
適用於無線感知網路的 Modified AES
Modified AES for Wireless Sensor Networks

Shen-Wei Chen
Dept. Electrical Engineering,
National Tsing Hua University
mr923969@ee.nthu.edu.tw

Wei-Chi Ting
Dept. Computer Science,
National Tsing Hua University
mr936303@cs.nthu.edu.tw

Hung-Min Sun
Dept. Computer Science,
National Tsing Hua University
hmsun@cs.nthu.edu.tw

Yarsun Hsu
Dept. Electrical Engineering,
National Tsing Hua University
yshsu@ee.nthu.edu.tw

摘要

 無線感知節點的主要限制包括計算量，電力消

耗和體積。與有線網路所不同的是，任何攻擊者皆

能竊聽與發送偽造訊息，因此重要的訊息應該被加

密傳輸。為了提供無線感知網路的資訊安全方案，

我們簡化AES的演算法，不同的行混合參數以提高

資料混合效率。位元組取代和行混合運算合併成單

一查詢表，加解密一共減少 512 位元組的儲存空

間。我們也使用GF(24)2 代替計算GF(28)反函數的

技術以節省面積。FPGA實作結果顯示資料傳輸速

率可達 1.6Gps，能契合無線感知網路的需求。

關鍵字：AES, 無線感知網路, 加密

Abstract

The major constraints of wireless sensor nodes
are computational costs, communication power and
size. Different from wired networks, any adversary
can receive and transmit fabricated data. Hence,
important messages through the public channel
should be encrypted. To provide data security over
WSN, standard AES is too bulky for WSN. In this
work, we proposed a variant of AES which is suitable
for WSN by choosing different parameters for
MixColumns to achieve higher data diffusion rate.
SubBytes and MixColumns transformations are
combined into a look-up table, which reduces 512
bytes space in total. In addition, we implement
InvSubBytes and SubWord with composite field
calculation by using GF(24)2 inverter. Our throughput
can reach 1.6 Gps using FPGA simulation, and is
suitable for WSN transmission.

Keyword： AES, WSN, encryption

This work is supported by both NSC and MOEA under grant
numbers 94-2213-E-007-040, 94-EC-17-A-04-S1-044

1 Introduction

Wireless Sensor Networks (WSN) come with
the rapidly development of Wireless Network
Technologies in the recent years. They are composed
of many sensor nodes that gather data and transmit to
the base station. Since they are usually used in
military applications, their most important
requirements are security, efficiency and size [8].

Encryption algorithms have been well developed

over the last decade, e.g. AES [18], BLOWFISH [5],
RC5 [26], RC6 [24], DES [19], TEA [7], TwoFish [4],
RSA [22], etc. Considering computational cost,
which is one of the bottlenecks in wireless sensor
networks, exponential computation like RSA requires
too much energy. We suggest symmetric
cryptosystems rather than asymmetric ones. In
particular, AES is the most famous and popular
symmetric encryption which is believed to meet the
security needs in WSN. However, AES has two main
problems in low-computational power devices like
sensor. First, MixColumns require polynomial
multiplications which are costly for sensors. Secondly,
unlike the symmetric structure of DES, its encryption
and decryption components are almost different; they
share only about 46% of area mostly at the part of
Sbox and key expansion.

We propose a modified AES algorithm (MAES

in brief) based on Rijndael with fewer rounds;
different MixColumns coefficients to maintain its
security to a certain level. We show that differential
[11] and linear [17] attacks are infeasible in WSN
environment. MAES is very efficient in encryption
process where shared components minimize the area
in hardware implementation.

The rest of the paper is organized as follows.

We first review AES in section 2. The MAES
algorithm is described in Section 3. In section 4, we
discuss the way choosing coefficient for MixColumns
and apply both linear and differential cryptanalysis.
Section 5 provides an implementation of our cipher
including performance comparison. Tables of
SubMix transformation are given in Appendix A and
test vectors are available in Appendix B.

1

2 Backgrounds

AES, stands for Advanced Encryption Standard,
is a fast block cipher using symmetric key. The
initiation of AES was announced by the National
Institute of Standards and Technology (NIST) in
January, 1997. After a series of evaluation, Rijndael
[12][13] developed by Joan Daemen and Vincent
Rijnment was selected by NIST as new encryption
standard in October, 2000 [15][18]. AES is iterated
with Boolean transformation applied to the plaintext
block called state. Recently, various hardware
implementations of AES showed good performance
and suitable for wireless applications.

2.1 AES Polynomial Multiplication

Polynomial multiplication in AES corresponds
with multiplications of polynomials modulo an
irreducible polynomial of degree 8. By default setting,
this irreducible polynomial is m(x) = x8 + x4 + x3 + x +
1. For example, {57} • {83} = {C1}, where ‘•’
denotes polynomial multiplication in GF(28).

First we have binary representation of {57} as
{01010111}2, which stands for x6 + x4 + x2 + x + 1.
Polynomial multiplication is computed by

)1()1(mod)1(
1

)1)(1(

34867

3456891113

7246

++++++=

+++++++++=

++++++

xxxxxx
xxxxxxxxx

xxxxxx

One can easily verify that {57} • {01} = {57} where
{01} is the identity. If given two polynomials and
their multiplications over an irreducible polynomial
equals to the identity element, for example {DE} •
{90} = {01}, they are inverses of each other.

