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摘要 

    無線感知節點的主要限制包括計算量，電力消

耗和體積。與有線網路所不同的是，任何攻擊者皆

能竊聽與發送偽造訊息，因此重要的訊息應該被加

密傳輸。為了提供無線感知網路的資訊安全方案，

我們簡化AES的演算法，不同的行混合參數以提高

資料混合效率。位元組取代和行混合運算合併成單

一查詢表，加解密一共減少 512 位元組的儲存空

間。我們也使用GF(24)2 代替計算GF(28)反函數的

技術以節省面積。FPGA實作結果顯示資料傳輸速

率可達 1.6Gps，能契合無線感知網路的需求。  

關鍵字：AES, 無線感知網路, 加密 

Abstract 

The major constraints of wireless sensor nodes 
are computational costs, communication power and 
size. Different from wired networks, any adversary 
can receive and transmit fabricated data. Hence, 
important messages through the public channel 
should be encrypted. To provide data security over 
WSN, standard AES is too bulky for WSN. In this 
work, we proposed a variant of AES which is suitable 
for WSN by choosing different parameters for 
MixColumns to achieve higher data diffusion rate. 
SubBytes and MixColumns transformations are 
combined into a look-up table, which reduces 512 
bytes space in total. In addition, we implement 
InvSubBytes and SubWord with composite field 
calculation by using GF(24)2 inverter. Our throughput 
can reach 1.6 Gps using FPGA simulation, and is 
suitable for WSN transmission. 

Keyword： AES, WSN, encryption 
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1 Introduction 
 

Wireless Sensor Networks (WSN) come with 
the rapidly development of Wireless Network 
Technologies in the recent years. They are composed 
of many sensor nodes that gather data and transmit to 
the base station. Since they are usually used in 
military applications, their most important 
requirements are security, efficiency and size [8].  

 
Encryption algorithms have been well developed 

over the last decade, e.g. AES [18], BLOWFISH [5], 
RC5 [26], RC6 [24], DES [19], TEA [7], TwoFish [4], 
RSA [22], etc. Considering computational cost, 
which is one of the bottlenecks in wireless sensor 
networks, exponential computation like RSA requires 
too much energy. We suggest symmetric 
cryptosystems rather than asymmetric ones. In 
particular, AES is the most famous and popular 
symmetric encryption which is believed to meet the 
security needs in WSN. However, AES has two main 
problems in low-computational power devices like 
sensor. First, MixColumns require polynomial 
multiplications which are costly for sensors. Secondly, 
unlike the symmetric structure of DES, its encryption 
and decryption components are almost different; they 
share only about 46% of area mostly at the part of 
Sbox and key expansion.  

 
We propose a modified AES algorithm (MAES 

in brief) based on Rijndael with fewer rounds; 
different MixColumns coefficients to maintain its 
security to a certain level. We show that differential 
[11] and linear [17] attacks are infeasible in WSN 
environment. MAES is very efficient in encryption 
process where shared components minimize the area 
in hardware implementation. 

 
The rest of the paper is organized as follows. 

We first review AES in section 2. The MAES 
algorithm is described in Section 3. In section 4, we 
discuss the way choosing coefficient for MixColumns 
and apply both linear and differential cryptanalysis. 
Section 5 provides an implementation of our cipher 
including performance comparison. Tables of 
SubMix transformation are given in Appendix A and 
test vectors are available in Appendix B. 
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2 Backgrounds 

AES, stands for Advanced Encryption Standard, 
is a fast block cipher using symmetric key. The 
initiation of AES was announced by the National 
Institute of Standards and Technology (NIST) in 
January, 1997. After a series of evaluation, Rijndael 
[12][13] developed by Joan Daemen and Vincent 
Rijnment was selected by NIST as new encryption 
standard in October, 2000 [15][18]. AES is iterated 
with Boolean transformation applied to the plaintext 
block called state. Recently, various hardware 
implementations of AES showed good performance 
and suitable for wireless applications. 

2.1 AES Polynomial Multiplication 

Polynomial multiplication in AES corresponds 
with multiplications of polynomials modulo an 
irreducible polynomial of degree 8. By default setting, 
this irreducible polynomial is m(x) = x8 + x4 + x3 + x + 
1. For example, {57} • {83} = {C1}, where ‘•’ 
denotes polynomial multiplication in GF(28).  

