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ABSTRACT

Volume Rendering is an important scientific
visualization method that is used widely in medical
data, bioinformatic data, and scientific simulation
results. In 2004, we started to develop volume
rendering feature for our 3D VR Engine [12]. In
this paper, we showed our work on creating this
volume visualization platform, which integrated
view-align slicing, pre-integration, multi-volumes
rendering, time-varying volume rendering, and
a graphics user interface for transfer function.
Our platform met the needs for high quality
volume rendering, multi-volumes, time-varying
volume display, and had real-time adjustment for
transfer function. Meanwhile, we maintained its
extensibility and used graphics hardware functions
when possible.
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1 Introduction

Volume rendering [4, 10] is a favorable presenta-
tion for 3D image data, such as medical images,
bio-informatic data, and some simulation results.
To provide a useful volume rendering display sys-
tem, other than the integrity of final visualization
images, real-time interaction is desired for better
users perception. Moreover, capabilities of multi-
volumes, time-varying volume data display, and
feature detection are in constant demands. In 2004,
we developed an axis-align, texture-based volume
rendering for 3D VR Engine [8]. But the lack of
rendering quality, order of mixed multiple volumes,
time-varying volume data control, and feature de-
tection left much room for improvement. In this
paper, we developed reformed algorithms for these
problems and put them together into a volume vi-
sualization platform to fulfill the users demands.
For quality issue, we chose view-align instead of
axis-align volume rendering and then combined pre-
integration method that was proposed by Engel et
al. [6]. View-align polygons would sample volume
by tri-linear interpolation of graphics hardware’s
3D texture support. Pre-integration would reduce
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Figure 1: Structure of our volume rendering platform.

aliasing problem caused by the insufficient sam-
pling slices. Engel implemented his pre-integration
method with NVIDIA’s register combiner OpenGL
extension [2]. Our approach was using the more
general OpenGL Shading Language (GLSL) [11].
The GLSL code was simpler and easier to maintain.
For multiple volumes issue, we used slices sorting
and texture switching to manage the display. View-
align slices sorting was easy to get correct rendering
order. For time-varying volume issue, we created
a dynamic volume manager. For transfer function
adjusting issue, we designed a control-points based
GUI. There were histogram, color bar, and pre-
integration table to assist user. Putting them all
together, we built a texture-based volume render-
ing platform with hardware acceleration support.

2 Related Work

In recent years, graphics hardware becomes power-
ful and programmable. Therefore, making use of
hardware acceleration becomes a reasonable trend
to follow. There are increasingly more techniques
of volume rendering to be implemented or accel-
erated by GPU. For example, Engel et al. hold a
course in SIGGRAPH’02 to talk about this topic
[5]. Therefore, we choose 3D texture [1, 3, 7] and
GLSL [11] to be our fundamental tools.

According to the Nyquist Limit [14], we need
more sampling slices to achieve high accuracy in
direct volume rendering image. And the trade off
is the performance slowdown. In 2001, Engel et al.
proposed a pre-integration method to calculate the
integration results between slices [6]. The method
calculated slabs instead of slices and it could be
implemented by the programmable graphics hard-
ware.

Because a good transfer function is hard to find,
Christopher R. Johnson lists the ”feature detec-
tion” as one of the top scientific visualization re-

search problems [9]. In 2001, a contest about trans-
fer function searching was held [13]. They com-
pared four different methods: trial and error, data-
centric without data model, data-centric with data
model, and image-centric using organized sampling.
In the opinion of judge, Bill Lorensen, it was not
good to have too much or too little human inter-
action. Semi-automatic method to assist user was
much better. Following this comment, we decide
to design our own control-points based GUI with
assistant information. Current version is a easy-to-
use GUI without automatic feature detection. We
will extend it to support semi-automatic feature de-
tection in next version.

3 Hardware Accelerated Vol-
ume Rendering

Following the organization of our 3D VR Engine
[12], we divide our volume visualization platform
into three major parts: data manager, rendering,
and user interface. We also design a structure as
Fig. 1.

Data manager is placed in object module. It has
three objects: dynamic volume object, volume ob-
ject, and transfer function object. Dynamic volume
object contains volumes and manages volumes by
time sequence (Sec. 3.4). Volume object manages
volume data and its position and orientation. Both
of them contain transfer function object. Transfer
function object manages control points of transfer
function and builds color table and pre-integration
table (Sec. 3.2 and Sec. 3.5).

Rendering is placed in rendering module. It has
two objects: volume rendering object and proxy
polygon object. Volume rendering object takes an
array of volumes of this time step from dynamic
volume object.

It will clip view-align slices volume by vol-



ume (Sec. 3.1). These slices will record in an
array of proxy polygon objects and then are
sorted (Sec. 3.3). Volume rendering object render
these proxy polygons from back to front by pre-
integration method (Sec. 3.2).