2.2 AES Equivalent Round

Each round of AES has an equivalent format
which outputs exactly the same ciphertext; that is, we
can change the order of SubBytes and ShiftRows.
The standard AES round is depicted as follow:

AES-round () {
 SubBytes (state);
 ShiftRows (state);
 MixColumns (state);
 AddRoundKey (state, RoundKey);
}
SubBytes transformation operates on each byte of
current state, and ShiftRows only change their
positions among rows. We can rearrange their order

and have equivalent round:

Equivalent-round () {
 ShiftRows (state);
 SubBytes (state);
 MixColumns (state);
 AddRoundKey (state, RoundKey);
}

Then, we merge SubBytes and MixColumns into a
new transformation called SubMix. Thus, encryption
requires only three stages.

MAES-round () {
 ShiftRows (state);
 SubMix (state);
 AddRoundKey (state, RoundKey);

}

2.3 MixColumns Transformation

MixColumns substitutes and permutes data at
the same time to achieve high diffusion property.
During MixColumns transformation, columns are
considered as polynomials over GF(28) and
multiplied with a fixed polynomial a(x) under x4+1,
given by

)2(}02{}01{}01{}03{)(23 +++= xxxxa

Let S0,c denotes the first byte of column c, S’0,c
after MixColumns and S2,c ~ S3,c respectively. Each
column then multiplies the rotations of a(x). This can
be written as a matrix multiplication.

)3(

02010103
03020101
01030201
01010302

,3

,2

,1

,0

'
,3

'
,2

'
,1

'
,0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

c

c

c

c

c

c

c

c

S
S
S
S

S
S
S
S

In standard AES, coefficients of MixColumns

are very simple, but more complicated of
InvMixColumns, because AES was designed to be
also efficient in software. The xtime operation means
to multiply a polynomial x modulo m(x), and can be
implemented with a shifter and bit-wised XOR. It is a
very efficient way to compute polynomial
multiplications when there are more zeros in binary
representation of the operand, since we only need to
shift left iteratively. Obviously, computational cost of
{37} is much greater than that of {03} using xtime
computations.

)4(}01{}01{
}03{}02{

,3,2

,1,0
'
,0

•⊕•⊕

•⊕•=

cc

ccc

SS
SSS

2

If we take a closer look, the portion of S3, c • {01} =
S3, c doesn’t contributes effort in mixing data if S0, c,
S1, c, and S2, c are fixed to zeros, then output of this
stage is exactly same to the input.

In contrast, MAES is designed for hardware

where table look-up is the fastest way, and computing
{37} and {03} are the same. Hence, we are allowed
to choose these polynomials freely. However, a
polynomial in GF(28)[x] modulo x4 +1 doesn’t
guarantee to have inverse. Even if it has one, its
bit-wised mapping may not be sufficiently complex
(measured by hamming weight). We suggest using
polynomial

)5(}17{}17{}5{}37{)(23 +++= xxDxxp

and its inverse

)6(}{}4{}4{}4{)(231 DExExExFxp +++=−

They both have high hamming weights in form
of bit-wised mapping. Numbers of these polynomials
are quite few in the space of 232 and we believe that
our choice is good enough (may not be optimal),
since there is no efficient way to compute inverses,
we are not able to perform exhaustive search for
optimal in 232→232. The suggested p(x) and p(x)-1
both have good mapping complexity, and their
coefficients are three different values, which means
they need only three tables, while conventional AES
needs four.

3. The MAES Algorithm

In this section, we describe the specific
algorithm of MAES, where the length of key, input
block and output block are all 128 bits (16 bytes). As
for ShiftRows and AddRoundKey transformations,
they are defined as the standard AES algorithm. The
cipher is reduced to 7 rounds. Key generation process
is the same as in AES. Our thought is to do one more
MixColumns transformation within the last round.
Although this change doesn’t gain more security, it
does save spaces if we use SubMix instead. The
SubMix transformation is implemented by three
look-up tables (in hardware) instead of computing
polynomial multiplications for efficiency concern.

We move computational costs from encryption

onto decryption, because data broadcasted through
radio might be easily corrupted and retransmission
occurs very often. Besides, every message needs a
message authentication code (called MAC) also
computed by encryption algorithm to prevent
fabricated data. One can see sensors usually do more
encryption than decryption.

Figure 1 encryption/decryption process of MAES

3.1 Encryption

Encryption is very efficient, with only three

stages: ShiftRows, SubMix and AddRoundKey. The
cipher is described in pseudo code.

Nr = 7
Begin

state = input
AddRoundKey (state, RoundKey[first])
for round = 1 step 1 to Nr

ShiftRows (state)
SubMix (state)
AddRoundKey(state, RoundKey[round])

end for
output = state

end

Figure 2 Pseudo Code for the cipher

3.2 SubMix Transformation

The SubMix transformation is a combination of
SubBytes and MixColumns that takes four

3

polynomials over GF(28) (shifted column) as input
and substitutes them with different values by table
look-up. The outputs of previous stage are XORed to
obtain the final value. This can be written as a matrix
multiplication like equation (3).

