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摘要 

虛擬隨機函數，即是一個無法以機率式演算

法在多項式時間內與真正的隨機函數做出區別的

函數，我們亦可稱之為擬亂函數。而擬亂函數由

Goldreich、Goldwasser 及 Mical 三位學者首先定義

並具體建構之(簡稱 GGM-Construction)。在本文中

我們提出一個簡單變形的版本，而此版本可降低原

始建構方式的計算量。值得一提的是，若假設產生

l位元虛擬亂數所需成本之為 )(lθ ，則可以證明我

們變形的方法是所有 GGM-Construction 模式下最

佳的。 

關鍵詞：密碼學、擬亂函數、虛擬亂數產生器、

虛擬亂數。 

Abstract 

A pseudorandom function is a function that 
cannot be efficiently distinguished from a truly 
random function. The first construction of 
pseudorandom functions was introduced by 
Goldreich, Goldwasser, and Micali 
(GGM-construction). In this paper, we propose a 
simple variant of the GGM-construction that works 
slightly faster than the original one. Interestingly, we 
show that our construction is optimal under the 
assumption that the cost of generating l  
pseudorandom bits is )(lθ .  

Keywords: cryptography, pseudorandom function, 
pseudorandom generator, pseudorandomness. 

1 Introduction 

Randomness is an important part of 
cryptographic applications. However, generating true 
randomness has been one of computer science's most 
difficult challenges. In practice “pseudorandomness” 
is often used instead of true randomness.  

For cryptographic applications, we require that 
pseudorandom sequences cannot be efficiently 
distinguished from truly random sequences. 
Pseudorandom generators, introduced by Blum and 
Micali[3] and Yao[14] , are used to produce such 
pseudorandom sequences. Though they are designed 
to generate long pseudorandom sequences, yet they 
do not provide efficiently random access to bits of a 
huge pseudorandom sequence (even if they do, their 
security in this “random” usage is not guaranteed).  

Pseudorandom functions, introduced by 
Goldreich et al.[6] , are more powerful than 
pseudorandom generators. Informally, a 
pseudorandom function has the property that its 
input-output behavior is computationally 
indistinguishable from that of a random function and 
evaluating such a function can be implemented by an 
efficient algorithm. Pseudorandom functions have a 
number of applications[2] [5] [7] [10] . We may first 
design a scheme allowing the users to have black-box 
access to a random function and prove its security. 
Then replace the random function with a 
pseudorandom function. It can be argued that after 
this replacement the scheme is still secure.  

In addition to introducing pseudorandom 
functions, Goldreich et al.[6]  proposed a 
construction of length-preserving pseudorandom 
functions (the GGM-construction) using 
pseudorandom generators as building blocks. Given a 
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pseudorandom function kk
xf }1,0{}1,0{: a , each 

evaluation requires k calls to the underlying 
pseudorandom generator. Though it is not very 
efficient, yet an advantage of such a generic 
construction is that a pseudorandom function can be 
built using any pseudorandom generators. This work 
gives a simple variant of the GGM-construction and 
shows that it can work slightly faster. We also show 
that our construction is optimal under the assumption 
that the cost of generating l  pseudorandom bits is 

)(lθ .  

We remarked that based on specific 
mathematical hard problems, more efficient 
pseudorandom functions are possible. Using 
pseudorandom synthesizers as building blocks, Naor 
et al.[9]  gave a parallel construction of 
pseudorandom functions which can be evaluated in 
NC2. 1  Naor and Reingold[12]  showed two 
constructions of pseudorandom functions: one 
construction of length-preserving pseudorandom 
functions based on the Decisional Diffie-Hellman 
assumption, and the other construction of 1-bit-output 
pseudorandom functions based on the Factoring 
assumption. Both constructions use roughly 2k 
modular multiplications per evaluation. In [11] , Naor 
et al. further improved the later construction so that 
the functions can be length-preserving and each 
evaluation uses roughly 3k modular multiplications.  

 

2 Preliminaries 

2.1 Definitions 
In this section we will briefly review the 

definitions of Pseudorandom Generators and 
Pseudorandom Functions. The following notations 
will be used: 

Xx R∈ : x is randomly chosen from the set X. 

Ik: the set of all k-bit strings. 

Hk: be the set of all functions from Ik into Ik. 

We say that a set Sk is a samplable set if there 
exists a probabilistic polynomial-time (PPT) 
algorithm that on input 1k outputs kR Sr ∈ .  