First we have binary representation of {57} as 
{01010111}2, which stands for x6 + x4 + x2 + x + 1. 
Polynomial multiplication is computed by 
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One can easily verify that {57} • {01} = {57} where 
{01} is the identity. If given two polynomials and 
their multiplications over an irreducible polynomial 
equals to the identity element, for example {DE} • 
{90} = {01}, they are inverses of each other. 
 
2.2 AES Equivalent Round 

Each round of AES has an equivalent format 
which outputs exactly the same ciphertext; that is, we 
can change the order of SubBytes and ShiftRows. 
The standard AES round is depicted as follow: 

 
AES-round ( ) { 
 SubBytes (state); 
 ShiftRows (state); 
 MixColumns (state); 
 AddRoundKey (state, RoundKey); 
} 
SubBytes transformation operates on each byte of 
current state, and ShiftRows only change their 
positions among rows. We can rearrange their order 

and have equivalent round:  
 
Equivalent-round ( ) { 
 ShiftRows (state); 
 SubBytes (state); 
 MixColumns (state); 
 AddRoundKey (state, RoundKey); 
} 
 
Then, we merge SubBytes and MixColumns into a 
new transformation called SubMix. Thus, encryption 
requires only three stages. 
 
MAES-round ( ) { 
 ShiftRows (state); 
 SubMix (state); 
 AddRoundKey (state, RoundKey); 

} 
 
2.3 MixColumns Transformation 

MixColumns substitutes and permutes data at 
the same time to achieve high diffusion property. 
During MixColumns transformation, columns are 
considered as polynomials over GF(28) and 
multiplied with a fixed polynomial a(x) under x4+1, 
given by  

 
)2(}02{}01{}01{}03{)( 23 +++= xxxxa  

 

Let S0,c denotes the first byte of column c, S’0,c 
after MixColumns and S2,c ~ S3,c respectively. Each 
column then multiplies the rotations of a(x). This can 
be written as a matrix multiplication. 
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In standard AES, coefficients of MixColumns 

are very simple, but more complicated of 
InvMixColumns, because AES was designed to be 
also efficient in software. The xtime operation means 
to multiply a polynomial x modulo m(x), and can be 
implemented with a shifter and bit-wised XOR. It is a 
very efficient way to compute polynomial 
multiplications when there are more zeros in binary 
representation of the operand, since we only need to 
shift left iteratively. Obviously, computational cost of 
{37} is much greater than that of {03} using xtime 
computations. 
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If we take a closer look, the portion of S3, c • {01} = 
S3, c doesn’t contributes effort in mixing data if S0, c, 
S1, c, and S2, c are fixed to zeros, then output of this 
stage is exactly same to the input. 

 
In contrast, MAES is designed for hardware 

where table look-up is the fastest way, and computing 
{37} and {03} are the same. Hence, we are allowed 
to choose these polynomials freely. However, a 
polynomial in GF(28)[x] modulo x4 +1 doesn’t 
guarantee to have inverse. Even if it has one, its 
bit-wised mapping may not be sufficiently complex 
(measured by hamming weight). We suggest using 
polynomial  

 
)5(}17{}17{}5{}37{)( 23 +++= xxDxxp  

 
and its inverse 
 

)6(}{}4{}4{}4{)( 231 DExExExFxp +++=−  
 

They both have high hamming weights in form 
of bit-wised mapping. Numbers of these polynomials 
are quite few in the space of 232 and we believe that 
our choice is good enough (may not be optimal), 
since there is no efficient way to compute inverses, 
we are not able to perform exhaustive search for 
optimal in 232→232. The suggested p(x) and p(x)-1 
both have good mapping complexity, and their 
coefficients are three different values, which means 
they need only three tables, while conventional AES 
needs four.  
 

3. The MAES Algorithm 

In this section, we describe the specific 
algorithm of MAES, where the length of key, input 
block and output block are all 128 bits (16 bytes). As 
for ShiftRows and AddRoundKey transformations, 
they are defined as the standard AES algorithm. The 
cipher is reduced to 7 rounds. Key generation process 
is the same as in AES. Our thought is to do one more 
MixColumns transformation within the last round. 
Although this change doesn’t gain more security, it 
does save spaces if we use SubMix instead. The 
SubMix transformation is implemented by three 
look-up tables (in hardware) instead of computing 
polynomial multiplications for efficiency concern. 

 
We move computational costs from encryption 

onto decryption, because data broadcasted through 
radio might be easily corrupted and retransmission 
occurs very often. Besides, every message needs a 
message authentication code (called MAC) also 
computed by encryption algorithm to prevent 
fabricated data. One can see sensors usually do more 
encryption than decryption. 