)7(

)SubBytes(
)SubBytes(
)SubBytes(
)SubBytes(

17175D37
3717175D
5D371717
175D3717

,3

,2

,1

,0

'
,3

'
,2

'
,1

'
,0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

c

c

c

c

c

c

c

c

S
S
S
S

S
S
S
S

According to the Design of Rijndael [13], SubBytes
and MixColumns have the following property:

(8)))()(SubBytes(
)())(SubBytes(

xbxa
xbxa

•=
•

For example, if input s(x) = {01} + {02}x + {03}x2 +
{04}x3, the value of S0, c after SubMix is computed by

{C2} = {5C} ♁ {E7} ♁ {6E} ♁ {17} =
17)SubByte(04 ♁ 5D)SubByte(03 ♁

37)SubByte(02 ♁ 17)SubByte(01 =
{17})SubByte(04♁{5D})SubByte(03♁

{37})SubByte(02♁{17})SubByte(01 =
) {04} , {03} , {02} , {01} SubMix(= 'S c 0,

••
••

••
••

Figure 3 Illustration of the SubMix transformation.

SubByte(a(x) ‧ b(x)) can be realized in two

different ways. One by look-up table, which is faster
but requires larger space; the other is by bit-wised
mapping that can be implemented by XOR gates [21],
smaller but slower. To handle the tradeoff, we attempt
to use look-up tables for SubMix.

First, if implemented by look-up tables, each of

them requires 256 bytes in size (same as Sbox in
AES), and we need both 3*256 bytes for encryption
and decryption. Compared to AES, which needs one
table for SubBytes, 3*256 bytes for MixColumns and
4*256 bytes for InvMixColumns, our result saves 512
bytes space in total. Table 1 shows a comparison of
AES and our method.

Table 1 Comparison of AES and MAES
 AES MAES

SubBytes 1 table 0 table
MixColumns / SubMix 3 tables 3 tables

InvSubBytes 1 table 1 table
InvMixColumns 4 tables 3 tables

Secondly, if implemented with bit-wised

mapping, here is an example for computing
multiplication of {DE} with input a(x) = a0 + a1x +
a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 and outputs a(x)’:

)9('
'
'
'
'
'
'
'

53107

74206

6315

5204

754303

76542102

76543101

64210

 a a a aa
 a a a aa

 a a aa
 a a aa

 a a a a aa
 a a a a a a aa

 a a a a a a aa
 a a a aa

⊕⊕⊕=
⊕⊕⊕=

⊕⊕=
⊕⊕=

⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

⊕⊕⊕=

3.3 Decryption

The decryption process is slightly different,

because we perform an extra MixColumns at the end
of encryption. There needs an InvMixColumns right
after the first step of decryption --- AddRoundKey to
stay equivalence. The rest parts of decryption are
exactly same to the standard AES. It is described in
pseudo code in Fig 10.

Nr = 7
Begin
 state = input
 AddRoundKey(RoundKey[Last])
 InvMixColumns(state)
 For round=Nr-1 step -1 downto 1
 InvShiftRows (state)
 InvSubBytes(state)

 AddRoundKey (state, RoundKey[round])
 InvMixColumns(state)
 End for

 InvShiftRows(state)
 InvSubBytes(state)
 AddRoundKey(state, RoundKey[First]);
 output = state
End

Figure 4 Pseudo code for the inverse cipher

4. Security Analysis

AES was designed to stand against both linear
and differential attacks. Linear attack was introduced
by Mitsuru Matsui [17]. The main purpose of linear

4

attack is to find the relationship between input and
output. Although the probability is quite low, suppose
the attacker is allowed to choose plaintext and
ciphertext adaptively (known as adaptive chosen
ciphertext attack), with sufficient pairs, he is able to
recover some parts of a round key and perhaps the
whole secret key by exhaustive search. Differential
attacks to DES-like ciphers suggested by E.Biham &
A. Shamir [11] extended from fault attacks [3]
analyses the effect of differences in plaintext pairs on
differences in ciphertext pairs. The probabilities
discovered will help an attacker to extract the most
probable key as long as there are sufficient chosen
plaintext pairs. The standard way is to trace a path of
high probable differences through the various stages
of encryption.

To cut down computational cost, we attempt to

abbreviate the number of rounds. However, this will
also reduce the complexity to break the cipher. In this
section, we will show that the coefficients of SubMix
transformation we chose not only reduce number of
tables required, but also have high diffusion property.
Linear and differential attacks against MEAS are
infeasible in WSN environment. By calculating their
probabilities finds out the required plaintext and
ciphertext pairs are far more than a sensor node can
possibly send within rekeying period.

4.1 Linear Cryptanalysis

In cryptography, confusion refers to making the
relationship between the key and ciphertext as
complex as possible; diffusion requirement on a
cipher is that each plaintext bit should influence
every ciphertext bit and each key should influence
every ciphertext bit as well. In a cipher with good
diffusion like AES, each flipping input bit should
change each output bit with a probability of one half.

The aim of linear cryptanalysis is to find the

linear equations of the form
)10(],...,,[],...,[],...,,[212121 cba iiiKiiiCiiiP =⊕

A successful attacker can discover many of these
linear equations and estimate the best probabilities of
each round. Other than DES, AES has only one Sbox
and already performs good diffusion property.
During MixColumns transformation, we find that
multiplying {03} can be computed by bit-wised
mapping in Figure 5. We can rewrite the equations
and obtain a linear mapping from input a(x) to output
a(x)’.

767

656

545

7434

7323

212

7101

700

 a a'a
 a a'a
 a a'a

 a a a'a
 a a a'a

 a a'a
 a a a'a

 a a'a

⊕=
⊕=
⊕=

⊕⊕=
⊕⊕=

⊕=
⊕⊕=

⊕=

→

',',',','
','
','
','
','
','
','
','

743107

766

655

544

433

322

211

100

aaaaaa
aaa
aaa
aaa
aaa
aaa
aaa
aaa

→
→
→
→
→
→
→
→

Figure 5 linear mapping of {03} from bit-wised
mapping

The following equation estimates the probability
of every linear equation introduced in [17].

