
An efficient fault-containing self-stabilizing algorithm for the shortest

path problem∗

Tetz C. Huang

Department of Computer Engineering and Science, Yuan-Ze University,

135 Yuan-Tung Road, Chung-Li 320, Taiwan, R.O.C.

e-mail: cstetz@saturn.yzu.edu.tw

October 31, 2005

Abstract

Shortest path finding has a variety of applications in
transportation and communication. In this paper, we
propose a fault-containing self-stabilizing algorithm for
the shortest path problem in a distributed system. The
proposed algorithm has made a considerable improve-
ment in the worst-case stabilization time for single-fault
situations, which clearly demonstrates the desirability
of a well-designed fault-containing self-stabilizing algo-
rithm. For single-fault situations, the worst-case sta-
bilization time of the proposed algorithm is only O(∆),
where ∆ is the maximum node degree in the system, and
the contamination number of the proposed algorithm is
1.

Key Words : Self-stabilizing algorithm - Fault-
containment - Single-fault situation - Stabilization time
- Shortest path problem

1 Introduction

The notion of self-stabilization in a distributed system
was first introduced by Dijkstra [2] in 1974 (cf. also
[3, 4]). Adopting Dijkstra’s computational model and
his definition of self-stabilizing algorithms, Ghosh et
al. introduced fault-containment of self-stabilizing algo-
rithms in 1996∼1997 [6, 8, 9, 10] (cf. also Gupta [11]).
The main idea of fault-containment of self-stabilizing al-
gorithms is to modify an existing self-stabilizing algo-
rithm so that the modified version has the capability of
keeping faults from spreading in the system and, more
importantly, has the capability of self-stabilizing in a
much shorter time, whenever the system incurs only a
limited number of transient faults. The motivation to
acquire a fault-containing version from an existing self-
stabilizing algorithm is also well explained in [10]: “ Im-
proved reliability of system components implies that it is
more likely that in a well-designed network, the number
of components of the system that exhibit transient fail-
ures at one time will be small. Hence it is desirable that
from such limited transient faults, the system should re-

∗This research was supported in part by the National Science

Council, Taipei, Taiwan, under Grant NSC 93-2213-E-155-045.

cover quickly, and in particular, significantly faster than
the recovery from failures in an arbitrarily large num-
ber of components. Moreover, to ensure that the fault
is masked from any higher level application program in
most parts of the network, it is important that only a
small part of the network around the faulty components
make any state changes that can affect the correct oper-
ation of a higher level application program”. Since the
fault-containment for multiple-fault situations is much
more difficult to handle, all the above works by Ghosh
et al. are concentrated on the fault-containment for
single-fault situations only. Lin and Huang [17] recently
proposed a fault-containing self-stabilizing algorithm for
finding a maximal independent set. Although their ap-
proach followed closely the spirit of Ghosh et al., they
innovated a way of analyzing the “problem-dependent
information”(the term used in [10]) for single-fault situ-
ations. Mainly due to this analysis of single-fault situa-
tions, the faulty node and those nodes around the faulty
node can grasp more firmly their neighbors’ conditions
and, as a consequence, the proposed fault-containing al-
gorithm has a respectable performance in terms of the
worst-case stabilization time for single-fault situations.
The above is a short review of fault-containment of self-
stabilizing algorithms. For the detailed descriptions of
fault-containment, readers are referred to the above-
mentioned references, in particular [10] and [17] (due
to their relevance to this paper).

Self-stabilizing algorithms for finding the shortest
paths in a distributed system have been investigated
during the past [1, 10, 11, 12, 13, 14, 15, 16]. In [12],
Huang and Chen proposed a BFS-tree-finding algorithm
that was self-stabilizing under Dijkstra’s central demon
model. (Note that the BFS tree problem is a special case
of the shortest path problem.) Dolev et al. [5] first intro-
duced a computational model in which the read/write
atomicity was assumed. Under this different computa-
tional model, Dolev et al. also proposed a self-stabilizing
BFS-tree-finding algorithm. A self-stabilizing algorithm
for the shortest path problem was proposed in Chan-
drasekar and Srimani [1] in which the central demon was
assumed. Ghosh et al. introduced fault-containment
of self-stabilizing algorithms and they proposed a fault-

1

containing self-stabilizing algorithm for finding a BFS
tree in [10]. Their algorithm was based on the algorithm
in [12]. Inspired also by [12], Huang and Lin [15], using
the bounded function technique, proved that the algo-
rithm in [1] was self-stabilizing under the central demon.
In [13] and [16], Huang et al. generalized the results in
[1] and [15] and showed that the algorithm in [1] and [15]
was self-stabilizing under the distributed demon model.
In [14], Huang re-examined the Dolev model and pro-
posed a self-stabilizing algorithm for the shortest path
problem that generalized the BFS-tree-finding algorithm
in [5].

In this paper, we will propose a fault-containing self-
stabilizing algorithm for the shortest path problem in
a distributed system. Our algorithm is a modification
based on the algorithm in [1] and [15]. Although the ap-
proach taken is the same as that in [17], the crucial steps,
the analysis of single-fault situations and the modifica-
tion of the original algorithm, are definitely problem-
dependent. It is these crucial steps that bring about
the good performance of this modified algorithm. For
single-fault situations, the worst-case stabilization time
of the original algorithm in [1] and [15] is Ω(nk) , where
n is the number of nodes and k is any arbitrary positive
integer, whereas the worst-case stabilization time of our
fault-containing algorithm is only O(∆), where ∆ is the
maximum node degree.

The rest of the paper is organized as follows: In Sec-
tion 2, the shortest-path-finding algorithm in [1] and [15]
is recalled and the extreme inefficiency of it is demon-
strated. In Section 3, the whole process of designing our
fault-containing algorithm is exhibited, and the main re-
sults concerning the correctness and the efficiency of our
algorithm are outlined. An example which illustrates
the execution of Algorithm 2 is given in Section 4. Fi-
nally in Section 5, some remarks are made; and for the
comparison between our algorithm and the algorithm
in [10], the computation of the worst-case stabilization
time for single-fault situations for the algorithm in [10]
is conducted.

2 The algorithm in [1] and [15]

Let G = (V, E) be a simple connected undirected graph
that models a distributed system, with each node i ∈ V
representing a processor in the system and each edge
{i, j} representing the bidirectional link connecting pro-
cessors i and j. In the system, each edge e = {i, j} is
preassigned a weight w(e) = w(i, j), which is a positive
integer. If L = (e1, e2, . . . , et) is a path in G, the weight

(or length) of L, w(L), is defined to be
t

∑

k=1

w(ek). For

any two nodes i and j in V , a shortest path between i
and j is a path of minimum weight that connects i and
j; the weight of a shortest path between i and j is called
the distance between i and j and is denoted by d(i, j).
The single-source shortest path problem can be phrased
as follows: Suppose a node r in G is specified as the

� ����
Figure 1: A system of five nodes that has a linear chain
topology and is equipped with the algorithm in [1] and
[15]

Table 1: An execution of the system in Figure 1 that
starts with a single-fault state and ends with a legitimate
state

Configuration
number

d .r d .s d .u d .v d .w
Configuration

number
d .r d .s d .u d .v d .w

1 25 1 2 3 4 30 25 17 16 17 18
2 25 3 2 3 4 31 25 17 18 17 18
3 25 3 4 3 4 32 25 17 18 19 18
4 25 3 4 5 4 33 25 17 18 19 20
5 25 3 4 5 6 34 25 19 18 19 20
6 25 5 4 5 6 35 25 19 20 19 20
7 25 5 6 5 6 36 25 19 20 21 20
8 25 5 6 7 6 37 25 19 20 21 22
9 25 5 6 7 8 38 25 21 20 21 22

10 25 7 6 7 8 39 25 21 22 21 22
11 25 7 8 7 8 40 25 21 22 23 22
12 25 7 8 9 8 41 25 21 22 23 24
13 25 7 8 9 10 42 25 23 22 23 24
14 25 9 8 9 10 43 25 23 24 23 24
15 25 9 10 9 10 44 25 23 24 25 24
16 25 9 10 11 10 45 25 23 24 25 26
17 25 9 10 11 12 46 25 25 24 25 26
18 25 11 10 11 12 47 25 25 26 25 26
19 25 11 12 11 12 48 25 25 26 27 26
20 25 11 12 13 12 49 25 25 26 27 28
21 25 11 12 13 14 50 25 26 26 27 28
22 25 13 12 13 14 51 25 26 27 27 28
23 25 13 14 13 14 52 25 26 27 28 28
24 25 13 14 15 14 53 25 26 27 28 29
25 25 13 14 15 16 54 0 26 27 28 29
26 25 15 14 15 16 55 0 1 27 28 29
27 25 15 16 15 16 56 0 1 2 28 29
28 25 15 16 17 16 57 0 1 2 3 29
29 25 15 16 17 18 58 0 1 2 3 4

source of the system. We want to find for each node i in
G a shortest path between i and the source r. The self-
stabilizing shortest-path-finding algorithm in [1] and [15]
is as follows. Note that in the algorithm, d.i stands for
a local variable of node i and N(i) = {j ∈ V |{i, j} ∈ E}
denotes the set of all neighbors of i. The value of each
local variable d.i is a non-negative integer. The system
assumes Dijkstra’s central demon model.