User interface is placed in Ul module. It has
two objects: transfer function user interface object
and pseudo volume object. Transfer function user
interface object provides a GUI to control trans-
fer function (Sec. 3.5). Because transfer function
can belong to dynamic volume object or volume
object, we wrap them up by pseudo volume object
and change pseudo volume from GUI.

3.1 View-Align Volume Rendering

In order to do view-align volume rendering, the first
thing is to generate view-align triangles. View-align
plane can be determined by view direction and dis-
tance between slice and camera. Therefore, the
question becomes twofold.

1. How to find intersection points between view-
align plane and volume?

2. How to triangulate these vertexes into non-
overlap triangles that cover over all surface in-
side volume?

In order to find intersection points, we split eight
points of volume’s bounding box into two groups
by view-align plane. Then, if any two vertexes pair
has a boundary edge and places in different ver-
texes’ group, there is a intersection point in this
line segment. We apply line and plane intersection
calculation to find intersection point.

The second question is more difficult. Based on
our statistics, we find out that number of intersec-
tion points are no more than six points. Another
important observation is that intersection points al-
ways form a convex polygon. These two facts can
reduce many checkups. Based on number of inter-
section points, we deal with them case by case.

First, one intersection point case and two inter-
section points case are ignored and three intersec-
tion points case can link to a triangle directly.

In the case of four intersection points,
Fig. 2(a), we do the following steps:
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1. Calculate normal vectors from first point to
others, Vi Va3, V1 V3, and V, V.

2. Dot each pair of vectors, ViVs - Vi Va3, ViVa -
ViVy, and Vi Vs - Vi V.

3. Choose the lar§est two dot results, Vi Vs - V4 Vs
and V1X/3 . V1V4

4. Create two triangles, AV VoV and AV V3V,

These steps are based on convex polygon guarantee
and larger dotted value smaller included angle.

Vi1 V1

\ \Z3 V5

L]
[ ]

v2 ® V2 @ va

V3

V3
@ (b)
V1

V2

V4

va® @

©

Figure 2: Triangles selection.

In the case of five intersection points, we do
the same dotted methods and choose the largest
three dotted values. For example, we will create
three triangles AViVaVs, AV1VsVy, and AVLV, V5
in Fig. 2(b). But if the third largest dotted value
forms a triangle that covers the previous two trian-
gles, we ignore the third dotted value and choose
the fourth dotted value. For example, we will skip
m . m and choose m . ‘TVE»: in Fig. 2(c).

In the case of six intersection points, we can do
the similar method again but it has too many spe-
cial cases to avoid. Therefore, we use a reduction
method to take care this case. We calculate nor-
mal vectors from the last point to others and dot
each pair to choose the smallest value to form a
triangle. It can reduce from six intersection points
to five intersection points, and then we triangulate
the remainder points by previous method of five in-
tersection points. For example, we create AV3V5 V4
in advance and then remove point V4 to become a
five intersection points situation in Fig. 2(d).

After we generate correct view-align triangles
and its texture coordinates, the next step is to build
3D volume texture and transfer function texture
and then do the multi-texture mapping. The tri-
linear interpolation inside volume is done by graph-
ics hardware automatically and transfer function
mapping can be done in fragment shader by table
look-up mechanism.

3.2 Pre-integration

Pre-integration algorithm integrates the composi-
tion result between slices. In other word, it samples
volume by slabs instead of slices. This method re-
duces slicing alias and provide high quality volume
rendering. Fig. 3 is rendered by our implementa-
tion and provides a good proof. In this section,
we will explain our implementation details: pre-
integration table construction, slab calculation, and



(a) Without pre-integration.

(b) With pre-integration.

Figure 3: Pre-integration comparison.

table look-up. We will skip its fundamental theory
and refer to the work by Engel et al. to elaborate
the theory derivation [6].

First of all, we calculate pre-integration table.
An example is shown in Fig. 5. The most right
table is pre-integration table. Its horizontal axis is
the values from front slice and its vertical axis is
the values from back slice. RGB values in the ta-
ble are integrated by Riemann Sum [15] and then
normalized by its distance. Each alpha value is cal-
culated by the following equation that is proposed
by Engel et al. [6].

d

Sp — Sf

sy, sp,d) =1 —exp (— (T(sy) — T(sb)))
with the integral function T'(s) := [ s07(s)ds.
a(syf, sp,d) is target slab alpha value, sy is value
of front slice, sp is value of back slice, and d is slab
width.
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Figure 4: Calculate texture coordinate of back slice.