)11(})(,2560|{#),(βαβα ∧=∧≤≤≡ xFxxxN

α denotes input mask, β denotes output mask and
‘ ∧ ’denotes bit-wised AND operation. If α={01}
means observing the last bit a0 only and β is for
observing the output bits. According to Figure 5, if
the attacker fixes bit a0, he needs to observe the bits
a0 and a1 at the output. Suppose he is fixing input bit
a7, there are five output bits influenced.
Compare to equation (3.3), we rewrite the linear
mapping of {DE} in Figure 6. One can see {DE}
provides a better way of mixing data and more
complex linear mapping equations than {03} in AES.

',',','
',',','

',',',','
',',',','

',',','
',','

',',',','
',',',',','

63217

52106

743215

632104

75313

6402

752101

7643210

aaaaa
aaaaa

aaaaaa
aaaaaa

aaaaa
aaaa

aaaaaa
aaaaaaa

→
→
→
→
→
→
→
→

Figure 6 linear mapping of {DE} from bit-wised
mapping

When choosing the coefficients for SubMix,
first we expand polynomials in GF(28) into bit-wised
mapping equations and calculate their hamming
weights. In fact every coefficient of p(x) has good
diffusion property.

4.2 Differential Cryptanalysis

We now show a way to do differential
cryptanalysis of last two rounds. A byte of fault is
injected (like the method introduced in [20]) before
SubMix transformation and denotes as ε. Since
AddRoundKey and ShiftRows have no effects on the

5

value of difference. The fault propagates from one
byte to a column after MixColumns. After ShiftRows,
the fault is shifted to different columns, and will be
distributed to the whole state after next MixColumns.

SubBytesafter
00'ε0
0'ε00

'ε000
000'ε

ShiftRowsafterMixColumnsafter
00ε370
0ε5D00
ε17000

000ε17

000ε37
000ε5D
000ε17
000ε17

SubBytesafterShiftRowsafter
0000
0000
0000
000ε

0000
0000
0000
000ε

3

2

1

0

0

0

0

0

0

0

0

0

0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅

⋅
⋅

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅
⋅
⋅

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

To estimate our success rate, first we construct a
differential distribution table of AES’s Sbox like in
[11] and find out some probable faults are likely to
happen more than others. For Example, let ε = {1F},
then we have ε0 = SubBytes(ε) = {A3}. After
MixColumns transformation, difference propagation
of the first column are {5D}, {A3}, {A3}, and {FE}
with a probability less than 0.006169%. In the last
round, we check the differential table again to obtain
the last probability, which is about 0.003060%.
Hence, number of pairs to mount a successful
differential attack (to obtain the last round key) will
be 5.29*108 pairs.

As for MAES, let ε = {67}, then we have ε0 =
SubBytes(ε) = {E6}. After MixColumns
transformation, difference propagation of the first
column are {66}, {66}, {65}, and {B9} with a
probability less than 0.006168% and 0.003064% in
the last round. Our proposed SubMix transformation
turns out to be as strong as standard AES.

5. Implementation

Due to the limited resources including power
supply and area on wireless sensor network nodes,
we will introduce some techniques we use in the
design of MAES to achieve the goals of reduced
power and low gate count in this section.

After the analysis of overall AES and modified

AES, inclusive of encryption, decryption, and key
expansion, some portions of these three algorithms
should be focused to implement an efficient design
with lower power consumption and lower gate count.

Firstly, as to the key expansion part, two

methods including pre-computation method and
on-the-fly key schedule method [6] are usually used
to generate round keys. On-the-fly key schedule first
generates the expanded keys from the Cipher key and
then decides the round key of each round. Each round
key is used when it is generated, so it is not necessary
to use storage elements to store keys as what
pre-computation method does. Under the concern of
area and power, on-the-fly key schedule is adopted.

Secondly, the most critical part and

power-hungry part of AES and MAES are (1)
SubBytes in key expansion and encryption round
functions, and (2) InvSubBytes in decryption round
functions [26] [2]. We use Galois field arithmetic [16]
to complete the operations under the consideration of
timing and area.

5.1 Area Reduction Techniques

There are many methods that can be used to
implement Sbox. The better way is using the Galois
field arithmetic [16] [9] under the consideration of
performance and area. One operation of SubBytes is
calculating the multiplicative inverse over GF(28).
However, it is quite complex to compute directly,
therefore we first transform it from GF(28) to
GF((24)2) and then we can use inverter in GF((24)2).
Since the polynomial x8 + x4 + x3 + x + 1 ({11B} in
hexadecimal form) used in AES and MAES is not a
primitive irreducible polynomial, we had better use
isomorphism before and after the implementation of
GF((24)2) inverter. In GF((24)2), the primitive
irreducible polynomial x8 + x4 + x3 + x2 + 1 ({11D} in
hexadecimal form) is a better basis. The isomorphism
function from GF(28) to GF((24)2) is B as shown in
Equation 12 [16] [25] and the isomorphism function
from GF((24)2) to GF(28) is B-1 as shown in Equation
13 [16] [25].

