 3 are forced to join the set. Thus,
{1, 2, 3, 5} ∈P(x). Later on, when J̃ is to be gen-
erated by the algorithm, since Dom[1] = 3 > 2, this
implies J̃ /∈P(x).

The correctness of the algorithm directly fol-
lows from Lemma 4. We now illustrate why that
Enumerating-Cycles is efficient in space. In
fact, we don’t need to use extra space to store I(x),
J(x) and its semi-power set for every internal node
x ∈ DT (G). Oppositely, a global array can be
repeatedly used to mark which elements are con-
tained in the presenting cycle for each internal node
x ∈ DT (G). Recall that LL(x) and RL(x) indicate
the boundaries of vertices in the presenting cycle.
For each set Ĵ ∈P(x), only a piece size of elements
in the array between the boundaries need to change
their statuses for listing the cycle. This shows that
it takes time proportional to the length of a cycle
for each enumerating. Therefore, we summarize our
result as the following theorem.

Theorem 2. Given a decomposition tree of an
MRF G, Algorithm Enumerating-Cycles can
correctly output all elementary cycles of G using
linear space.

5 . Conclusions

In this paper, we give a recursive formula for count-
ing the number of elementary cycles of an MRF
when its corresponding decomposition tree is given.

Moreover, based on dominance relation of vertices
in the graph and the technique of generating power
set of a set, we design an enumeration algorithm
using linear space for listing all elementary cycles.
Since explicit manipulation of power sets quickly
is intractable due to their size, no further analysis
on the time complexity are provided in this paper.
According to Lemma 1 and Lemma 2, it is easy to
check that the lower bound and the upper bound
of the number of elementary cycles in MRFs with n
vertices are n(n − 1)/2 and 2n−1 − 1, respectively.
Two extreme instances realizing these bounds are
the right-skew tree and the left-skew tree with n
vertices. A continued work of this research is how
to generalize the proposed enumeration algorithm
on larger classes of flowgraphs. Another line will
be devoted to develop efficient algorithms using the
decomposition tree on MRFs.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman,
Compilers: Principles, Techniques and Tools,
Addison-Wesley, Reading, MA, 1986.

[2] A. V. Aho and J. D. Ullman, The Theory of
Parsing, Translation and Compiling, Prentice-
Hall, Englewood Cliffs, NJ, 1973.

[3] S. Chen and D. R. Ryan, A comparison of three
algorithms for finding fundamental cycles in a
directed graph, Networks 11 (1981) 1–12.

[4] M. S. Hecht and J. D. Ullman, Flow graph re-
ducibility, SIAM J. Comput. 1 (1972) 188–202.

[5] M. S. Hecht and J. D. Ullman, Characteriza-
tion of reducible flow graphs, J. Assoc. Com-
put. Mach. 21 (1974) 367–375.

[6] A. Nijenhuis and H. Wilf, Combinatorial Al-
gorithms for Computers and Calculators, Aca-
demic Press, Orlando, FL, 1978.

[7] R. C. Read and R. E. Tarjan, Bounds on back-
track algorithms for listing cycles, paths, and
spanning trees, Networks 5 (1975) 237–252.

[8] E. M. Reingold, J. Nievergelt, and N. Deo,
Combinatorial Algorithms: Theory and Prac-
tice, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[9] R. E. Tarjan, Enumeration of elementary cir-
cuits of a directed graph, SIAM J. Comput. 2
(1974) 211–216.

[10] J. C. Tiernan, An efficient search algorithm to
find the elementary circuits of a graph, Comm.
ACM 13 (1970) 722–726.

[11] O. Vernet and L. Markenzon, Characteriza-
tions and properties of maximal reducible flow-
graphs, Congr. Numer. 139 (1999) 9–20.

[12] O. Vernet and L. Markenzon, Solving prob-
lems for maximal reducible flowgraphs, Dis-
crete Appl. Math. 136 (2004) 341–348.

[13] H. Weinblatt, A new search algorithm for find-
ing the simple cycles of a finite directed graph,
J. ACM 19 (1973) 43–56.

[14] J. T. Welch, A mechanical analysis of the cyclic
structure of undirected linear graphs, J. ACM
13 (1966) 205–210.

	. Introduction
	. Maximal reducible flowgraphs and their decompositions
	. Counting the number of elementary cycles in MRFs
	. An enumeration algorithm
	. Conclusions