Next, we calculate texture coordinates of slab by
vertex shader. Our targets are texture coordinates
of back slice (Fig. 4). Vertex p and texture coor-
dinates TexCoord(p) of front slice are known in-
formation in vertex shader. We pass volume size
VolSize, volume minimum corner VolMin, cam-
era position ¢, unit view direction ¥, and slab size

d into vertex shader, too. We define vector v as
unit vector of camera to vertex of front slice. We
calculate v/ = normalize(p — ¢). If © is the angle
between # and v/ and d' is the distance between

slices along the vector 17’, the following equation is
established.

—

cos(®) =d/d =T - /|5||0]

Because v and v’ are unit vectors,

—

d =d/i-v

We define vertex of back slice as p’ and texture
coordinate of back slice as TexCoord(p’). We can
derive the following results.

P =p+dv
TexCoord(p') = (p' — VolMin)/VolSize

After pre-integration table and texture coordi-
nate are ready, the final step is texture lookup in
fragment shader. We use multi-texture to bind vol-
ume as 3D texture and pre-integration table as 2D
texture. First, we look up value in 3D texture by
texture coordinates of front slice and back slice sep-
arately. We get two results from previous texture
look-up and then use the two values as texture co-
ordinates of pre-integration texture to get the final
RGBA colors of the fragment in frame buffer. Al-
pha blending will complete the volume rendering
after the previous fragment shader.

3.3 Multiple Volumes

Traditional texture-based multiple volumes render-
ing uses multiple textures to represent multiple vol-

umes. This method has two major drawbacks.



Figure 5: Transfer function GUI.

First, number of textures for one polygon are lim-
ited. Second, these volumes must be aligned.

In our multiple volumes situation, every volume
has its own volume size, sampling slices, position,
and orientation. Therefore, we cannot use the pre-
vious method. Our solution is based on slices sort-
ing and texture switching concepts. Because our
sampling slices are view-align slices, they can be
sorted easily by distance between slice and cam-
era. Four parameters are recorded for these slice
polygons: volume index, distance from camera to
slice, vertexes, and texture coordinates. Distance is
sorting basis. Vertexes and texture coordinates are
calculated by algorithm of Sec. 3.1. Because the
two parameters are easier to be calculated volume
by volume, they are calculated before sorting and
rendered after sorting. Volume index is used to de-
termine that this polygon belong to which volume.
Our volume object has ID of texture object, trans-
fer function, transform, and slab attributes to assist
final rendering. After the sorting, all slices in the
scene are rendered from back to front and multiple
volumes are rendered in correct visual effect.

3.4 Time-Varying Volume

We design a dynamic volume class to handle time-
varying volume. In dynamic volume class, it has
three volume pointers, one for previous volume,
one for current volume, and one for next volume.
This class will maintain another thread to manage
data. The original rendering thread renders the
volume that is reported by data manager thread.
Data manager thread loads volume and points it
by next pointer. When next volume is loaded com-
pletely, next volume is changed to current volume
and starts to load volume of next time step imme-
diately. When current volume is ready, previous
volume is freed immediately. If rendering thread
asks volume pointer at this moment, data manager

thread will report current volume pointer. When
previous volume is freed completely, current vol-
ume is changed to previous volume and reset to
be ready to take data from next volume. If ren-
dering thread asks volume pointer at this moment,
data manager thread will report previous volume
pointer. This algorithm is not very efficient but it
can render larger time-varying data then load total
time-varying data. It is the reason for us to use this
algorithm for time-varying volume.

3.5 Transfer Function User Interface

After we finish our transfer function implementa-
tion, we realize that we need a good transfer func-
tion GUI. Our first version of transfer function GUI
is similar to the GUI that is used by Engel et al.
[6]. We can assign RGBA values separately and im-
mediately in this GUI. But, we have two problems
when we use this kind of GUI. First, it is hard to
give curves with specific signification. Second, we
need more hints and guidance when users do trial-
and-error. Therefore, we start to design our own
transfer function GUI.

Fig. 5 illustrates the GUI of our transfer func-
tion editor. Owur design concept is control-points
based GUI. The main control window places in left-
bottom. The top window is histogram result of
current chosen volume. The right window is pre-
integrated result of transfer function. Histogram
window and pre-integration window provide assist
information. Many features are inside lower statis-
tic values, higher statistic values, and dramatic
variant values. In control window, volume name
and color of current chosen control point are shown.
In top area of control window, default button will
reload default transfer function from script, save
button will save current transfer function into a file
that is named by the volume’s name, left arrow
changes chosen volume to previous one, and right



arrow changes chosen volume to next one. The
color bar in bottom of control window displays the
transfer function. User can click on it to add control
points. If user clicks on control point, control point
will become red, density value, remove icon, and
four color mapping bars will appear, and user can
drag chosen control point to change source map-
ping density value. When control point is chosen,
user can drag the four points on the four color bars
to change target mapping color values or click the
removed icon to remove this control point. When
user changes any value of any control point, our
program will do linear interpolation between two
closest control points.