)12(

10001110
01100000
01000001
00101000
00001110
01001011
00110101
00000101

'
'
'
'
'
'
'
'

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b

6

)13(

10001000
00001101
01001101
01001110
01011101
00101100
01111001
00101101

'
'
'
'
'
'
'
'

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b

Since both SubBytes and InvSubBytes have the

operation of calculating multiplicative inverse, it is a
good idea to share the GF inverters to reduce gate
count [27] [1] , as illustrated in Figure 7, 8, and 9.

Figure 7 GF(28) inverter shared by SubBytes and
InvSubBytes

Figure 8 GF(28) inverter is transformed to

GF((24)2) inverter

Figure 9 Isomorphism functions and affine

transformations are further combined together

In Figure 7, when SubBytes is performed,

SubBytes/InvSubBytes = 1, the input is directly
going to the GF(28) inverter and then taking affine
transformation to generate the output. When
InvSubBytes is performed, SubByte/InvSubBytes = 0,
the input is first taking inverse affine transformation
and then going through the GF(28) inverter to
produce the output. In Figure 8, GF(28) inverter is
changed to GF((24)2) inverter by placing
isomorphism transformations before and after the
inverter. In Figure 9, isomorphism functions B and
B-1 are further merged with affine transformations A
and A-1, the path delay is therefore shortened. Besides,
the area is also reduced.

The GF((24)2) inverter is implemented based on

Euclid’s algorithm [10]. Input a is 8-bit long. After a
series of operations, the 8-bit substituted result a-1 is
obtained. Among those transformations,

multiplication in GF((24)2) is similar to
byte-multiplication.

Figure 10 The structure of the GF((24)2) inverter, the

input is a and output is a-1

We find that SubBytes and the multiplications of

MixColumns can be combined together with tables to
reduce the critical path and gate count. In Figure 11,
b0 = {MixColumns (SubBytes (a0), {17})}, which
means that a0 is first substituted with Sbox and then
multiplies with {17}over GF(28). For example, if
input a0 = {00}, then output b0 = {58}.

As a result, the way to complete both the

transformations of SubBytes and MixColumns in the
encryption process is to XOR the results obtained
from the tables described above.

Figure 11 SubMix table of {17}

5.2 Power Reduction Techniques

In MAES, SubBytes and InvSubBytes are not
only the most critical parts but also the most
power-consuming parts. So, it is critical to reduce the
overall power by reducing Sbox and Inverse-Sbox
power [26].

Power consumption of Sbox and Inverse-Sbox is

greatly influenced by the number of dynamic hazards,
which is caused by differences of signal arrival times
at each gates and the propagation probability of
signal transitions. As illustrated in Figure 12, an XOR
gate transfers signal transitions from input to output

7

with probability 100%. For AND, OR gates, the
probability is 50%. Therefore, it is a good way to
place AND or OR gates before XOR gates to reduce
the probabilities of signal transition, as illustrated in
Figure 13.

(1)XOR gate

(2)AND gate

(3)OR gate

Figure 12 Propagation probabilities of signal

transitions

As shown in Figure 14, composite field Sbox
and Inverse Sbox are divided into three blocks to
reduce the probabilities of signal transitions [2]. In
addition, the two-level logic, i.e. AND-XOR arrays
are used to reduce the number of dynamic hazards.

In conclusion, we use the following approaches

to achieve power reduced Sbox and Inverse Sbox: (1)
Use composite field Sbox to reduce gate count, (2)
Divide combinational logic into three stages to
reduce the probabilities of signal transitions, and (3)
Adjust the signal timing by using two-level
(AND-XOR) logic to reduce the number of dynamic
hazards.

Figure 13.1 Two-level AND-XOR logic

Figure 13.2 Two-level OR-XOR logic

Figure 14 3-stage AND-XOR architecture used for

composite field S-box

Figure 15 shows the key scheduler we use in our
MAES design [26] [14]. When the encryption routine
is processed, EN/ DE = 1 and Init_K0 through
Init_K3 are the Cipher key. In the beginning, Init_K0
through Init_K3 are put into K0 through K3,
respectively. After one clock cycle,

)]otWord(K3)[SubWord(RRcon[0]K00K ⊕⊕=
K’1=K’0⊕ K1, K’2=K’1⊕ K2, K’3=K’2⊕ K3 and
the generated K’0 through K’3 become the new K0
through K3. After another 6 clock cycles, all round
keys are generated and the final round key are stored
in registers. Similarly, when the decryption routine is
processed, EN/DE = 0 and Init_K0 through Init_K3
are the final key stored in registers. At first, Init_K0
through Init_K3 are put into K0 through K3,
respectively. After one clock cycle, K’3=K2⊕ K3,
K’1=K0⊕ K1, K’2=K1⊕ K2,

))]otWord(K'3[SubWord(RRcon[0]K00K' ⊕⊕=
, and the generated K’0 through K’3 become the new
K0 through K3. After another 6 clock cycles, all
round keys are generated.