 

 
Figure 1 encryption/decryption process of MAES 

 
3.1 Encryption 

 
Encryption is very efficient, with only three 

stages: ShiftRows, SubMix and AddRoundKey. The 
cipher is described in pseudo code. 

 
Nr = 7 
Begin 

state = input 
AddRoundKey (state, RoundKey[first] )  
for round = 1 step 1 to Nr 

ShiftRows (state)  
SubMix (state)  
AddRoundKey(state, RoundKey[round]) 

end for 
output = state 

end 

Figure 2 Pseudo Code for the cipher 

3.2 SubMix Transformation 

The SubMix transformation is a combination of 
SubBytes and MixColumns that takes four 
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polynomials over GF(28) (shifted column) as input 
and substitutes them with different values by table 
look-up. The outputs of previous stage are XORed to 
obtain the final value. This can be written as a matrix 
multiplication like equation (3).  
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According to the Design of Rijndael [13], SubBytes 
and MixColumns have the following property: 
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For example, if input s(x) = {01} + {02}x + {03}x2 + 
{04}x3, the value of S0, c after SubMix is computed by 
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Figure 3 Illustration of the SubMix transformation. 

 
SubByte(a(x) ‧ b(x)) can be realized in two 

different ways. One by look-up table, which is faster 
but requires larger space; the other is by bit-wised 
mapping that can be implemented by XOR gates [21], 
smaller but slower. To handle the tradeoff, we attempt 
to use look-up tables for SubMix. 

 
First, if implemented by look-up tables, each of 

them requires 256 bytes in size (same as Sbox in 
AES), and we need both 3*256 bytes for encryption 
and decryption. Compared to AES, which needs one 
table for SubBytes, 3*256 bytes for MixColumns and 
4*256 bytes for InvMixColumns, our result saves 512 
bytes space in total. Table 1 shows a comparison of 
AES and our method. 

 
 

Table 1 Comparison of AES and MAES 
 AES MAES 

SubBytes 1 table 0 table 
MixColumns / SubMix 3 tables 3 tables

InvSubBytes 1 table 1 table 
InvMixColumns 4 tables 3 tables

 
Secondly, if implemented with bit-wised 

mapping, here is an example for computing 
multiplication of {DE} with input a(x) = a0 + a1x + 
a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 and outputs a(x)’: 
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3.3 Decryption 

 
The decryption process is slightly different, 

because we perform an extra MixColumns at the end 
of encryption. There needs an InvMixColumns right 
after the first step of decryption --- AddRoundKey to 
stay equivalence. The rest parts of decryption are 
exactly same to the standard AES. It is described in 
pseudo code in Fig 10. 
 
Nr = 7 
Begin 
    state = input 
   AddRoundKey(RoundKey[Last]) 
   InvMixColumns(state) 
   For round=Nr-1 step -1 downto 1 
      InvShiftRows (state) 
      InvSubBytes(state) 

   AddRoundKey (state, RoundKey[round]) 
       InvMixColumns(state) 
    End for 
 
    InvShiftRows(state) 
    InvSubBytes(state) 
    AddRoundKey(state, RoundKey[First]); 
    output = state 
End 

Figure 4 Pseudo code for the inverse cipher 
 

4. Security Analysis 

AES was designed to stand against both linear 
and differential attacks. Linear attack was introduced 
by Mitsuru Matsui [17]. The main purpose of linear 
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attack is to find the relationship between input and 
output. Although the probability is quite low, suppose 
the attacker is allowed to choose plaintext and 
ciphertext adaptively (known as adaptive chosen 
ciphertext attack), with sufficient pairs, he is able to 
recover some parts of a round key and perhaps the 
whole secret key by exhaustive search. Differential 
attacks to DES-like ciphers suggested by E.Biham & 
A. Shamir [11] extended from fault attacks [3] 
analyses the effect of differences in plaintext pairs on 
differences in ciphertext pairs. The probabilities 
discovered will help an attacker to extract the most 
probable key as long as there are sufficient chosen 
plaintext pairs. The standard way is to trace a path of 
high probable differences through the various stages 
of encryption. 

 
To cut down computational cost, we attempt to 

abbreviate the number of rounds. However, this will 
also reduce the complexity to break the cipher. In this 
section, we will show that the coefficients of SubMix 
transformation we chose not only reduce number of 
tables required, but also have high diffusion property. 
Linear and differential attacks against MEAS are 
infeasible in WSN environment. By calculating their 
probabilities finds out the required plaintext and 
ciphertext pairs are far more than a sensor node can 
possibly send within rekeying period. 