Our proposed transfer function GUI can pro-
vide a fundamental solution for the two issues that
we mentioned previously. For more convenient us-
age, we will continue to extend it, such as semi-
automatic detection, gradient histogram, and the
like.

4 Experimental Results

We test our program on a PC with dual AMD
Athlon MP 2800+ CPU, 3GB Register ECC
DDR266 memory, and NVIDIA GeForce 6800 GT
graphics card with 256MB graphics memory. Our
program is developed in win32 platform and tested
in Microsoft Windows 2000 Professional.

Fig. 6 is the rendering results. Fig. 6(a) and
Fig. 6(b) are high resolution images of fruit fly
brain from confocal microscopy. Each neuro-circuit
needs to be recorded by a single volume. There-
fore, they are displayed in a multiple volumes’ en-
vironment. Fig. 6(c) is a CT human brain data.
Fig. 6(d) is a CT lung cancer data and red parts
inside the two pink squares are our experimental
detection of cancer. Fig. 6(e) is a water sim-
ulation about ”drop structure flow in an open-
channeled hydraulic conduit.” This simulation pro-
vides a time-varying data. We display it in a time-
varying environment. Fig. 6(f) is a radar data of
Herb typhoon. It is a hybrid rendering including
typhoon volume and Taiwan terrain. All data type
of these volumes is one 8-Bits channel. Their ren-
dering performance is listed in Table 1.

5 Discussion

According to Table 1, our simple summary is
larger data with lower rendering performance. But,
there are three special cases. First, time-varying
data are large but performance are not bad. This
is because total time-variant volume data don’t
need to be rendered at the same time. It is only
possible to render one time step volume at one
frame. So, the rendering cost is limited to one time

step volume rendering cost. Second, the bottle-
neck of hybrid rendering in Fig. 6(f) is dependent
on the highest cost rendering in the scene. Our
testing result is the best view of typhoon. In this
case, our Level-Of-Detail (LOD) terrain chooses a
very coarse terrain model. Most part of rendering
cost come from typhoon’s volume rendering. If we
change observation viewpoint to the bottom of ty-
phoon, LOD terrain chooses a more detailed terrain
model. The bottleneck can come from terrain and
FPS might drop to lower 30. Finally, the strangest
result is that the FPS of Fig. 6(c) is lower than
FPS of Fig. 6(a). Volume resolution of Fig. 6(c)
is lower than Fig. 6(a). In our opinion, voxel size
also acts as an important coefficient. Voxel size will
decide the final volume size and shape. The differ-
ent volume shape changes the cost of rasterization.
Human brain data is more like a cube than fruit
fly brain data. Therefore, it needs more pixels to
calculate the final image.

6 Conclusion

We develop a simple and flexible volume rendering
method, which can be run in current consumer PC
and graphics hardware, for our 3D VR Engine [12].
We implement pre-integration algorithm [6] using
GLSL to solve aliasing problem. Multiple volumes,
time-varying volume, and an easy-to-use transfer
function GUI also add up well to this platform.

In the future, high resolution volume data will
be the next challenge to our rendering platform.
We are trying some parallel or multi-resolution
methods to overcome this issue. Another impor-
tant work is semi-automatic feature detection as
we have mentioned before.
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Table 1: Performance.

| Figure | Volume Resolution | Voxel Size | Time Step | FPS |
Fig. 6(a) 512x512x128 1.8447265625x1.0078125x 1.5 1 3.5
512x512x128 1.8447265625x1.0078125x 1.40625
Fig. 6(b) 512x512x256 0.449841x0.449841x0.999365 1 0.5
512x512x256 0.590412375x0.571960716796875x 1.0
512x512x 32 0.68003609765625x0.54736633984375% 2.5
512x512x 64 0.448055x0.406884 % 2.75992
512x512x128 0.40746962109375%x0.491254x1.99489
512x256x256 1.220703125x1.28125x1.0
256256 x 64 2.44140625x1.28125x 1.0
256x256x128 2.44140625x1.28125x1.0
256 %256 <256 2.44140625x1.26953125x 1.0
Fig. 6(c) 512x512x128 0.5742187x0.5742187x2.0 1 2.2
Fig. 6(d) 512x512x512 0.66015625x0.66015625%x 1.0 1 1.5
512x512x256 0.66015625x%0.66015625x1.0
Fig. 6(e) 256x256x256 1.0x1.0x1.0 24 4.5
Fig. 6(f) 512x512x 16 1.5625x1.5625x0.75 1 30
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(a) Brain of fruit fly. (b) Brain of fruit fly.

(e) Drop structure flow in an open-channeled hy- (f) Typhoon.
draulic conduit.

Figure 6: Volume rendering results.