8

Figure 15 Circuit of key scheduler

5.3 Design Flow and Design Environment

We use cell-based design flow to implement our
design, since our design belongs to digital logic. To
perform simulation and synthesis, we utilize some
EDA tools supplied by CIC (National Chip
Implementation Center). In the beginning, we write
Verilog-HDL (Hardware Description Language)
codes according to the spec. Then we use ModelSim
SE to simulate the design. The simulation is just to
verify the correctness of the functions we want to
design and the simulation is in the phase of RTL
(Register Transfer Level) simulation. After the
function is checked and is correct, we use another
EDA tool, named Design Compiler, issued by
Synopsis Corporation to transfer our design from
RTL to a gate-level design. This process is called
logic synthesis, which obtains a logic gate list
according to some synthesizing rules and cell
libraries. The cell library we choose for synthesis is
UMC 0.18um process. Besides, it also inserts the
concept of timing into the design. Afterward, we use
Verilog-XL to simulate the gate-level design with
timing annotated. After both timing and functions are
checked to be correct, we use Xilinx FPGA board to
verify again the functions of the design. The board
we use is Xilinx Virtex-II Pro XC2VP30. The FPGA
view of our circuit after place and route is illustrated
in Figure 16.

Figure 16 The FPGA view of our circuit after place

and route

Table 2 shows a comparison of Horng’s [6]
implementation of AES and our implementation of
modified AES. According to the table, we can find
that the gate count of our circuit is about 69% of
Horng’s circuit. In addition, the power consumption
of our circuit is about 79% of Horng’s circuit.
Throughputs are equal.

Table 2 Comparisons

 Horng’s Ours

Technology UMC 0.18um UMC

0.18um

Clock rate 125MHz 125MHz

Throughput 1.6Gbps 1.6Gbps

Gate count 67.9K 47.2K

Power consumption 56mW 44.21mW

6. Future work

Coefficients of MixColumns transformation may
not be the optimal values when considering branch
numbers. For example, {FE}x3 + {6F}x2 + {C4}x +
{C4}is also a good choice. On the other hand, we are
looking forward to a reduction in the decryption
process for those low-end devices like RFID. We can
further combine InvSubBytes and InvMixColumns
into InvSubMix and implement all the functions by
bit-wised mapping instead of look-up tables.

7. Conclusions

In this paper, we proposed a modified AES
algorithm. SubMix transformation is new stage
combining SubBytes and MixColumns, implemented
by look-up tables that perform faster encryption.
Polynomial p(x) for MixColumns is chosen
dedicatedly to achieve higher diffusion rate, and have
a 512 bytes reduction of table spaces comparing to
standard AES. We provided linear and differential
cryptanalysis to show our result has certain security
because the number of pairs required to mount a
successful attack is far more than a sensor node can
broadcast.

Overall our result can reach 1.6 Gps of

throughput at 125MHz consuming 44.21mW and is
suitable for encrypting data in wireless sensor
networks.

9

References
[1] A. Satoh, S. Morioka, K. Takano, and S.

Munetoh, “Unified hardware architecture
for128-bit block ciphers AES and Camellia”, in
Cryptographic Hardware and Embedded
Systems (CHES) 2003. Aug. 2003,
Springer-Verlag.

[2] A. Hodjat, I. Verbauwhede, “Minimum Area
Cost for a 30 to 70 Gbits/s AES Processor”,
IEEE computer Society Annual Symposium on
VLSI,. pp. 83-88, Feb. 2004.

[3] Boneh, DeMillo, and Lipton, On the
Importance of Checking Cryptographic
Protocols for Faults, Lecture Notes in
Computer Science, Advances in Cryptology,
proceedings of EUROCRYPT’97, pp. 37-51,
1997.

[4] B. Schneier, et. al. The Twofish Encryption
Algorithm: A 128-Bit Block Cipher. John Wiley
& Sons, April 1999.

[5] B. Schneier, "Blowfish" ,Fast Software
Encryption, Cambridge Security Workshop
Proceedings (December 1993), Springer-Verlag,
1994, pp. 191-204.

[6] C.-L. Horng, “An AES Cipher Chip Design
Using On-the-Fly Key Scheduler”, Master
Thesis, Dept. Electrical Engineering, National
Tsing Hua University, Hsinchu, Taiwan, June
2004.

[7] D. Wheeler and R. Needham. Tea, a tiny
encryption algorithm.
http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn
/djw-rmn-tea.html , November 1994.

[8] D.W. Carman. Constraints and approaches for
distributed sensor network security. Technical
Report, #00-010, NAI Labs, 2000.

[9] E. D. Mastrovito, “VLSI Architecture for
Computations in Galois Fields”, Ph.D. Thesis,
Dept of EE, Linköping Univ., Lingköping,
Sweden 1991.

[10] E. Trichina, “Combinational logic design for
AES SubByte transformation on masked data”,
IACR report, 2003. Available at
http://eprint.iacr.org/2003/236.pdf.

[11] E. Biham, A. Shamir. Differential Cryptanalysis
of DES-like Cryptosystems. Journal of
Cryptology, Vol. 4 No. 1 1991.

[12] J. Daemen, L. Knudsen, and V. Rijmen. The
Block Cipher Square. In E. Biham, editor, Fast
Software Encryption ’97, volume 1267 of

Lecture Notes in Computer Science, pages
149–165, Haifa, Israel, January 1997.
Springer-Verlag.

[13] J. Daemen and V. Rijmen. AES proposal:
Rijndael.
http://csrc.nist.gov/encryption/aes/rijndael/Rijn
dael.pdf, 1999

[14] J. H. Shim, D. W. Kim, Y. K. Kang, T. W.
Kwon, and J. R. Choi, “A rijndael
cryptoprocessor using shared on-the-fly key
scheduler”, in Proc. 3rd IEEE Asia-Pacific
Conf. ASIC, Taipei, Aug. 2002, pp. 89–92.

[15] J. Nechvatal, et. al., Report on the
Development of the Advanced Encryption
Standard(AES), National Institute of Standards
and Technology, October 2,2000.