{For the source r}
R0 : d.r 6= 0 → d.r := 0

{For node i 6= r}
R1 : d.i 6= min

j∈N(i)
[d.j + w(i, j)]

→d.i := min
j∈N(i)

[d.j + w(i, j)]

Legitimate states are defined to be all those global states
in which the following condition holds:

d.r = 0 and ∀i 6= r, d.i = min
j∈N(i)

[d.j + w(i, j)].

There is actually a unique legitimate state and whenever
the system reaches the legitimate state, the variable d.i
records the distance d(i, r) between i and r for any i ∈ V
(see Lemmas 2 and 3 in [13]). Consequently, finding
shortest paths becomes an easy task in the legitimate
state (see Concluding Remarks in [15]).

The system in Figure 1 is a linear chain of 5 nodes.
We equip it with the above algorithm. Table 1 exhibits
an execution of the system that starts with a single-fault

2

� � � � � �� �� �	
 �	 �
 �� � �
 � � � �
 �� � � � �
 �� � � � �
Figure 2: A single-fault state for a linear chain of n
nodes

state and ends with a legitimate state. In the table, the
shaded area in each configuration indicates the move of
the node selected by the central demon. The number of

steps of the execution is (5−1)(
⌈

52

2

⌉

+1)+1 = 57, where
⌈

52

2

⌉

= 13 is the ceiling of 52

2 . If we generalize the exe-
cution in Table 1 in a system whose topology is a linear
chain of n nodes, then the initial state of the general-
ized execution is the single-fault state in Figure 2 and
it is not difficult to compute the number of steps of the

generalized execution to be (n − 1)(
⌈

n2

2

⌉

+ 1) + 1. As a
matter of fact, if the local state of node r in Figure 2 is
replaced by nk−1, where k is an arbitrary positive inte-
ger, then we get a single-fault state for the linear chain
of n nodes. Starting with that single-fault state, we can
obtain without difficulty an execution that ends with
a legitimate state and has its number of steps equal to

(n−1)(
⌈

nk−1

2

⌉

+1)+1. With the above analysis, we have
shown that the worst-case stabilization time of the above
algorithm for only single-fault situations is Ω(nk), where
k is an arbitrary positive integer, that is, the above self-
stabilizing shortest-path-finding algorithm is extremely
inefficient.

3 Our fault-containing algorithm

Before proceeding to explain the design of our fault-
containing self-stabilizing algorithm for solving the
single-source shortest path problem, we first introduce
two additional variables c and p into each node of the
above system in [1] and [15]. The purpose of introducing
c and p is to help reveal information about the d-values
of each node’s neighbors. To be more explicit, we in-
troduce in the following a modified version for the algo-
rithm in [1] and [15]. For ease of presentation, we use
G(i) to denote the predicate d.i 6= min

x∈N(i)
[d.x + w(i, x)]

, A(i) to denote the action d.i := min
x∈N(i)

[d.x + w(i, x)]

and S(i) to denote the set {j ∈ N(i)|d.j + w(i, j) =
min

x∈N(i)
[d.x + w(i, x)]}.

Algorithm 1
{For the source r}

R0 : d.r 6= 0 → d.r := 0

{For node i 6= r}
R1 : G(i) → A(i)
R2 : ¬G(i) ∧ c.i 6= |S(i)| → c.i := |S(i)|
R3 : ¬G(i) ∧ c.i = |S(i)| = 1 ∧ p.i 6= j, where j is the

unique node in S(i) → p.i := j
R4 : ¬G(i) ∧ c.i = |S(i)| > 1 ∧ p.i 6= ⊥ → p.i := ⊥

Note that in the above algorithm, c.i takes values in the
set of all positive integers Z+, p.i takes values in N(i)∪
{⊥}, and |S(i)| denotes the number of elements in S(i).
We claim in the next theorem that the system equipped
with the above algorithm is self-stabilizing (although it
is still not fault-containing) with the legitimate states
being all those states in which the following condition
holds:

d.r = 0 ∧ ∀i 6= r,¬G(i) ∧ c.i = |S(i)| ∧ [(|S(i)| = 1∧
p.i = j, where j is the unique node in S(i)) ∨ (|S(i)|
> 1 ∧ p.i = ⊥)].

One can easily deduce that there is a unique legitimate
state here and the system reaches the legitimate state if
and only if the algorithm in the system stops (cf. Lem-
mas 2 and 3 in [13], and Lemmas 1 and 2 in [15]). One
can also see that in a legitimate state, not only is the d-
value of each node i of the system equal to the distance
d(i, r) between i and r, but also the p-value and c-value
of each node i of the system can reveal information about
the d-values of i’s neighbors. For example, in a legiti-
mate state, the condition [c.i = 1 ∧ p.i = j] reveals that
d.j+w(i, j) = min

x∈N(i)
[d.x + w(i, x)] and ∀k ∈ N(i)−{j},

d.k + w(i, k) > min
x∈N(i)

[d.x + w(i, x)].

Lemma 1 (Self-stabilization) Starting with any ini-
tial state, the system will eventually stop in the legiti-
mate state.

Proof. We first show that the system will stop. Sup-
pose not. Then, there exists an infinite computation
C = (S1, S2, ...) in the system. If there are infinitely
many moves in C which execute R0 or R1, let Si1 , Si2 ,
..., where i1 < i2 <..., be all the states which result from
these moves. Then, if we ignore all the c-values and p-
values in the states, then (S1, Si1 , Si2 , ...) becomes an
infinite computation with respect to the algorithm in
[15], which is impossible. Hence, there are only finitely
many moves in C which execute R0 or R1. Therefore,
there exists a positive integer m such that in the suffix
C′ = (Sm, Sm+1, ...) of C there is no move that executes
R0 or R1. So in C′, the d-values of all nodes never
change. Thus, the set S of every node i never changes.
Hence, every node executes R2 at most once in C′. It
follows that the system executes R2 only finitely many
times in C′. So, there exists an integer l > m such that
in the suffix C′′ = (Sl, Sl+1, ...) of C′, there is no move
that executes R0, R1 or R2. So in C′′, d-value, c-value,
G-value and set S of every node never change. Thus, ev-
ery node executes R3 or R4 at most once, respectively,
in C′′. It follows that the system executes R3 or R4 only
finitely many times in C′′. Therefore, C′′ is finite, which
causes a contradiction. Hence, we have shown that the
system will stop, that is, the system will be in dead-
lock. However, the deadlock situation can only occur in
a legitimate state. Therefore, the lemma is proven.

Thus, we have shown that Algorithm 1 is a self-
stabilizing algorithm that can solve the single-source

3

shortest path problem for any graph. Of course, Algo-
rithm 1 is still not fault-containing and we will modify
it to get a fault-containing algorithm. To enable us to
do so, we first make some observations about Algorithm
1 and obtain the following four lemmas.

Lemma 2 If the d-values of the whole system are at
normal, i.e., if d.r = 0 and ∀i ∈ V − {r},¬G(i), then
∀i ∈ V , ∀j ∈ N(i), |d.i − d.j| ≤ w(i, j).