A pseudorandom generator is a 
polynomial-time algorithm that can stretch its random 
input to a polynomially long string. There are several 
definitions of a cryptographically strong 
pseudorandom generator[1] [3] [4] [8] . For our 
purpose, the following definition for pseudorandom 

                                                 
1 NC2 is the class of all problems solvable in O(log2k) 
paralle time with polynomial amount of total work. 
See [13] . 

generators would be sufficient.2 

Definition 2.1.1 (Pseudorandom Generators)  

Let P , P1 be polynomials. Let Sk be a 
samplable set. Let 

kSiik gG ∈= }{  be a collection of 

)(kPk II a  functions. If the following conditions 
hold, then Gk is called a collection of pseudorandom 
generators:  
(1) (Efficient computation) There exists a 
polynomial-time algorithm A such that 

)(),( xgxiA i= , where kSi∈  (index), and kIx∈ (a 
seed of the pseudorandom generator gi).  

(2) (Pseuodrandomness) Let Uk be a set of P1(k) 
strings, each P(k)-bit long. For any PPT algorithm AG, 
for any polynomials P1, Q, and for all sufficiently 
large k, 

)(
1   ||
kQ

pp R
k

G
k <− , where G

kp  denotes the 

probability that AG(1k, Uk) = 1 if Uk consists of 
P(k)-bit strings output by some pseudorandom 
generator ki Gg ∈  on random k-bit seeds,  where 

kR Si∈ , and R
kp  denotes the probability that AG(1k, 

Uk) = 1 if Uk consists of random P(k)-bit strings. 

 
We now move on to the definition of a 

pseudorandom function[6] [8] [9] [12] . Loosely 
speaking, a pseudorandom function is a collection of 
functions which cannot be efficiently distinguished 
from a randomly chosen function by any adversary 
that has access to the functions as a black box. 
Specifically, we give the following definition: 

Definition 2.1.2 (Pseudorandom Functions)  

Let Sk be a samplable set. Let 
kSxxk fF ∈= }{  be 

a collection of kk II a functions. If the following 
conditions hold, then Fk is called a collection of 
pseudorandom functions:  

(1) (Efficient evaluation) There exists a 
polynomial-time algorithm A such that 

)(),( yfyxA x= , where kSx∈ (the key of the 
pseudorandom function fx) and kIy∈ (query).  

(2) (Pseudorandomness) For any PPT algorithm AF, 
for all polynomial Q, and for all sufficiently large k, 

)(
1   ||
kQ

pp H
k

F
k <− , where F

kp denotes the 

probability that AF outputs 1 on input 1k and has 
access to the oracle 

xfO  for some function kx Ff ∈ , 

                                                 
2 Actually, we define a pseudorandom generator as a 
polynomial-time algorithm whose output sequences 
on random seeds pass all polynomial-time statistical 
test. See[6] [14] . 
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where kR Sx∈ , and H
kp  denotes the probability 

that AF outputs 1 on input 1k and has access to the 
oracle hO  for some function kR Hh∈ .  

2.2 GGM-Construction 
The GGM-construction[6]  is a generic 

method to construct pseudorandom functions from 
pseudorandom generators. It can use any 
pseudorandom generator G that stretches a seed x∈Ik 
into a 2k-bit-long sequence 

kkk bbbbbxG 2121)( ⋅⋅⋅⋅⋅⋅= + . By G0(x) we denote the 
first k bits in G(x). By G1(x) we denote the second k 
bits in G(x). Define the pseudorandom 
function kkx IIGGM a:  as 

)))((()(
12

xGGG GGM
kx αααα ⋅⋅⋅= , where x R∈ Ik is the 

key of the pseudorandom function, and 
kk I∈= αααα ...21  is an input (query) to the 

pseudorandom function. Its evaluation can be 
implemented as the following algorithm:  

 output 

)( do    
k  to1For 

i

v

vGv
i

x v

α←
←

←

 

We may imagine this construction as a full 
binary tree rooted at the key x. Each left (right) edge 
of this tree is labeled 0 (1). Each node at the i-th level 
stores   )(vG

iα
 if its parent stores v. To evaluate 

  )(αxGGM , we walk down along one of the all 2k 
possible paths, depended on the value of α , and 
finally reach the leaf, which stores  )(αxGGM .  

 

3 The Improvement and Efficiency 
Analysis 

3.1 The Improvement 
For the reason of efficiency, we modify the 

original binary-tree construction to a 4-ary-tree 
construction. Instead of using a length-doubling 
pseudorandom generator, we use a pseudorandom 
generator G that stretches its input seed x to a 
length-quadrupling sequence G(x). We use G(0,0)(x) to 
denote the first quarter of G(x). Similarly, G(0,1)(x) 
denotes the second quarter, G(1,0) denotes the third 
quarter, and G(1,1) denotes the last quarter. We define 
the function kkx IIGGM a:'  as 

))))(((()( ),(),(),(),(
'

1234321
xGGGGαGGM ααααααααx kkkk

⋅⋅⋅=
−−−

 
if k is even and 

))))(((()( ),(),(),(),0(
'