 
4.1 Linear Cryptanalysis  

In cryptography, confusion refers to making the 
relationship between the key and ciphertext as 
complex as possible; diffusion requirement on a 
cipher is that each plaintext bit should influence 
every ciphertext bit and each key should influence 
every ciphertext bit as well. In a cipher with good 
diffusion like AES, each flipping input bit should 
change each output bit with a probability of one half. 

 
The aim of linear cryptanalysis is to find the 

linear equations of the form  
)10(],...,,[],...,[],...,,[ 212121 cba iiiKiiiCiiiP =⊕

A successful attacker can discover many of these 
linear equations and estimate the best probabilities of 
each round. Other than DES, AES has only one Sbox 
and already performs good diffusion property. 
During MixColumns transformation, we find that 
multiplying {03} can be computed by bit-wised 
mapping in Figure 5. We can rewrite the equations 
and obtain a linear mapping from input a(x) to output 
a(x)’. 
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Figure 5 linear mapping of {03} from bit-wised 
mapping 

The following equation estimates the probability 
of every linear equation introduced in [17]. 

 
)11(})(,2560|{#),( βαβα ∧=∧≤≤≡ xFxxxN  

 
α denotes input mask, β denotes output mask and 
‘ ∧ ’denotes bit-wised AND operation. If α={01} 
means observing the last bit a0 only and β is for 
observing the output bits. According to Figure 5, if 
the attacker fixes bit a0, he needs to observe the bits 
a0 and a1 at the output. Suppose he is fixing input bit 
a7, there are five output bits influenced. 
Compare to equation (3.3), we rewrite the linear 
mapping of {DE} in Figure 6. One can see {DE} 
provides a better way of mixing data and more 
complex linear mapping equations than {03} in AES.  
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Figure 6 linear mapping of {DE} from bit-wised 
mapping 

When choosing the coefficients for SubMix, 
first we expand polynomials in GF(28) into bit-wised 
mapping equations and calculate their hamming 
weights. In fact every coefficient of p(x) has good 
diffusion property.  
 
4.2 Differential Cryptanalysis  

We now show a way to do differential 
cryptanalysis of last two rounds. A byte of fault is 
injected (like the method introduced in [20]) before 
SubMix transformation and denotes as ε. Since 
AddRoundKey and ShiftRows have no effects on the 
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value of difference. The fault propagates from one 
byte to a column after MixColumns. After ShiftRows, 
the fault is shifted to different columns, and will be 
distributed to the whole state after next MixColumns. 
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To estimate our success rate, first we construct a 
differential distribution table of AES’s Sbox like in 
[11] and find out some probable faults are likely to 
happen more than others. For Example, let ε = {1F}, 
then we have ε0 = SubBytes(ε) = {A3}. After 
MixColumns transformation, difference propagation 
of the first column are {5D}, {A3}, {A3}, and {FE} 
with a probability less than 0.006169%. In the last 
round, we check the differential table again to obtain 
the last probability, which is about 0.003060%. 
Hence, number of pairs to mount a successful 
differential attack (to obtain the last round key) will 
be 5.29*108 pairs. 
 

As for MAES, let ε = {67}, then we have ε0 = 
SubBytes(ε) = {E6}. After MixColumns 
transformation, difference propagation of the first 
column are {66}, {66}, {65}, and {B9} with a 
probability less than 0.006168% and 0.003064% in 
the last round. Our proposed SubMix transformation 
turns out to be as strong as standard AES.  
 

5. Implementation 
 

Due to the limited resources including power 
supply and area on wireless sensor network nodes, 
we will introduce some techniques we use in the 
design of MAES to achieve the goals of reduced 
power and low gate count in this section. 

 
After the analysis of overall AES and modified 

AES, inclusive of encryption, decryption, and key 
expansion, some portions of these three algorithms 
should be focused to implement an efficient design 
with lower power consumption and lower gate count.  

 
Firstly, as to the key expansion part, two 

methods including pre-computation method and 
on-the-fly key schedule method [6] are usually used 
to generate round keys. On-the-fly key schedule first 
generates the expanded keys from the Cipher key and 
then decides the round key of each round. Each round 
key is used when it is generated, so it is not necessary 
to use storage elements to store keys as what 
pre-computation method does. Under the concern of 
area and power, on-the-fly key schedule is adopted. 