Proof. If u 6= r and v ∈ N(u), then since d.u =
min

x∈N(u)
[d.x + w(u, x)], d.u ≤ d.v+w(u, v). Now let i ∈ V

and j ∈ N(i).
1) If i 6= r and j 6= r, then d.i ≤ d.j + w(i, j) and

d.j ≤ d.i + w(j, i). Hence, |d.i − d.j| ≤ w(i, j).
2) If i = r, then d.i = 0 and j 6= r. Hence, d.j ≤

d.i + w(j, i) = w(i, j). Therefore, |d.i − d.j| = | − d.j| =
d.j ≤ w(i, j).

3) If j = r, then, by the same argument as in 2) above,
we have |d.i − d.j| ≤ w(i, j).

In the following three lemmas, it is assumed that the
system starts in a legitimate state and incurs a single
fault at a certain time instant t0 and the single fault
causes the change of d-value of the faulty node and pos-
sibly its p-value and/or c-value too. Some expressions
will be needed in the following proofs as well as in the
rest of the paper. So we define them here. For any time
instant t, we say that a predicate is true at t+ if it is
true right after t, and that a predicate is true at t− if
it is true right before t. Also, by definition, a predicate
is true at t if and only if it is true at both t+ and t−;
and a predicate is true in a time interval I if it is true
at any instant t in the interval. To illustrate how to use
these expressions, for instance, if a processor i makes a
move to change its d-value from 5 to 3 at a time instant
t, then d.i = 5 at t−, d.i = 3 at t+ and d.i at time t
is not well-defined. If processor i does not change its
d-value at t, then d.i at t−, d.i at t+ and d.i at t are all
the same.

Lemma 3 If i ∈ V , j ∈ N(i) and |d.i − d.j| > w(i, j)
at t+0 , then either i or j is the faulty node.

Proof. Since d.r = 0 and ∀i ∈ V − {r},¬G(i) at t−0 ,
we have |d.i − d.j| ≤ w(i, j) at t−0 by Lemma 2. If both
i and j are not the faulty node, then |d.i − d.j| ≤ w(i, j)
at t+0 , which causes a contradiction. Therefore, either i
or j is the faulty node.

Lemma 4 If i 6= r and i is the faulty node, then G(i)
at t+0 .

Proof. Since d.i changes and for every j ∈
N(i), d.j does not change at t+0 , we have d.i 6=
min

x∈N(i)
[d.x + w(x, i)] at t+0 . That is, G(i) at t+0 .

Lemma 5 If i 6= r and G(i) at t+0 , then the faulty node
must be node i or one of i’s neighbors.

Proof. Suppose neither node i nor any neighbor of
node i is the faulty node. Then d.i and d.j, for ev-
ery j ∈ N(i), do not change at t+0 . Hence, d.i =

min
x∈N(i)

[d.x + w(i, x)] at t+0 , that is, ¬G(i) at t+0 , which

causes a contradiction. Therefore, the faulty node must
be node i or one of i’s neighbors.

Based on the above observations, we now investi-
gate all nontrivial single-fault situations of the system
equipped with Algorithm 1. A nontrivial single-fault sit-
uation is when the faulty node i is not the source r and
i has the value of its primary variable, i.e., its d-value,
corrupted. In such a situation, there may be more than
one node in the system (i.e., i and possibly some of its
neighbors) that satisfy the condition G(i). All of these
nodes are privileged to make moves to change their d-
values according to Algorithm 1. However, if a “wrong”
node is selected first by the central demon to make a
move to change its d-value, the fault will be spread in
the system. The undesirable situation as in Table 1 may
thus happen and cause the system to take a long time to
self-stabilize. Therefore, more restrictions should some-
how be imposed on Algorithm 1 to help (or force) the
central demon to select the “right” node first to change
its d-value. After the investigation of the non-trivial
single-fault situation, we decide to classify the condition
G(i) into following cases.

Classification
1. G(i) ∧ ∃j, k ∈ N(i) s.t. j 6= k ∧ |d.i − d.j| > w(i, j)∧

|d.i − d.k| > w(i, k) (This case will be referred to as

Case 1 in the rest of the paper.)
2. G(i) ∧ ∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j) (The

notation “∃!” stands for “there exists a unique”.)

2.1. j = r

2.1.1. d.j = 0 (Case 2)

2.1.2. d.j 6= 0 (Case 3)

2.2. j 6= r

2.2.1. d.i < d.j

2.2.1.2. ∃u ∈ N(j)−{i} s.t. |d.j − d.u| > w(j, u)

(Case 4)

2.2.1.1. ∀u ∈ N(j) − {i}, |d.j − d.u| ≤ w(j, u)

(Case 5)

2.2.2. d.i > d.j

2.2.2.1. G(j) (Case 6)

2.2.2.2. ¬G(j) (Case 7)
3. G(i) ∧ ∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)

3.1. c.i > 1 (Case 8)

3.2. c.i = 1

3.2.1. p.i = ⊥ (Case 9)

3.2.2. p.i = r

3.2.2.1. d.r = 0 (Case 10)

3.2.2.2. d.r 6= 0 (Case 11)

3.2.3. p.i = j 6= r

3.2.3.1. ¬G(j) (Case 12)

3.2.3.2. G(j)

3.2.3.2.2. ∃u ∈ N(j) − {i} s.t. |d.j − d.u| >

w(j, u) (Case 13)

3.2.3.2.1. ∀u ∈ N(j)−{i}, |d.j − d.u| ≤ w(j, u)

(Case 14)

4

Corresponding to the above 14 cases, we obtain the
following 12 lemmas (Lemmas 6∼17). In all these lem-
mas, it is assumed that the system starts in a legitimate
state and incurs a single fault at a certain time instant
t0 and the fault corrupts the d-value of the faulty node
and possibly its p-value and/or c-value too.

Lemma 6 (Corresponding to Case 1) If at
t+0 , ∃j, k ∈ N(i) s.t. j 6= k ∧ |d.i − d.j| >
w(i, j) ∧ |d.i − d.k| > w(i, k), then node i is the
faulty node.

Proof. Since |d.i − d.j| > w(i, j) at t+0 , either i or j is
the faulty node by Lemma 3. Since |d.i − d.k| > w(i, k)
at t+0 , either i or k is the faulty node by Lemma 3.
Suppose i is not the faulty node. Then both j and k
are faulty nodes. Since we are talking about the single-
fault situation, we have a contradiction here. Therefore,
i must be the faulty node.

Lemma 7 (Corresponding to Case 2) If at t+0 ,
[∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)] ∧ j = r ∧ d.r = 0,
then i is the faulty node.

Proof. Since |d.i − d.r| > w(i, r) at t+0 , either i or r
is the faulty node by Lemma 3. Since d.r = 0 at t+0 , r is
not the faulty node. Therefore, i is the faulty node.

Lemma 8 (Corresponding to Case 3 and Case 11)
Suppose i 6= r. If d.r 6= 0 at t+0 , then i is not the faulty
node.

Proof. Since d.r 6= 0 at t+0 , r is the faulty node and
thus i is not the faulty node.

Lemma 9 (Corresponding to Case 4 and Case 13)
Suppose i 6= r and j ∈ N(i). If ∃u ∈ N(j) − {i} s.t.
|d.j − d.u| > w(j, u) at t+0 , then i is not the faulty node.

Proof. Since |d.j − d.u| > w(u, j) at t+0 , either j or u
is the faulty node by Lemma 3. Thus, i is not the faulty
node.

Lemma 10 (Corresponding to Case 5) Suppose
i 6= r. If at t+0 , G(i), [∃!j ∈ N(i) s.t.
|d.i − d.j| > w(i, j)], j 6= r, d.i < d.j and
[∀u ∈ N(j) − {i}, |d.j − d.u| ≤ w(j, u)], then node
i is the faulty node.