123421
xGGGGαGGM αααααααx kkk

⋅⋅⋅=
−−

 
if k is odd, where x R∈ Ik is the key of the 
pseudorandom function, and kI∈α  is a query to the 

function. This can be implemented as the following 
algorithm:  

⎣ ⎦

 
output 

)(    then 
odd isk  If

)( do    
2/  to1For 

),0(

),(

k

1-2i2i

v

vGv

vGv
ki

xv

α

αα

←

←
←

←

 

3.2 Proof of Correctness 
In this section, we will prove that the functions 

constructed by the variant, GGM’, possess the 
essential “pseudorandomness” property of 
pseudorandom functions. The proof is a careful 
modification of the original proof of the 
GGM-construction[6] . It uses a proof technique, 
called the hybrid technique[4] . 

Theorem: The functions constructed by GGM’ are 
pseudorandom functions. 

Proof: 

We prove by contradiction. Assume that the 
functions in Fk constructed by GGM’, using 
pseudorandom generators Gk as build blocks, are not 
pseudorandom. Then there exists a PPT algorithm AF 
on input 1k and has access to an oracle can 
distinguish kR Ff ∈  from kR Hh∈  with 

non-negligible advantage, that is, 
)(

1   ||
kQ

pp H
k

F
k ≥−  

for some polynomial Q. We use AF to construct a PPT 
algorithm AG that, on input 1k and Uk (a polynomially 
bounded but sufficient large set of 4k-bit strings), can 
determine whether the strings in Uk are generated by 

kGG∈  on random seeds or just randomly chosen 

4k-bit strings, the advantage i.e. 
)(

1  ||
1 kQ

pp R
k

G
k ≥−  

for some polynomial Q1.  
We only prove the case when k is odd since the 

proof when k is even is a direct modification of the 
original proof. Consider when AF’s queries are 
answered by one of the following probabilistic 
algorithms Ai , ⎡ ⎤2/...,,2,1,0 ki = . Let 

kyyyy ⋅⋅⋅= 21  be a query of AF. For ⎣ ⎦2/0 ki ≤≤ , 
Ai answers the oracle query as follows: 

If y is the first query with prefix y = y1y2…y2i 
Then Ai selects a string kR Ir ∈ , 

stores the pair ( y1…y2i , r ), and 
answers ).('

...12
rGGM

ki yy +
  

Else Ai retrieves the pair ( y1…y2i , v ) and 
answers ).('

...12
vGGM

ki yy +
  



                                                                             4

For ⎡ ⎤2/ki = , Ai answers the oracle query as 

follows: 

If y is the first query with prefix y = y1y2…yk 
Then Ai selects a string kR Ir ∈ , 

stores the pair ( y1…yk , r ), and 
answers r. 

Else Ai retrieves the pair ( y1…yk , v ) and 

answers v. 

We may imagine that a hybrid tree associated to 
Ai is a tree starting at the i-th level. Each node in the 
i-th level stores a randomly chosen k-bit string. For 
the nodes of the j-th level, where j > i, it stores 

)(),( 1222
dG

jj yy ++
 if its parent stores d. Define i

kp  to 

be the probability that AF outputs 1 when its queries 
are answered by Ai . Note that F

kk pp =0  and 

⎡ ⎤ H
k

k
k pp =2/ . Consequently, ⎡ ⎤

)(
1   || 2/0

kQ
pp k

kk ≥− .  

Let Uk be a set of P1(k) strings, each 4k-bit long. 
We now describe how to construct AG that, on input k 
and Uk, can determine whether the strings in Uk are 
generated by G or just randomly chosen 4k-bit 
strings:  

Step 1: AG randomly picks i between 0 and ⎣ ⎦2/k .  

Step 2: AG gives 1k as input to AF and answers AF’s 

queries using the set Uk properly.  
If ⎣ ⎦2/0 ki <≤ , AG answers as follows: 

If y is the first query with prefix y = y1y2…y2i 
Then AG picks the next string u = u00u01u10u11 in 

Uk  (where |u00| = |u01| = |u10| = |u11| = k), stores 
the pairs (y1…y2i00, u00), (y1…y2i01, u01),and 
(y1…y2i10, u10), (y1…y2i11, u11), and answers 

)(
122232

'
... +++ kkki yyyy uGGM   

Else Ai retrieves the pair (y1…y2i+2 , v) and 
answers ).('

...32
vGGM

ki yy +
  

If ⎣ ⎦2/ki = , AG answers as follows: 

If y is the first query with prefix y=y1y2…yk-1 
Then AG picks the next string u = u00u01u10u11 in 

Uk  (where |u00| = |u01| = |u10| = |u11| = k), stores 

the pairs (y1…yk-10, u00), (y1…yk-11, u01), 
discards u10 and u11, and answers 

kyu0 . 