 
Secondly, the most critical part and 

power-hungry part of AES and MAES are (1) 
SubBytes in key expansion and encryption round 
functions, and (2) InvSubBytes in decryption round 
functions [26] [2]. We use Galois field arithmetic [16] 
to complete the operations under the consideration of 
timing and area. 

 
5.1 Area Reduction Techniques 

There are many methods that can be used to 
implement Sbox. The better way is using the Galois 
field arithmetic [16] [9] under the consideration of 
performance and area. One operation of SubBytes is 
calculating the multiplicative inverse over GF(28). 
However, it is quite complex to compute directly, 
therefore we first transform it from GF(28) to 
GF((24)2) and then we can use inverter in GF((24)2). 
Since the polynomial x8 + x4 + x3 + x + 1 ({11B} in 
hexadecimal form) used in AES and MAES is not a 
primitive irreducible polynomial, we had better use 
isomorphism before and after the implementation of 
GF((24)2) inverter. In GF((24)2), the primitive 
irreducible polynomial x8 + x4 + x3 + x2 + 1 ({11D} in 
hexadecimal form) is a better basis. The isomorphism 
function from GF(28) to GF((24)2) is B as shown in 
Equation 12 [16] [25] and the isomorphism function 
from GF((24)2) to GF(28) is B-1 as shown in Equation 
13 [16] [25]. 
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Since both SubBytes and InvSubBytes have the 

operation of calculating multiplicative inverse, it is a 
good idea to share the GF inverters to reduce gate 
count [27] [1] , as illustrated in Figure 7, 8, and 9. 

 

Figure 7 GF(28) inverter shared by SubBytes and 
InvSubBytes 

 

 
Figure 8 GF(28) inverter is transformed to 

GF((24)2) inverter 
 

 
Figure 9 Isomorphism functions and affine 

transformations are further combined together 
 
In Figure 7, when SubBytes is performed, 

SubBytes/InvSubBytes = 1, the input is directly 
going to the GF(28) inverter and then taking affine 
transformation to generate the output. When 
InvSubBytes is performed, SubByte/InvSubBytes = 0, 
the input is first taking inverse affine transformation 
and then going through the GF(28) inverter to 
produce the output. In Figure 8, GF(28) inverter is 
changed to GF((24)2) inverter by placing 
isomorphism transformations before and after the 
inverter. In Figure 9, isomorphism functions B and 
B-1 are further merged with affine transformations A 
and A-1, the path delay is therefore shortened. Besides, 
the area is also reduced.  

 
The GF((24)2) inverter is implemented based on 

Euclid’s algorithm [10]. Input a is 8-bit long. After a 
series of operations, the 8-bit substituted result a-1 is 
obtained. Among those transformations, 

multiplication in GF((24)2) is similar to 
byte-multiplication. 

 

 
Figure 10 The structure of the GF((24)2) inverter, the 

input is a and output is a-1

 
We find that SubBytes and the multiplications of 

MixColumns can be combined together with tables to 
reduce the critical path and gate count.  In Figure 11, 
b0 = {MixColumns (SubBytes (a0), {17})}, which 
means that a0 is first substituted with Sbox and then 
multiplies with {17}over GF(28). For example, if 
input a0 = {00}, then output b0 = {58}. 

 
As a result, the way to complete both the 

transformations of SubBytes and MixColumns in the 
encryption process is to XOR the results obtained 
from the tables described above. 

 

 
Figure 11 SubMix table of {17} 

 
5.2 Power Reduction Techniques 

In MAES, SubBytes and InvSubBytes are not 
only the most critical parts but also the most 
power-consuming parts. So, it is critical to reduce the 
overall power by reducing Sbox and Inverse-Sbox 
power [26]. 

 
Power consumption of Sbox and Inverse-Sbox is 

greatly influenced by the number of dynamic hazards, 
which is caused by differences of signal arrival times 
at each gates and the propagation probability of 
signal transitions. As illustrated in Figure 12, an XOR 
gate transfers signal transitions from input to output 
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with probability 100%. For AND, OR gates, the 
probability is 50%. Therefore, it is a good way to 
place AND or OR gates before XOR gates to reduce 
the probabilities of signal transition, as illustrated in 
Figure 13. 

 
(1)XOR gate 

 
(2)AND gate 

 
(3)OR gate 

 
Figure 12 Propagation probabilities of signal 

transitions 
 

As shown in Figure 14, composite field Sbox 
and Inverse Sbox are divided into three blocks to 
reduce the probabilities of signal transitions [2]. In 
addition, the two-level logic, i.e. AND-XOR arrays 
are used to reduce the number of dynamic hazards. 