Proof. Since |d.i − d.j| > w(i, j) and [∀u ∈ N(j) −
{i}, |d.j − d.u| ≤ w(j, u)] at t+0 , we have ∃!v ∈ N(j) s.t.
|d.j − d.v| > w(j, v) at t+0 and the unique v is just node
i. Since j 6= r, i 6= r, d.j > d.i and G(i) at t+0 , j is
not the faulty node by the following Lemma 11. Since
|d.i − d.j| > w(i, j) at t+0 , either i or j is the faulty node
by Lemma 3. Therefore i is the faulty node.

Lemma 11 (Corresponding to Case 6) Suppose
i 6= r. If at t+0 , [∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)],
j 6= r , d.i > d.j and G(j), then i is not the faulty node.

Proof. Suppose i is the faulty node. Since
|d.i − d.j| > w(i, j) and d.i > d.j at t+0 , we have

d.i > d.j + w(i, j) at t+0 . On the other hand, d.i =
min

x∈N(i)
[d.x + w(i, x)] ≤ d.j + w(i, j) at t−0 . Hence, d.i

increases at t+0 . If d.i+w(j, i) 6= min
y∈N(j)

[d.y + w(j, y)] at

t−0 , then since d.i increases at t+0 , min
y∈N(j)

[d.y + w(j, y)]

does not change at t+0 . Since d.j = min
y∈N(j)

[d.y + w(j, y)]

at t−0 (for j 6= r) and d.j does not change at t0, we
have d.j = min

y∈N(j)
[d.y + w(j, y)] at t+0 , i.e., ¬G(j) at

t+0 , which causes a contradiction. Thus, d.i + w(j, i) =
min

y∈N(j)
[d.y + w(j, y)] = d.j at t−0 . It follows that d.j +

w(i, j) = d.i + 2w(i, j) 6= d.i = min
x∈N(i)

[d.x + w(i, x)]

at t−0 . Let k be the node in N(i), which satisfies
d.k + w(i, k) = min

x∈N(i)
[d.x + w(i, x)] = d.i at t−0 . Then

k 6= j. Since d.i increases at t+0 , d.i − d.k > w(i, k) at
t+0 . Hence, |d.i − d.k| > w(i, k) at t+0 , which contradicts
the condition [∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j) at t+0].
Therefore, i is not the faulty node.

Lemma 12 (Corresponding to Case 7) If at t+0 ,
[∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)], j 6= r and ¬G(j),
then node i is the faulty node.

Proof. Since, |d.i − d.j| > w(i, j) at t+0 , either i or
j is the faulty node by Lemma 3. Since ¬G(j) at t+0 , j
is not the faulty node by Lemma 4. Therefore, i is the
faulty node.

Lemma 13 (Corresponding to Case 8) Suppose
i 6= r. If at t+0 , G(i), [∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)]
and c.i > 1, then node i is the faulty node.

Proof. Suppose i is not the faulty node. Since
G(i) at t+0 , the faulty node must be some node u in
N(i) by Lemma 5. Since d.i = min

x∈N(i)
[d.x + w(i, x)]

at t−0 , d.i 6= min
x∈N(i)

[d.x + w(i, x)] at t+0 and d.i does

not change at t+0 (for i is not the faulty node), we
have min

x∈N(i)
[d.x + w(i, x)] changes at t+0 . Since c.i >

1 at t+0 and c.i does not change at t0 (for i is not
the faulty node), we have c.i > 1 at t−0 . Hence,
there exist two distinct neighbors j, k of i such that
d.j + w(i, j) = min

x∈N(i)
[d.x + w(i, x)] = d.k + w(i, k) at

t−0 . If d.u increases at t+0 , then min
x∈N(i)

[d.x + w(i, x)]

does not change at t+0 , which causes a contradiction.
Hence, d.u must decrease at t+0 so that d.u + w(i, u) =
min

x∈N(i)
[d.x + w(i, x)] at t+0 , and thus min

x∈N(i)
[d.x + w(i, x)]

also decreases at t+0 . Since d.i = min
x∈N(i)

[d.x + w(i, x)] at

t−0 , d.i > min
x∈N(i)

[d.x + w(i, x)] = d.u + w(i, u) at t+0 .

Hence, |d.i − d.u| > w(i, u) at t+0 , which causes a con-
tradiction. Therefore, i is the faulty node.

5

Lemma 14 (Corresponding to Case 9) Suppose
i 6= r. If at t+0 , c.i = 1 and p.i = ⊥, then node i is the
faulty node.

Proof. Suppose i is not the faulty node. Since c.i = 1
at t+0 , we have c.i = 1 at t−0 . Hence, p.i 6= ⊥ at t−0 and
hence at t+0 , which causes a contradiction. Therefore, i
is the faulty node.

Lemma 15 (Corresponding to Case 10) Suppose
i 6= r. If at t+0 , G(i), [∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)],
c.i = 1, p.i = r and d.r = 0, then node i is the faulty
node.

Proof. Suppose i is not the faulty node. Since
p.i = r at t+0 , p.i = r at t−0 . Hence, d.r + w(i, r) =
min

x∈N(i)
[d.x + w(i, x)] = d.i at t−0 . Since d.r = 0 at t+0 ,

r is not the faulty node. Thus, d.r + w(i, r) = d.i
at t+0 . Consequently, min

x∈N(i)
[d.x + w(i, x)] ≤ d.i at

t+0 . Since G(i), i.e., min
x∈N(i)

[d.x + w(x, i)] 6= d.i, at t+0 ,

min
x∈N(i)

[d.x + w(i, x)] < d.i at t+0 . Hence, there is a

j 6= r such that d.j + w(i, j) < d.i at t+0 and thus
|d.i − d.j| = d.i − d.j > w(i, j) at t+0 , which causes a
contradiction. Therefore, node i is the faulty node.

Lemma 16 (Corresponding to Case 12) Suppose
i 6= r. If at t+0 , G(i), [∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)],
c.i = 1, p.i = j 6= r and ¬G(j), then node i is the faulty
node.

Proof. By Lemma 5, the faulty node must be node
i or one of i’s neighbors. Since ¬G(j) at t+0 , j is not
the faulty node by Lemma 4. Hence, the faulty node
is in N(i) ∪ {i} − {j}. Suppose i is not the faulty
node. Since p.i = j at t+0 , p.i = j at t−0 . Thus,
d.j + w(i, j) = min

x∈N(i)
[d.x + w(i, x)] = d.i at t−0 . Since

neither i nor j is the faulty node, d.i = d.j + w(i, j)
at t+0 still. Since G(i), i.e., d.i 6= min

x∈N(i)
[d.x + w(i, x)],

at t+0 and min
x∈N(i)

[d.x + w(i, x)] ≤ d.j + w(i, j) = d.i at

t+0 , we have min
x∈N(i)

[d.x + w(i, x)] < d.i at t+0 . Hence,

∃l ∈ N(i) − {j} s.t. d.l + w(i, l) < d.i at t+0 . It follows
that |d.i − d.l| = d.i− d.l > w(i.l) at t+0 , which causes a
contradiction. Therefore, i is the faulty node.

Lemma 17 (Corresponding to Case 14) It can not
happen that ∃i 6= r such that G(i), [∀k ∈
N(i), |d.i − d.k| ≤ w(i, k)], c.i = 1, p.i = j 6= r, G(j)
and ∀u ∈ N(j)−{i}, |d.j − d.u| ≤ w(j, u) at t+0 . In other
words, Case 14 cannot happen in a single-fault situation.

Proof. Suppose ∃i 6= r satisfying above conditions.
Then since G(i) and G(j) at t+0 , the faulty node must be
in both N(i) ∪ {i} and N(j) ∪ {j} in view of Lemma 5.
Hence, the faulty node is in (N(i)∪{i})∩(N(j)∪{j}) =
(N(i) ∩ N(j)) ∪ {i, j}. Thus, we have three cases to
consider.
Case 1. The faulty node is in N(i) ∩ N(j).