[16] J. Wolkerstorfer, E. Oswald, and M. Lamberger,
“An ASIC Implementation of the AES SBoxes
“, CT-RSA 2002, LNCS 2271, pp. 67-78,2002.

[17] M. Matusi, "Linear Cryptanalysis Method for
DES Cipher." In T. Helleseth, editor, Advances
in Cryptology - EUROCRYPT'93, Volume765
of Lecture Notes in Computer Science,
pp.386-397. Springer-Verlag, Berlin,
Heidelberg, NewYork, 1994.

[18] National Institute of Standards and Technology
(NIST), Advanced Encryption Standard (AES),
National Technical Information Service,
Springfield, VA 22161, Nov. 2001.

[19] National Bureau of Standards, NBS FIPS PUB
46, “Data Encryption Standard," National
Bureau of Standards, U.S. Department of
Commerce, Jan 1977.

[20] P. Dusart, G. Letourneux, O. Vivolo,
Differential Fault Analysis on AES, available at:
http://www.unilim.fr/laco/rapports/2003/R2003
_01.pdf, 2003

[21] P. Noo-intara, S. Chantarawong, and S.
Choomchuay, "Architectures for MixColumn
Transform for the AES," Proc. of Information
and Computer Engineering Workshop 2004
(ICEP2004), Prince of Songkla University
(Phuket Campus), January 2004, pp.152-156.

[22] RSA Laboratories. PKCS #1: RSA encryption
standard, Version 1.5, November 1993.

[23] R. L. Rivest. The RC5 Encryption Algortihm,
Proceedings of Fast Software Encryption
Workshop 1994, pp. 86-96.

10

[26] S. Chantarawong and S. Choomchuay, “An
Architecture for a compact AES System”, Proc.
of Electrical Eng./Electronics, Communications,
Computer and Information Technology
Conference 2004 (ECTI-CON2004), ECTI
Association, Thailand, May 2004, pp. 121-124.

[24] R. L. Rivest, M. J. B. Robshaw, R. Sydney, and
Y. L. Yin, “The RC6 block cipher," v1.1, Aug.
1998, available at
http://www.rsasecurity.com/rsalabs/rc6.

[25] S. Chantarawong, P. Noo-intara, and S.
Choomchuay, “An Architecture for Sbox
Computation in the AES”, Proc. of Information
and Computer Engineering Workshop 2004
(ICEP2004), Prince of Songkla University
(Phuket Campus), January 2004, pp.157-162.

[27] T.-Fu Lin, C.-Pin Su, C.-Tsun Huang, and
C.-Wen Wu, “A High-Throughput Low-Cost
AES Cipher Chip”, in Proc. 3rd IEEE
Asia-Pacific Conf. ASIC, Taipei, Aug. 2002, pp.
85-88.