 
In conclusion, we use the following approaches 

to achieve power reduced Sbox and Inverse Sbox: (1) 
Use composite field Sbox to reduce gate count, (2) 
Divide combinational logic into three stages to 
reduce the probabilities of signal transitions, and (3) 
Adjust the signal timing by using two-level 
(AND-XOR) logic to reduce the number of dynamic 
hazards. 

 

 
Figure 13.1  Two-level AND-XOR logic 

 
Figure 13.2  Two-level OR-XOR logic 

 

 
Figure 14 3-stage AND-XOR architecture used for 

composite field S-box 
 

Figure 15 shows the key scheduler we use in our 
MAES design [26] [14]. When the encryption routine 
is processed, EN/ DE = 1 and Init_K0 through 
Init_K3 are the Cipher key. In the beginning, Init_K0 
through Init_K3 are put into K0 through K3, 
respectively. After one clock cycle, 

)]otWord(K3)[SubWord(RRcon[0]K00K ⊕⊕=
K’1=K’0⊕ K1, K’2=K’1⊕ K2, K’3=K’2⊕ K3 and 
the generated K’0 through K’3 become the new K0 
through K3. After another 6 clock cycles, all round 
keys are generated and the final round key are stored 
in registers. Similarly, when the decryption routine is 
processed, EN/DE = 0 and Init_K0 through Init_K3 
are the final key stored in registers. At first, Init_K0 
through Init_K3 are put into K0 through K3, 
respectively. After one clock cycle, K’3=K2⊕ K3, 
K’1=K0⊕ K1, K’2=K1⊕ K2,  

))]otWord(K'3[SubWord(RRcon[0]K00K' ⊕⊕=
, and the generated K’0 through K’3 become the new 
K0 through K3. After another 6 clock cycles, all 
round keys are generated. 
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Figure 15 Circuit of key scheduler 

 
5.3 Design Flow and Design Environment 

We use cell-based design flow to implement our 
design, since our design belongs to digital logic. To 
perform simulation and synthesis, we utilize some 
EDA tools supplied by CIC (National Chip 
Implementation Center). In the beginning, we write 
Verilog-HDL (Hardware Description Language) 
codes according to the spec. Then we use ModelSim 
SE to simulate the design. The simulation is just to 
verify the correctness of the functions we want to 
design and the simulation is in the phase of RTL 
(Register Transfer Level) simulation. After the 
function is checked and is correct, we use another 
EDA tool, named Design Compiler, issued by 
Synopsis Corporation to transfer our design from 
RTL to a gate-level design. This process is called 
logic synthesis, which obtains a logic gate list 
according to some synthesizing rules and cell 
libraries. The cell library we choose for synthesis is 
UMC 0.18um process. Besides, it also inserts the 
concept of timing into the design. Afterward, we use 
Verilog-XL to simulate the gate-level design with 
timing annotated. After both timing and functions are 
checked to be correct, we use Xilinx FPGA board to 
verify again the functions of the design. The board 
we use is Xilinx Virtex-II Pro XC2VP30. The FPGA 
view of our circuit after place and route is illustrated 
in Figure 16. 
 

 
Figure 16 The FPGA view of our circuit after place 

and route 

Table 2 shows a comparison of Horng’s [6] 
implementation of AES and our implementation of 
modified AES. According to the table, we can find 
that the gate count of our circuit is about 69% of 
Horng’s circuit. In addition, the power consumption 
of our circuit is about 79% of Horng’s circuit. 
Throughputs are equal.  

 
Table 2 Comparisons 

 Horng’s Ours 

Technology UMC 0.18um UMC 

0.18um 

Clock rate 125MHz 125MHz 

Throughput 1.6Gbps 1.6Gbps 

Gate count 67.9K 47.2K 

Power consumption 56mW 44.21mW 

 

6. Future work 

Coefficients of MixColumns transformation may 
not be the optimal values when considering branch 
numbers. For example, {FE}x3 + {6F}x2 + {C4}x + 
{C4}is also a good choice. On the other hand, we are 
looking forward to a reduction in the decryption 
process for those low-end devices like RFID. We can 
further combine InvSubBytes and InvMixColumns 
into InvSubMix and implement all the functions by 
bit-wised mapping instead of look-up tables. 