Let l be the faulty node. Thus l 6= i, l 6= j and thus i
is not the faulty node. Since c.i = 1 and p.i = j at t+0 ,
we have c.i = 1 and p.i = j at t−0 . Hence, |S(i)| = 1 and
j ∈ S(i) at t−0 . It follows that l /∈ S(i) at t−0 , that is, d.l+
w(i, l) 6= min

x∈N(i)
[d.x + w(i, x)] at t−0 . Since d.i does not

change at t+0 and d.i = min
x∈N(i)

[d.x + w(i, x)] at t−0 and

d.i 6= min
x∈N(i)

[d.x + w(i, x)] at t+0 , min
x∈N(i)

[d.x + w(i, x)]

must changes at t+0 . Thus, d.l decreases at t+0 so that
min

x∈N(i)
[d.x + w(i, x)] = d.l+w(i, l) decreases at t+0 . Since

d.i does not change at t+0 , min
x∈N(i)

[d.x + w(i, x)] < d.i

at t+0 . Hence, d.l + w(i, l) < d.i at t+0 and hence
|d.i − d.l| = d.i − d.l > w(i, l) at t+0 , which causes a
contradiction.
Case 2. Node i is the faulty node.

Since p.i = j at t−0 , we have d.j + w(i, j) =
min

x∈N(i)
[d.x + w(i, x)] = d.i at t−0 . If d.i increases

at t+0 , then d.j + w(i, j) < d.i at t+0 . Thus,
|d.i − d.j| = d.i − d.j > w(i, j) at t+0 , which causes
a contradiction. It follows that d.i decreases at t+0 .
Since d.j = min

y∈N(j)
[d.y + w(j, y)] at t−0 and d.j 6=

min
y∈N(j)

[d.y + w(j, y)] at t+0 , min
y∈N(j)

[d.y + w(j, y)] must

change at t+0 . Hence, min
y∈N(j)

[d.y + w(j, y)] decreases at

t+0 and d.i + w(i, j) = min
y∈N(j)

[d.y + w(j, y)] < d.j at t+0 .

Consequently, |d.i − d.j| = d.j − d.i > w(i, j) at t+0 ,
which causes a contradiction.
Case 3. Node j is the faulty node.

By the same argument as in Case 2 above, we are led
to a contradiction.
Therefore, there does not exist an i 6= r satisfying all
those conditions in the statement of Lemma 17.

In the above, all the non-trivial single-fault situations
have been analyzed. The following lemma makes the
situation even more transparent.

Lemma 18 If i is not the faulty node and executes R0
or R1 at t1, where t1 is the first time instant after t0
at which the system executes R0 or R1 to change the
d-value, then the d-values of the whole system can not
get back to normal at t+1 .

Proof. Let u be the faulty node. Then the value of
d.u at t+1 is not equal to the value of d.u at t−0 . Hence,
the global state of the system at t+1 is not equal to the
global state of the system at t−0 . Since there is a unique
legitimate state in the system, the global state of the
system at t+1 is not the legitimate state.

With the help of the above analysis, it is now clear
how restrictions should be imposed on Algorithm 1 in
order for the system to contain the fault after it incurs a
single-fault situation. Explicitly, any node that satisfies
the condition in Case 3, Case 4, Case 6, Case 11 or Case
13 should be prohibited from making a move to change
its d-value. Thus, we obtain the following prototype for
our fault-containing algorithm.

6

Prototype
{For the source r}

R0 : d.r 6= 0 → d.r := 0

{For node i 6= r}
R1 : G(i)∧∃j, k ∈ N(i) s.t. j 6= k∧|d.i − d.j| > w(i, j)

∧ |d.i − d.k| > w(i, k) → A(i) (This corresponds
to Case 1 in the above classification.)

R2 : G(i) ∧ [∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)] ∧ j =
r∧ d.j = 0 → A(i) (This corresponds to Case 2.)

R3 : G(i)∧[∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)]∧j 6= r
∧d.i < d.j∧∀u ∈ N(j)−{i}, |d.j − d.u| ≤ w(u, j)
→ A(i) (This corresponds to Case 5.)

R4 : G(i)∧[∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)]∧j 6= r
∧d.i > d.j ∧ ¬G(j) → A(i) (This corresponds to
Case 7.)

R5 : G(i)∧∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)∧c.i > 1 →
A(i) (This corresponds to Case 8.)

R6 : G(i) ∧ ∀k ∈ N(i), |d.i − d.k| ≤ w(i, k) ∧ c.i = 1∧
p.i = ⊥ → A(i) (This corresponds to Case 9.)

R7 : G(i) ∧ ∀k ∈ N(i), |d.i − d.k| ≤ w(i, k) ∧ c.i = 1∧
p.i = r ∧ d.r = 0 → A(i) (This corresponds to
Case 10.)

R8 : G(i) ∧ ∀k ∈ N(i), |d.i − d.k| ≤ w(i, k) ∧ c.i = 1∧
p.i = j 6= r∧¬G(j) → A(i) (This corresponds to
Case 12.)

R9 : G(i) ∧ ∀k ∈ N(i), |d.i − d.k| ≤ w(i, k) ∧ c.i = 1∧
p.i = j 6= r ∧ G(j) ∧ ∀u ∈ N(j) − {i}, |d.j − d.u|
≤ w(j, u) → A(i) (This corresponds to Case 14.)

R10 : ¬G(i) ∧ c.i 6= |S(i)| → c.i := |S(i)| (This is R2
in Algorithm 1.)

R11 : ¬G(i)∧ c.i = |S(i)| = 1∧ p.i 6= j, where j is the
unique node in S(i) → p.i := j (This is R3 in
Algorithm 1.)

R12 : ¬G(i) ∧ c.i = |S(i)| > 1 ∧ p.i 6= ⊥ → p.i := ⊥
(This is R4 in Algorithm 1.)

The legitimate state is the same as that for Algorithm
1.

The above analysis (i.e., Lemmas 6∼18) has al-
ready convinced us that the Prototype has the fault-
containment property. Before transforming Prototype
into a distributed algorithm, we should also check the
no-deadlock property for it, because the imposition of
restrictions to a self-stabilizing algorithm may cause a
deadlock to the system.

Lemma 19 (No deadlock) At the prototype level, the
system is never deadlocked in an illegitimate state.

Proof. Suppose the system is in an ille-
gitimate state. Then d.r 6= 0 ∨ [∃i 6= r s.t.
G(i) ∨ c.i 6= |S(i)| ∨ (c.i = |S(i)| = 1 ∧ p.i 6= j, where j
is the unique node in S(i))∨(c.i = |S(i)| > 1∧p.i 6= ⊥)].

Case 1. d.r 6= 0. Then r can execute R0.

Case 2. d.r = 0 and ∀y 6= r, ¬G(y). Then ∃i 6= r
s.t. c.i 6= |S(i)|, (c.i = |S(i)| = 1 ∧ p.i 6= j) or
(c.i = |S(i)| > 1 ∧ p.i 6= ⊥).

Subcase 2.1. ∃i 6= r s.t. c.i 6= |S(i)|. Then i can
execute R10.

Subcase 2.2. ∃i 6= r s.t. c.i = |S(i)| = 1 ∧ p.i 6= j,
where j is the unique node in S(i). Then i can execute
R11.

Subcase 2.3. ∃i 6= r s.t. c.i = |S(i)| > 1 ∧ p.i 6= ⊥.
Then i can execute R12.

Case 3. d.r = 0 and ∃i 6= r s.t. G(i).
Subcase 3.1. ∃i 6= r s.t. G(i) and ∃j, k ∈ N(i) s.t.

j 6= k ∧ |d.i − d.j| > w(i, j) ∧ |d.i − d.k| > w(i, k). Then
i can execute R1.

Subcase 3.2. ∀y 6= r, [G(y) → there is at most one
node z ∈ N(y) s.t. |d.z − d.y| > w(z, y)].

Subcase 3.2.1. ∃i 6= r s.t. G(i) and ∃!j ∈ N(i)
s.t. |d.j − d.i| > w(j, i). Thus, d.i 6= d.j.

Subcase 3.2.1.2. d.i < d.j. Then d.j > 0
and hence j 6= r (in view of the condition for Case
3). Since d.j > d.i and |d.j − d.i| > w(j, i), we have
d.i + w(j, i) < d.j. Hence, min

x∈N(j)
[d.x + w(j, x)] 6= d.j,

that is, G(j). Since |d.j − d.i| > w(j, i), we have
∀u ∈ N(j) − {i}, |d.u − d.j| ≤ w(u, j) in view of the
condition for Subcase 3.2. Thus, i can execute R3.