Else Ai retrieves the pair (y1…yk, v) and answers 
v.  

Step 3: Finally, AG outputs AF’s output.  

 

If Uk consists of 4k-bit strings output by G on 
randomly selected k-bit input seeds, then AG acts for 
oracle Ai. If Uk consists of randomly selected 4k-bit 
strings, then AG acts for oracle Ai+1. So we have 
Pr[AG(1k,Uk) =1| Uk consists of 4k-bit strings output 
by G] = 

⎡ ⎤
⎣ ⎦∑ =

⋅
2/

0
)

2/
1(k

i
i
kp

k
 and  

Pr[AG(1k,Uk)=1| Uk consists of randomly chosen 

4k-bit strings] =
⎡ ⎤

⎣ ⎦∑ =
+⋅

2/

0
1)

2/
1(k

i
i
kp

k
. These 

probabilities differ by at least 

⎡ ⎤
⎡ ⎤

⎡ ⎤ )(2/
1  ||

2/
1 2/0

kQk
pp

k
k

kk ⋅
≥−⋅  which contradicts 

to the fact that G is a pseudorandom generator.  

 
3.3 Efficiency Analysis 

By processing 2 bits at each level and 1 bit at 
the last level if necessary, we get a variant of the 
original binary-tree construction. We claim that this 
4-ary-tree construction can work faster than the 
binary one under the assumption that the cost of 
generating l  pseudorandom bits is )(lθ . And 
counterintuitively, expanding to c2 -ary-tree 
construction, for any c > 2, dose not gain better 
efficiency. That is, 4-ary-tree construction is optimal 
among all tree constructions. (Here we do not 
consider trees other than 2c-ary-trees, because the 
input domain and output domain of our PRFs both 
are binary domains.) 

At the (i-1)-th iteration of the evaluating 
process of the GGM-construction, we compute G0(x) 
if 0=iα  and compute G1(x) if 1=iα . We denote as 

0T  and 1T  the cost of time for these two cases, 
respectively. Since G is a generic generator, we can 
reasonably assume that in order to generate the 
second half output G1(x), we need to first generate the 
first half output G0(x). So 01 2 TT ⋅= . To estimate the 
expected cost of time per evaluation of the GGM 
pseudorandom function, denoted as E[TGGM], we 
observe that the binary-tree corresponding to 
GGM-construction has depth k and each call to the 
generator G takes 0T  or 1T  depending on the i-th 
bit of input α . So we have  

kTTT

TETETE
k

i

k

i

k

i

k

iGGM ii

2
3

2
3)

2
1

2
1(

][][][

1 011 0

11

=⋅=⋅+⋅=

==

∑∑
∑∑

==

== αα  

For our 4-ary-tree construction, the 
corresponding 4-ary-tree has depth ⎡ ⎤2/k  and each 
call to the generator G will take T0, 2T0, 3T0, or 4T0 
depending on its input accordingly. So its expected 

(1) 
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cost of time per evaluation, denoted as E[TGGM’], is  

][
4
5 

)4
4
13

4
12

4
1

4
1(

][][

0

000
2/

1 0

2/

1 122'

GGM

k

i

k

iGGM

TEkT

TTTT

TETE
ii

<=

⋅+⋅+⋅+⋅=

=

∑
∑

=

= −αα

 

for k even, where 
122 −ii

T αα  denotes the cost of time 
computing )(),( 122

xG
ii −αα . And if k is odd, we have  

⎣ ⎦

6  if  ][
2
3

4
5

 
2
3

22
5

])[(][

00

0

2/

1 122
'

><+<

+⋅⎥⎦
⎥

⎢⎣
⎢⋅=

+= ∑ = −

TTEkkT

kTk
TTETE

GGM

k

iGGM kii ααα

     

This shows that GGM’-construction performs 
better than GGM-construction on average.  

In general, we can consider the c2 -ary-tree 
construction. Let the expected cost of time per 
evaluation of a pseudorandom function from 
GGMc-construction for Nc∈  be denoted as 
E[TGGM

c]. To simplify the discussion, we assume k is 
a multiple of c,  

00

000
/

1 0

/

1

2
21

2
2)21(

2
1

)232(
2
1

][][
1)1(22

kT
c

T
c
k

TTTT

TETE

ccc

c

cck

i c

ck

iGGM icic
c

+
=

⋅+
⋅⋅=

+⋅⋅⋅++=

=

∑

∑

=

= ⋅⋅⋅
+−⋅⋅

αα

 

It is easy to verify that E[TGGM
c] > E[TGGM’] if 

c> 2. Therefore, the 4-ary-tree construction GGM’ is 
optimal.  
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