11

Appendix A

Table 3 SubMix table of {17}
58 ee 6f 8b 51 e0 bc 89 bd 17 04 57 b5 cc 22 78

54 5b 6d f9 e9 73 d2 7f 50 f5 8d 7e fa ff 24 c2

ad 8c 27 a4 cf 60 1a 26 e1 e8 5f 68 1d 11 aa 20

5c a7 ef fb d3 6c 4b 88 65 45 75 3a 95 b3 e6 41

af 4c 32 fd ea ab 4a a3 f2 3c db f1 79 2d 0b 29

e5 be 00 e7 d6 9b df 5d f7 43 02 12 21 53 64 1f

a9 c9 35 fe 8e 44 84 3e fc d0 2e d7 dc 59 c3 1b

cb 9a b7 a8 30 ed 05 34 2c ba 3f c1 6b a2 46 87

31 e4 52 f0 01 7b eb 0e 9e c6 c0 4e 3d 2f c4 33

61 62 6a 4d f8 40 1e cd c5 de 70 37 63 16 81 28

14 93 2b 96 18 72 8a 38 ec 90 47 4f 09 55 48 a5

71 7a d8 92 86 e2 7d 0c 85 ae 23 82 2a 9c 69 b8

5e b2 9d 1c 8f d1 94 b0 ac 5a 56 b6 36 3b f4 e3

0a 77 83 13 0f 39 0d ca 76 f6 b9 67 07 d5 98 d4

03 c7 a6 7c ce 06 bf 42 9f a1 10 bb 08 97 6e 74

91 b4 da f3 15 66 99 d9 a0 b1 25 dd c8 80 49 19

Table 4 SubMix table of {37}
8c f7 0d 72 38 2f f3 5a e7 37 50 40 47 69 9e 3a

7c b0 25 c0 9b a6 ea 56 2c 30 0a 42 fc b8 e6 b1

bc 1e da 08 55 c1 d3 ce 3b 8f e0 61 bf 4f d0 b6

dc 34 e3 e8 fe 31 eb 4e 85 33 de 65 f1 3f 57 63

94 87 c5 90 a7 c4 ff 64 5c 1d 5e 60 2e 52 9c 02

6b db 00 43 ba 29 0e c8 18 4b 28 73 a2 10 91 97

ec 2d a9 ac 36 27 be 35 84 c2 6e ae 32 98 a5 c7

05 3d 6f f8 ed cb 44 bd 46 8b 21 8d 5d 70 0f 82

f9 7f 04 74 14 06 b3 d8 6d e1 99 af 09 7a c9 d1

d5 e9 49 93 d4 77 83 7d dd 1a 9a 81 fd 23 fa 16

0b 89 2a cd fb b2 66 4d df b5 1b bb b4 68 d7 1c

8e 12 62 9d 96 07 7e f0 aa 80 8a c6 3e 45 75 a3

f4 2b 51 ab 22 d6 e5 03 a8 a4 54 7b 95 71 24 13

88 f6 d2 67 cc 59 e4 11 e2 0c b7 ad 6c 86 15 92

3c f5 20 6a 41 78 cf 5f 79 4c 5b 9f a0 d9 19 ca

a1 53 4a 48 1f b9 01 76 58 17 f2 26 39 ee c3 ef

12

Table 5 SubMix table of {5D}
18 e9 d0 61 ad c6 a9 d7 f2 5d 77 6c 1c ca 23 8d

81 f5 66 b4 73 8e 22 17 f6 2d a0 4c 59 75 e2 e5

35 fb 0f 80 27 a4 9f 54 9d 28 82 4a 05 9c af 95

6f 6d b2 02 79 3d 32 8c 88 1d 4f 0a 89 dd 07 6a

83 a8 e4 c3 9e f4 69 1a b7 cb 97 5a d6 57 03 20

ea 1f 00 5c 55 a6 e0 34 9b dc b6 71 ce 1b d3 b3

42 e6 7e 2e 4d 46 15 7d 98 94 ba 0e 0d 43 be c4

50 fd aa 19 52 04 2c 25 0c 68 26 08 a7 41 f0 f8

09 b1 40 01 5b 60 c5 2f 8a 92 53 1e 90 e1 24 bf

ff 12 fc f3 ef 31 e8 91 7f bb 63 c8 49 06 39 7b

b0 48 96 64 29 d5 3a bc 5f a5 ab 45 b5 da df db

38 3b 7a 13 a3 70 a1 99 4e d8 78 d4 cd 3c 11 de

d9 86 67 5e 16 cf d2 30 6e ae 37 f1 93 51 76 2b

58 f9 8f 2a 74 e7 c2 0b a2 c0 85 3e 9a b8 4b e3

ed c9 36 fa 7c c1 44 87 d1 ac c7 33 ee 3f 8b 14

fe 47 cc ec eb 65 10 21 f7 6b b9 56 bd 62 84 72

13

Appendix B
Plaintext bits 74 68 69 73 20 69 73 20 61 20 74 65 73 74 21 21

Key bits 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Ciphertext bits 82 8f 0d 72 38 71 26 fc 0e 46 6a 19 9f 07 3e 4b

==

Round Key 00 00 00 00

 00 00 00 00

 00 00 00 00

 00 00 00 00

Round 1>

After ShiftRows 74 20 61 73

 69 20 74 68

 74 21 69 73

 21 73 20 65

After SubMix 2c 42 1d 71

 f6 07 0e ea

 ac ec ba 6a

 c5 ad 02 8c

After AddRoundKey 4e 20 7f 13

 95 64 6d 89

 cf 8f d9 09

 a6 ce 61 ef

Round 2>

After ShiftRows 4e 20 7f 13

 64 6d 89 95

 d9 09 cf 8f

 ef a6 ce 61

After SubMix 89 e2 b9 f8

 9d f9 24 8e

 b1 1d f9 ea

 53 62 07 0b

After AddRoundKey 12 1b 22 01

 05 02 bc 75

 29 e6 61 11

 9a c8 ce a1

Round 3>

After ShiftRows 12 1b 22 01

 02 bc 75 05

 61 11 29 e6

 a1 9a c8 ce

After SubMix 15 c5 68 71

 67 87 2b b7

 49 a7 a2 92

 af a4 9a 7a

After AddRoundKey 85 ac 9a 7a

 f0 eb df b8

 7d 68 f5 3e

 ff 5e a9 e3

Round 4>

After ShiftRows 85 ac 9a 7a

 eb df b8 f0

 f5 3e 7d 68

 e3 ff 5e a9

After SubMix fd 85 ff 96

 83 f8 56 8f

 d7 68 d5 fe

 2f a8 12 b3

After AddRoundKey 13 02 8a e8

 85 92 c8 1e

 0d 7d 97 10

 54 29 a0 98

Round 5>

After ShiftRows 13 02 8a e8

 92 c8 1e 85

 97 10 0d 7d

 98 54 29 a0

After SubMix e4 90 04 cc

 91 ea a5 24

 ce 92 34 03

 34 e1 5f af

After AddRoundKey 9b 68 89 3f

 bf ae 7f 6f

 e5 ac 48 91

 bc e8 e4 3f

Round 6>

After ShiftRows 9b 68 89 3f

 ae 7f 6f bf

 48 91 e5 ac

 3f bc e8 e4

After SubMix 16 46 5f 99

 49 5f 74 31

 11 43 f6 9a

 ed 34 bc 7a

After AddRoundKey fa 52 c6 f3

 28 7a 8b 85

 5a 36 ff 01

 68 b8 8b dd

Round 7>

After ShiftRows fa 52 c6 f3

 7a 8b 85 28

 ff 01 5a 36

 dd 68 b8 8b

After SubMix a3 ba a1 b4

 4d 21 89 e7

 19 24 01 e9

 18 0c 02 d0

After AddRoundKey 82 8f 0d 72

 38 71 26 fc

 0e 46 6a 19

 9f 07 3e 4b

Ciphertext

14

	Shen-Wei Chen

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