Subcase 3.2.1.1. d.i > d.j.
Subcase 3.2.1.1.1. j = r. Then d.j = 0 in

view of the condition for Case 3. Hence, i can execute
R2.

Subcase 3.2.1.1.2. j 6= r and G(j).
Since |d.j − d.i| > w(j, i), we have ∀k ∈ N(j) −
{i}, |d.k − d.j| ≤ w(k, j) in view of the condition for
Subcase 3.2. Hence, j can execute R3.

Subcase 3.2.1.1.3. j 6= r and ¬G(j). Then i
can execute R4.

Subcase 3.2.2. ∀y 6= r, [G(y) → ∀z ∈
N(y), |d.z − d.y| ≤ w(z, y)]. Then let i 6= r such that
G(i). Thus, ∀j ∈ N(i), |d.j − d.i| ≤ w(j, i).

Subcase 3.2.2.1. c.i > 1. Then i can execute
R5.

Subcase 3.2.2.2. c.i = 1 ∧ p.i = ⊥. Then i can
execute R6.

Subcase 3.2.2.3. c.i = 1 ∧ p.i = r. Since d.r =
0, i can execute R7.

Subcase 3.2.2.4. c.i = 1 ∧ p.i = j 6= r.
Subcase 3.2.2.4.1. ¬G(j). Then i can exe-

cute R8.
Subcase 3.2.2.4.2. G(j). In view of

the condition for Subcase 3.2.2, we see that ∀u ∈
N(j), |d.u − d.j| ≤ w(u, j). Hence, i can execute R9.

Thus, we have considered all cases of illegitimate
states, and we have shown that in any case, there al-
ways exists a node in the system which is privileged to
make a move. Therefore, the lemma is proven.

Note that some rules in the above Prototype require a
node to collect information from neighbors of distance 2
(e.g., in the guard condition of R4, node j is a neighbor
of node i, and i needs to know information about j’s
neighbors). However, in a distributed system, a node is
not allowed to read information of nodes other than its
direct neighbors. Therefore, in order for us to transform

7

Prototype into a distributed algorithm, auxiliary sec-
ondary variables q1, q2 (question) and a1, a2 (answer)
need to be used to fulfill the job of collecting informa-
tion. (The idea of applying auxiliary variables q1, q2,
a1 and a2 is attributed to Ghosh et al. [6, 8, 9, 10] and
Gupta [11].) Thus, our fault-containing algorithm is fi-
nally ready.

Algorithm 2
{For the source r}

R0 : d.r 6= 0 → d.r := 0 (This is R0 in Prototype.)

{For node i 6= r}
R1 : G(i)∧∃j, k ∈ N(i) s.t. j 6= k∧|d.i − d.j| > w(i, j)

∧ |d.i − d.k| > w(i, k) → A(i) (This is R1 in
Prototype.)

R2 : G(i)∧[∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)]∧j = r
∧d.j = 0 → A(i) (This is R2 in Prototype.)

R3 : G(i)∧[∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)]∧j 6= r
∧ a1.j = 0 ∧ q1.i = 0 → q1.i := 1 (Rules R3, R4,
R5 and R6 here are devised to implement R3 and
R4 in Prototype.)

R4 : [∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)] ∧ j 6= r∧
d.j < d.i ∧ q1.j = 1 ∧ a1.i = 0 → a1.i := 1

R5 : ¬G(i)∧∃j ∈ N(i)−{r} s.t. [|d.i − d.j| > w(i, j)∧
d.j > d.i ∧ q1.j = 1] ∧ a1.i = 0 → a1.i := 1

R6 : G(i)∧[∃!j ∈ N(i) s.t. |d.i − d.j| > w(i, j)]∧j 6= r
∧q1.i = 1 ∧ a1.j = 1 → A(i)

R7 : ¬G(i) ∧ q1.i = 1 → q1.i := 0
R8 : ∀j ∈ N(i) − {r}, [|d.i − d.j| ≤ w(i, j) ∨ q1.j = 0]

∧a1.i = 1 → a1.i := 0
R9 : G(i)∧∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)∧c.i > 1 →

A(i) (This is R5 in Prototype.)
R10 : G(i)∧∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)∧ c.i = 1∧

p.i = ⊥ → A(i). (This is R6 in Prototype.)
R11 : G(i) ∧ ∀k ∈ N(i), |d.i − d.k| ≤ w(i, k) ∧ c.i = 1

∧ p.i = r ∧ d.r = 0 → A(i) (This is R7 in
Prototype.)

R12 : G(i)∧∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)∧ c.i = 1∧
p.i = j 6= r ∧ a2.j = 0 ∧ q2.i = 0 → q2.i := 1

(Rules R13, R14, R15 and R16 here are devised
to implement R8 and R9 in Prototype.)

R13 : ¬G(i) ∧ ∃j ∈ N(i) − {r} s.t. [p.j = i ∧ q2.j = 1
∧ c.j = 1 ∧ |d.i − d.j| ≤ w(i, j)] ∧ a2.i = 0 →
a2.i := 1

R14 : G(i) ∧ ∀k ∈ N(i), |d.i − d.k| ≤ w(i, k) ∧ ∃j ∈
N(i) − {r} s.t. [p.j = i ∧ q2.j = 1 ∧ c.j = 1]∧
a2.i = 0 → a2.i := 1

R15 : G(i)∧∀k ∈ N(i), |d.i − d.k| ≤ w(i, k)∧ c.i = 1∧
p.i = j 6= r ∧ q2.i = 1 ∧ a2.j = 1 → A(i)

R16 : ¬G(i) ∧ q2.i = 1 → q2.i := 0
R17 : ∀j ∈ N(i) − {r}, q2.j = 0 ∧ a2.i = 1 → a2.i := 0
R18 : ¬G(i)∧ c.i 6= |S(i)| → c.i := |S(i)| (This is R10

in Prototype.)
R19 : ¬G(i) ∧ c.i = |S(i)| = 1 ∧ p.i 6= j → p.i := j,

where j is the unique node in S(i) (This is R1
in Prototype.)

R20 : ¬G(i) ∧ c.i = |S(i)| > 1 ∧ p.i 6= ⊥ → p.i := ⊥
(This is R12 in Prototype.)

Note that in the above algorithm, all of the four variables
q1, q2, a1 and a2 take values in the set {0, 1}. Legitimate
states are defined to be all those global states in which
the following condition holds:

d.r = 0 ∧ ∀i 6= r,¬G(i) ∧ q1.i = q2.i = a1.i = a2.i =
0 ∧ c.i = |S(i)| ∧ [(|S(i)| = 1 ∧ p.i = j, where j is
the unique node in S(i)) ∨ (|S(i)| > 1 ∧ p.i = ⊥)].

To help readers comprehend the relationship between
Algorithm 2 and the Prototype, we explain it in more
detail here. For instance, rules R3, R4, and R6 in Algo-
rithm 2 are devised to implement rule R3 in Prototype.
When a node i satisfies the condition [G(i)∧ [∃!j ∈ N(i)
s.t. |d.i − d.j| > w(i, j)] ∧ j 6= r ∧ d.i < d.j], it
wants to know if node j satisfies the condition [∀u ∈
N(j) − {i}, |d.u − d.j| ≤ w(u, j)]. According to R3 in
Algorithm 2, it sets q1.i = 1 to ask j whether j sat-
isfies the condition. If j satisfies the condition, then,
according to rule R4 in Algorithm 2, it sets a1.j = 1
to let i know that its answer is affirmative. Then ac-
cording to rule R6 in Algorithm 2, node i can make a
move to change its d-value. Thus, rule R3 in the Proto-
type is faithfully implemented. Note that in rule R3 of
Algorithm 2, the condition a1.j = 0 is placed there as
a requisite. This is a little subtle. One can see that if
the condition is taken away from R3, then node i may
change its q1-value to 1 in a situation where j does not
satisfy the condition and yet a1.j = 1 due to whatever
reason. Node i may then go ahead to execute R6 and
this is not the intended result from R3 in Prototype.

In the end of this section, we outline the main results
concerning the correctness and the efficiency of our pro-
posed algorithm. They are covered by the following the-
orems. The proofs of these theorems are not provided
here. They are quite long and we intend to have them
presented elsewhere.