7. Conclusions 

In this paper, we proposed a modified AES 
algorithm. SubMix transformation is new stage 
combining SubBytes and MixColumns, implemented 
by look-up tables that perform faster encryption. 
Polynomial p(x) for MixColumns is chosen 
dedicatedly to achieve higher diffusion rate, and have 
a 512 bytes reduction of table spaces comparing to 
standard AES. We provided linear and differential 
cryptanalysis to show our result has certain security 
because the number of pairs required to mount a 
successful attack is far more than a sensor node can 
broadcast. 

 
Overall our result can reach 1.6 Gps of 

throughput at 125MHz consuming 44.21mW and is 
suitable for encrypting data in wireless sensor 
networks. 
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Appendix A 
 

Table 3 SubMix table of {17} 
58 ee 6f 8b 51 e0 bc 89 bd 17 04 57 b5 cc 22 78

54 5b 6d f9 e9 73 d2 7f 50 f5 8d 7e fa ff 24 c2

ad 8c 27 a4 cf 60 1a 26 e1 e8 5f 68 1d 11 aa 20

5c a7 ef fb d3 6c 4b 88 65 45 75 3a 95 b3 e6 41

af 4c 32 fd ea ab 4a a3 f2 3c db f1 79 2d 0b 29

e5 be 00 e7 d6 9b df 5d f7 43 02 12 21 53 64 1f

a9 c9 35 fe 8e 44 84 3e fc d0 2e d7 dc 59 c3 1b

cb 9a b7 a8 30 ed 05 34 2c ba 3f c1 6b a2 46 87

31 e4 52 f0 01 7b eb 0e 9e c6 c0 4e 3d 2f c4 33

61 62 6a 4d f8 40 1e cd c5 de 70 37 63 16 81 28

14 93 2b 96 18 72 8a 38 ec 90 47 4f 09 55 48 a5

71 7a d8 92 86 e2 7d 0c 85 ae 23 82 2a 9c 69 b8

5e b2 9d 1c 8f d1 94 b0 ac 5a 56 b6 36 3b f4 e3

0a 77 83 13 0f 39 0d ca 76 f6 b9 67 07 d5 98 d4

03 c7 a6 7c ce 06 bf 42 9f a1 10 bb 08 97 6e 74

91 b4 da f3 15 66 99 d9 a0 b1 25 dd c8 80 49 19

 

Table 4 SubMix table of {37} 
8c f7 0d 72 38 2f f3 5a e7 37 50 40 47 69 9e 3a

7c b0 25 c0 9b a6 ea 56 2c 30 0a 42 fc b8 e6 b1

bc 1e da 08 55 c1 d3 ce 3b 8f e0 61 bf 4f d0 b6

dc 34 e3 e8 fe 31 eb 4e 85 33 de 65 f1 3f 57 63

94 87 c5 90 a7 c4 ff 64 5c 1d 5e 60 2e 52 9c 02

6b db 00 43 ba 29 0e c8 18 4b 28 73 a2 10 91 97

ec 2d a9 ac 36 27 be 35 84 c2 6e ae 32 98 a5 c7

05 3d 6f f8 ed cb 44 bd 46 8b 21 8d 5d 70 0f 82

f9 7f 04 74 14 06 b3 d8 6d e1 99 af 09 7a c9 d1

d5 e9 49 93 d4 77 83 7d dd 1a 9a 81 fd 23 fa 16

0b 89 2a cd fb b2 66 4d df b5 1b bb b4 68 d7 1c

8e 12 62 9d 96 07 7e f0 aa 80 8a c6 3e 45 75 a3

f4 2b 51 ab 22 d6 e5 03 a8 a4 54 7b 95 71 24 13

88 f6 d2 67 cc 59 e4 11 e2 0c b7 ad 6c 86 15 92

3c f5 20 6a 41 78 cf 5f 79 4c 5b 9f a0 d9 19 ca

a1 53 4a 48 1f b9 01 76 58 17 f2 26 39 ee c3 ef
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Table 5 SubMix table of {5D} 
18 e9 d0 61 ad c6 a9 d7 f2 5d 77 6c 1c ca 23 8d 