Theorem 20 (No deadlock) The system is never
deadlocked in an illegitimate state.

Theorem 21 (Self-stabilization) Starting with any
initial state, the system will eventually stop in the le-
gitimate state.

Theorem 22 (Fault containment) From any single-
fault state till reaching a legitimate state, the system
changes the d-value at most once.

Theorem 23 (Stabilization time) For single-fault
situations, the stabilization time of the algorithm is
O(∆), where ∆ is the maximum node degree.

4 An illustration

The example in Figure 3 is to illustrate the execution
of Algorithm 2. Note that in each configuration, the
shaded nodes represent privileged nodes, whereas the
shaded node with a darkened circle stands for the priv-
ileged node selected by the central demon to make a
move.

8

r

i k

j f

14

2

2

5 3

d.r=0

d.k=1; c.k=1; p.k=r;

a1.k=0; a2.k=0;

q1.k=0; q2.k=0

d.f=7; c.f=1; p.f=k;

a1.f=0; a2.f=0;

q1.f=0; q2.f=0

d.i=3; c.i=1; p.i=k;

a1.i=0; a2.i=0;

q1.i=0; q2.i=0

d.j=6; c.j=1; p.j=f;

a1.j=0; a2.j=0;

q1.j=0; q2.j=0

r

i k

j f

14

2

2

5 3

d.r=0

d.k=1; c.k=1; p.k=r;

a1.k=0; a2.k=0;

q1.k=0; q2.k=0

d.f=7; c.f=1; p.f=k;

a1.f=0; a2.f=0;

q1.f=1; q2.f=0

d.i=3; c.i=1; p.i=k;

a1.i=0; a2.i=0;

q1.i=0; q2.i=0

d.j=6; c.j=1; p.j=f;

a1.j=0; a2.j=0;

q1.j=0; q2.j=0

This is a single-fault situation with

a node f being the faulty node.

Node f is privileged by R3.

Node j is privileged by R12.

Central demon

picks node f to make a move.

Node k is privileged by R5.

Node j is privileged by R12.

Node f is privileged by R6.

Node j is privileged by R12.

Node k is privileged by R8.

Node f is privileged by R7.

Node f is privileged by R7.

r

i k

j f

14

2

2

5 3

d.r=0

d.k=1; c.k=1; p.k=r;

a1.k=1; a2.k=0;

q1.k=0; q2.k=0

d.f=7; c.f=1; p.f=k;

a1.f=0; a2.f=0;

q1.f=1; q2.f=0

d.i=3; c.i=1; p.i=k;

a1.i=0; a2.i=0;

q1.i=0; q2.i=0

d.j=6; c.j=1; p.j=f;

a1.j=0; a2.j=0;

q1.j=0; q2.j=0

Central demon

picks node k to make a move.

r

i k

j f

14

2

2

5 3

d.r=0

d.k=1; c.k=1; p.k=r;

a1.k=1; a2.k=0;

q1.k=0; q2.k=0

d.f=4; c.f=1; p.f=k;

a1.f=0; a2.f=0;

q1.f=1; q2.f=0

d.i=3; c.i=1; p.i=k;

a1.i=0; a2.i=0;

q1.i=0; q2.i=0

d.j=6; c.j=1; p.j=f;

a1.j=0; a2.j=0;

q1.j=0; q2.j=0

Central demon

picks node f to make a move.

r

i k

j f

14

2

2

5 3

d.r=0

d.k=1; c.k=1; p.k=r;

a1.k=0; a2.k=0;

q1.k=0; q2.k=0

d.f=4; c.f=1; p.f=k;

a1.f=0; a2.f=0;

q1.f=1; q2.f=0

d.i=3; c.i=1; p.i=k;

a1.i=0; a2.i=0;

q1.i=0; q2.i=0

d.j=6; c.j=1; p.j=f;

a1.j=0; a2.j=0;

q1.j=0; q2.j=0

Central demon

picks node k to make a move.

This is the legitimate state.

r

i k

j f

14

2

2

5 3

d.r=0

d.k=1; c.k=1; p.k=r;

a1.k=0; a2.k=0;

q1.k=0; q2.k=0

d.f=4; c.f=1; p.f=k;

a1.f=0; a2.f=0;

q1.f=0; q2.f=0

d.i=3; c.i=1; p.i=k;

a1.i=0; a2.i=0;

q1.i=0; q2.i=0

d.j=6; c.j=1; p.j=f;

a1.j=0; a2.j=0;

q1.j=0; q2.j=0

Central demon

picks node f to make a move.

Figure 3: An example which illustrates the execution of Algorithm 2.

9

5 Concluding remarks

In the above, we have proposed a fault-containing self-
stabilizing algorithm for the shortest path problem. The
above work has two implications: Firstly, the approach
in [17] is tested again as valid. Secondly, the improve-
ment made by the modified algorithm upon the original
algorithm in [1] and [15] can demonstrate the desirability
of a well-designed fault-containing self-stabilizing algo-
rithm. We would like to point out that our algorithm is
more general than the fault-containing BFS-tree-finding
algorithm in [10]. Moreover, for the algorithm in [10],
we have computed the worst-case stabilization time for
single-fault situations to be Θ(∆2), where ∆ is the max-
imum node degree in the system; and in this respect,
our algorithm is faster, with O(∆) as its worst-case sta-
bilization time for single-fault situations. Our computa-
tion of the worst-case stabilization time for single-fault
situations for the algorithm in [10] is conducted as fol-
lows.

Let G = (V, E) be a distributed system with n proces-
sors. Let r be a distinguished processor in G. ∀i ∈ V ,
i maintains a primary variable li and ∀i 6= r, i also
maintains another primary variable pi. ∀i ∈ V and
∀j ∈ N(i), i maintains auxiliary variables qij and aij .
The variable li takes values in {1, 2, · · · , n}, the variable
pi takes values in N(i), the variable qij takes values in
{ask,⊥} and values taken by the variable aij will be
understood in the following algorithm. The following is
the main part (i.e., the rules for processor i 6= r) of the
fault-containing BFS-tree algorithm in Ghosh et al. [10].
We omit the part for processor r because it has nothing
to do with the computation to be carried out.

{For processor i 6= r}
[S1] (li 6= lpi

+ 1) ∧ (lpi
< n) → li := lpi

+ 1
[S2] ∃k ∈ N(i) : lk = min{ li | j ∈ N(i)}∧ lpi

> lk →
li := lki

+ 1; pi = k;
[S5] ∃j ∈ N(i) : trigger1

ij∧q1
ij = ⊥∧a1

ji = ⊥ → q1
ij :=

ask
[S6] ∃j ∈ N(i) : a1

ij 6= f1
i (q1

ji , neighborhood(i)) →

a1
ij := f1

i (q1
ji , neighborhood(i))

[S7] ∃j ∈ N(i) : ¬trigger1
ij ∧ q1

ij 6= ⊥ → q1
ij := ⊥

[S ′

5] ∃j ∈ N(i) : trigger2
ij∧q2

ij = ⊥∧a2
ji = ⊥ → q2

ij :=
ask

[S ′

6] ∃j ∈ N(i) : a2
ij 6= f2

i (q2
ji , neighborhood(i)) →

a2
ij := f2

i (q2
ji , neighborhood(i))

[S ′

7] ∃j ∈ N(i) : ¬trigger2
ij ∧ q2

ij 6= ⊥ → q2
ij := ⊥

[S8] Gp(i) ∧ ¬Q1(i) ∧ can stabilize(i) → stabilize(i)
[S9] Gp(i) ∧ [¬Q1(i) ∧ ¬can stabilize(i)]∧ [¬Q2(i)∧

∀j ∈ N(i) : ¬can stabilize(j)]
→ if

G1(i) → A1(i)
G2(i) → A2(i)

fi
where

G1(i) : the guard in S1

G2(i) : the guard in S2

A1(i) : the action part in S1

v

s

t

j3j1

k6 k9k8k7k5k4k3k1 k2

j2

Figure 4: A system with the maximum node degree 4

A2(i) : the action part in S2

Gp(i) ≡ G1(i) ∨ G2(i)

can stabilize(i) ≡ Gp(i)∧ execution of stabilize(i) ⇒

(¬Gp(i) ∧ ∀j ∈ N(i),¬Gp(j))
stabilize(i) ≡ if G2(i) then A2(i) else A1(i)

trigger1
ij ≡ Gp(i)

trigger2
ij ≡ Gp(i)∧ (∀k ∈ N(i), q1

ik = ask∧ a1
ij 6= ⊥)∧

¬can stabilize(i)

f1
i =

{

〈lpi
, x〉 , if q1

ji = ask;
⊥, otherwise;

where x = min{ lk | k ∈ N(i) − {j} }

phase 1 over(i) ≡ ¬Gp(i) ∨ (∀k ∈ N(i), q1
ik = ask∧

a1
ki 6= ⊥)

f2
i =

0,
if q2

ji = ask ∧ phase 1 over(i)∧
¬can stabilize(i);

1,
if q2

ji = ask ∧ phase 1 over(i)∧
can stabilize(i);

⊥, otherwise;

Q1(i) : ∃j ∈ N(i) : trigger1
ij ∧ (q1

ij = ask ∧ a1
ji = ⊥)

Q2(i) : ∃j ∈ N(i) : trigger2
ij ∧ (q2

ij = ask ∧ a2
ji = ⊥)

A legitimate state is a state in which Gp(i) is false for
every node i, and q1

ij = q2
ij = a1

ij = a2
ij = ⊥ for every

node i and every node j.
We consider the system in Figure 4 in which the maxi-

mum node degree is 4. Let us start with the single-fault
state [ls = 1, lt = 2, lv = 4, lj1 = lj2 = lj3 = 4,
lk1

= lk2
= lk3

= lk4
= lk5

= lk6
= lk7

= lk8
= lk9

= 5,
and q1

ij = q2
ij = a1

ij = a2
ij = ⊥ ∀i and ∀j ∈ N(i)] in

which node v is the faulty node. Then the system can
move in the following sequence:

1.1) The central demon selects node v to execute S5

and change the value of q1
vj1

from ⊥ to ask.

1.2) The central demon selects node v to execute S5

and change the value of q1
vj2

from ⊥ to ask.
1.3) The central demon selects node v to execute S5

and change the value of q1
vj3

from ⊥ to ask.

1.4) The central demon selects node v to execute S5

and change the value of q1
vp from ⊥ to ask.

2.1) The central demon selects node j1 to execute S5

and change the value of q1
j1k1

from ⊥ to ask.

10

v

s

t

j∆-1j1 j2

1-∆ 1-∆ 1-∆

Figure 5: A system with the maximum node degree ∆

2.2) The central demon selects node j1 to execute S5

and change the value of q1
j1k2

from ⊥ to ask.
2.3) The central demon selects node j1 to execute S5

and change the value of q1
j1k3

from ⊥ to ask.
2.4) The central demon selects node j1 to execute S5

and change the value of q1
j1i from ⊥ to ask.

3.1) The central demon selects node j2 to execute S5

and change the value of q1
j2k4

from ⊥ to ask.
3.2) The central demon selects node j2 to execute S5

and change the value of q1
j2k5

from ⊥ to ask.
3.3) The central demon selects node j2 to execute S5

and change the value of q1
j2k6

from ⊥ to ask.
3.4) The central demon selects node j2 to execute S5

and change the value of q1
j2i from ⊥ to ask.

4.1) The central demon selects node j3 to execute S5

and change the value of q1
j3k7

from ⊥ to ask.
4.2) The central demon selects node j3 to execute S5

and change the value of q1
j3k8

from ⊥ to ask.
4.3) The central demon selects node j3 to execute S5

and change the value of q1
j3k9

from ⊥ to ask.
4.4) The central demon selects node j3 to execute S5

and change the value of q1
j3i from ⊥ to ask.

Note that 16 moves have been made and the system
has not yet reached the legitimate state. We now gen-
eralize this example to the system in Figure 5. The
maximum node degree of the system is ∆. Let us start
with a single-fault state in which ls = 1, · · · , lt = k − 1,
lv = k + 1, lj1 = lj2 = · · · = lj∆−1

= k + 1 and the
l-values of all the bottom nodes are k + 2 (thus, v is the
faulty node). If we let the system move in the similar
fashion as in the preceding example, it is not difficult to
see that the system has not yet reached the legitimate
state after it has made ∆2 moves. From all the above,
one can see that the worst-case stabilization time of the
protocol in [10] for single-fault situations is Ω(∆2). The
verification, that the worst-case stabilization time of the

above protocol for single-fault situations is O(∆2), is
omitted.

References

[1] S. Chandrasekar and P.K. Srimani, “A self-
stabilizing algorithm for all-pairs shortest path tree
problem”, Parallel Algorithm and Applications,
Vol. 4(1&2), pp.125-137, 1994.

[2] E.W. Dijkstra, “Self-stabilizing systems in spite of
distributed control”, Comm. ACM 17(11), pp.643-
644, 1974.

[3] E.W. Dijkstra, “Self-stabilizing systems in spite of
distributed control (EWD391)”, Reprinted in: Se-
lected writing on computing: a personal perspec-
tive. Berlin Heidelberg New York Springer, pp.41-
46, 1982.

[4] E.W. Dijkstra, “A belated proof of self-
stabilization”, Distributed Computing, Vol.
1(1), pp.5-6, 1986.

[5] S. Dolev, A. Israeli and S. Moran, “Self-
stabilization of dynamic systems assuming only
read/write atomicity”, Distributed Computing,
Vol. 7(1), pp.3-16, 1993.

[6] S. Ghosh and A. Gupta, “An exercise in fault-
containment: self-stabilizing leader election”, In-
formation Processing Letters, Vol. 59, pp.281-288,
1996.

[7] S. Ghosh, A. Gupta and T. Herman, “Fault-
containing self-stabilizing distributed protocols”,
Technical Report 00-01, Department of Computer
Science, The University of Iowa, Iowa City, 2000.

[8] S. Ghosh, A. Gupta, T. Herman and S.V.
Pemmaraju, “Fault-containing self-stabilizing algo-
rithms”, In Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Comput-
ing, pp.45-54, 1996.

[9] S. Ghosh, A. Gupta and S.V. Pemmaraju, “A fault-
containing self-stabilizing spanning tree algorithm”,
Journal of Computing and Information, Vol. 2(1),
pp.322-338, 1996.

[10] S. Ghosh, A. Gupta and S.V. Pemmaraju, “Fault-
containing network protocols”, Symposium on Ap-
plied Computing archive Proceedings of the 1997
ACM symposium on Applied computing, pp.431-
437, 1997.

[11] A. Gupta, “Fault-containing in self-stabilizing dis-
tributed algorithm”, Ph.D. thesis, University of
Iowa, 1997.

[12] S.T. Huang and N.S. Chen, “A self-stabilizing al-
gorithm for constructing breadth-first trees”, In-
formation Processing Letters, Vol. 41, pp.107-117,
1992.

11

[13] T.C. Huang, “A self-Stabilizing algorithm for the
shortest path problem assuming the distributed de-
mon”, Computers and Mathematics with Applica-
tions, Vol. 50, pp.671-681, 2005.

[14] T.C. Huang, “A self-stabilizing algorithm for the
shortest path problem assuming read/write atom-
icity”, Journal of Computer and System Sciences,
Vol. 71, pp.70-85, 2005.

[15] T.C. Huang and J.C. Lin, “A self-stabilizing algo-
rithm for the shortest path problem in a distributed
system”, Computers and Mathematics with Appli-
cations, Vol.43, pp.103-109, 2002.

[16] T.C. Huang, J.C. Lin and J.N. Mou, “Self-
stabilizing algorithms for the shortest path prob-
lem in a distributed system”, In: Proceedings of the
ISCA 17th International Conference on the Parallel
and Distributed Computing Systems, pp.270-277,
2004.

[17] J.C. Lin and T.C. Huang, “An efficient fault-
containing self-stabilizing algorithm for finding a
maximal independent set”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 14, No. 8,
pp.742-754, 2003.

12