81 f5 66 b4 73 8e 22 17 f6 2d a0 4c 59 75 e2 e5 

35 fb 0f 80 27 a4 9f 54 9d 28 82 4a 05 9c af 95 

6f 6d b2 02 79 3d 32 8c 88 1d 4f 0a 89 dd 07 6a 

83 a8 e4 c3 9e f4 69 1a b7 cb 97 5a d6 57 03 20 

ea 1f 00 5c 55 a6 e0 34 9b dc b6 71 ce 1b d3 b3 

42 e6 7e 2e 4d 46 15 7d 98 94 ba 0e 0d 43 be c4 

50 fd aa 19 52 04 2c 25 0c 68 26 08 a7 41 f0 f8 

09 b1 40 01 5b 60 c5 2f 8a 92 53 1e 90 e1 24 bf 

ff 12 fc f3 ef 31 e8 91 7f bb 63 c8 49 06 39 7b 

b0 48 96 64 29 d5 3a bc 5f a5 ab 45 b5 da df db 

38 3b 7a 13 a3 70 a1 99 4e d8 78 d4 cd 3c 11 de 

d9 86 67 5e 16 cf d2 30 6e ae 37 f1 93 51 76 2b 

58 f9 8f 2a 74 e7 c2 0b a2 c0 85 3e 9a b8 4b e3 

ed c9 36 fa 7c c1 44 87 d1 ac c7 33 ee 3f 8b 14 

fe 47 cc ec eb 65 10 21 f7 6b b9 56 bd 62 84 72 
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Appendix B 
Plaintext  bits 74 68 69 73 20 69 73 20 61 20 74 65 73 74 21 21 

Key bits        00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Ciphertext bits 82 8f 0d 72 38 71 26 fc 0e 46 6a 19 9f 07 3e 4b 

==========================================================================================

Round Key  00 00 00 00 

           00 00 00 00 

           00 00 00 00 

           00 00 00 00 

Round 1> 

After ShiftRows  74 20 61 73 

                 69 20 74 68 

                 74 21 69 73 

                 21 73 20 65 

After SubMix      2c 42 1d 71 

                  f6 07 0e ea 

                  ac ec ba 6a 

                  c5 ad 02 8c 

After AddRoundKey  4e 20 7f 13 

                   95 64 6d 89 

                   cf 8f d9 09 

                   a6 ce 61 ef 

Round 2> 

After ShiftRows  4e 20 7f 13 

                 64 6d 89 95 

                 d9 09 cf 8f 

                 ef a6 ce 61 

After SubMix      89 e2 b9 f8 

                  9d f9 24 8e 

                  b1 1d f9 ea 

                  53 62 07 0b 

After AddRoundKey  12 1b 22 01 

                   05 02 bc 75 

                   29 e6 61 11 

                   9a c8 ce a1 

Round 3> 

After ShiftRows  12 1b 22 01 

                 02 bc 75 05 

                 61 11 29 e6 

                 a1 9a c8 ce 

After SubMix      15 c5 68 71 

                  67 87 2b b7 

                  49 a7 a2 92 

                  af a4 9a 7a 

After AddRoundKey  85 ac 9a 7a 

                   f0 eb df b8 

                   7d 68 f5 3e 

                   ff 5e a9 e3 

Round 4> 

After ShiftRows  85 ac 9a 7a 

                 eb df b8 f0 

                 f5 3e 7d 68 

                 e3 ff 5e a9 

After SubMix      fd 85 ff 96 

                  83 f8 56 8f 

                  d7 68 d5 fe 

                  2f a8 12 b3 

After AddRoundKey  13 02 8a e8 

                   85 92 c8 1e 

                   0d 7d 97 10 

                   54 29 a0 98 

Round 5> 

After ShiftRows  13 02 8a e8 

                 92 c8 1e 85 

                 97 10 0d 7d 

                 98 54 29 a0 

After SubMix      e4 90 04 cc 

                  91 ea a5 24 

                  ce 92 34 03 

                  34 e1 5f af 

After AddRoundKey  9b 68 89 3f 

                   bf ae 7f 6f 

                   e5 ac 48 91 

                   bc e8 e4 3f 

Round 6> 

After ShiftRows  9b 68 89 3f 

                 ae 7f 6f bf 

                 48 91 e5 ac 

                 3f bc e8 e4 

After SubMix      16 46 5f 99 

                  49 5f 74 31 

                  11 43 f6 9a 

                  ed 34 bc 7a 

After AddRoundKey  fa 52 c6 f3 

                   28 7a 8b 85 

                   5a 36 ff 01 

                   68 b8 8b dd 

Round 7> 

After ShiftRows  fa 52 c6 f3 

                 7a 8b 85 28 

                 ff 01 5a 36 

                 dd 68 b8 8b 

After SubMix      a3 ba a1 b4 

                  4d 21 89 e7 

                  19 24 01 e9 

                  18 0c 02 d0 

After AddRoundKey  82 8f 0d 72 

                   38 71 26 fc 

                   0e 46 6a 19 

                   9f 07 3e 4b 

Ciphertext 
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