
 1

GGM 擬亂函數之效能改進

Performance Improvement for the GGM-Construction of

Pseudorandom Functions

陳昱升 洪國寶 劉兆樑

Yu-Sheng Chen Gwoboa Horng Chao-Liang Liu
中興大學資科所 中興大學資科所 中興大學資科所

Institute of Computer Science, National Chung Hsing University
e-mail : { s9356047, gbhorng, s9056001}@cs.nchu.edu.tw

摘要

虛擬隨機函數，即是一個無法以機率式演算

法在多項式時間內與真正的隨機函數做出區別的

函數，我們亦可稱之為擬亂函數。而擬亂函數由

Goldreich、Goldwasser 及 Mical 三位學者首先定義

並具體建構之(簡稱 GGM-Construction)。在本文中

我們提出一個簡單變形的版本，而此版本可降低原

始建構方式的計算量。值得一提的是，若假設產生

l位元虛擬亂數所需成本之為)(lθ ，則可以證明我

們變形的方法是所有 GGM-Construction 模式下最

佳的。

關鍵詞：密碼學、擬亂函數、虛擬亂數產生器、

虛擬亂數。

Abstract

A pseudorandom function is a function that
cannot be efficiently distinguished from a truly
random function. The first construction of
pseudorandom functions was introduced by
Goldreich, Goldwasser, and Micali
(GGM-construction). In this paper, we propose a
simple variant of the GGM-construction that works
slightly faster than the original one. Interestingly, we
show that our construction is optimal under the
assumption that the cost of generating l
pseudorandom bits is)(lθ .

Keywords: cryptography, pseudorandom function,
pseudorandom generator, pseudorandomness.

1 Introduction

Randomness is an important part of
cryptographic applications. However, generating true
randomness has been one of computer science's most
difficult challenges. In practice “pseudorandomness”
is often used instead of true randomness.

For cryptographic applications, we require that
pseudorandom sequences cannot be efficiently
distinguished from truly random sequences.
Pseudorandom generators, introduced by Blum and
Micali[3] and Yao[14] , are used to produce such
pseudorandom sequences. Though they are designed
to generate long pseudorandom sequences, yet they
do not provide efficiently random access to bits of a
huge pseudorandom sequence (even if they do, their
security in this “random” usage is not guaranteed).

Pseudorandom functions, introduced by
Goldreich et al.[6] , are more powerful than
pseudorandom generators. Informally, a
pseudorandom function has the property that its
input-output behavior is computationally
indistinguishable from that of a random function and
evaluating such a function can be implemented by an
efficient algorithm. Pseudorandom functions have a
number of applications[2] [5] [7] [10] . We may first
design a scheme allowing the users to have black-box
access to a random function and prove its security.
Then replace the random function with a
pseudorandom function. It can be argued that after
this replacement the scheme is still secure.

In addition to introducing pseudorandom
functions, Goldreich et al.[6] proposed a
construction of length-preserving pseudorandom
functions (the GGM-construction) using
pseudorandom generators as building blocks. Given a

 2

pseudorandom function kk
xf }1,0{}1,0{: a , each

evaluation requires k calls to the underlying
pseudorandom generator. Though it is not very
efficient, yet an advantage of such a generic
construction is that a pseudorandom function can be
built using any pseudorandom generators. This work
gives a simple variant of the GGM-construction and
shows that it can work slightly faster. We also show
that our construction is optimal under the assumption
that the cost of generating l pseudorandom bits is

)(lθ .

We remarked that based on specific
mathematical hard problems, more efficient
pseudorandom functions are possible. Using
pseudorandom synthesizers as building blocks, Naor
et al.[9] gave a parallel construction of
pseudorandom functions which can be evaluated in
NC2. 1 Naor and Reingold[12] showed two
constructions of pseudorandom functions: one
construction of length-preserving pseudorandom
functions based on the Decisional Diffie-Hellman
assumption, and the other construction of 1-bit-output
pseudorandom functions based on the Factoring
assumption. Both constructions use roughly 2k
modular multiplications per evaluation. In [11] , Naor
et al. further improved the later construction so that
the functions can be length-preserving and each
evaluation uses roughly 3k modular multiplications.

2 Preliminaries

2.1 Definitions
In this section we will briefly review the

definitions of Pseudorandom Generators and
Pseudorandom Functions. The following notations
will be used:

Xx R∈ : x is randomly chosen from the set X.

Ik: the set of all k-bit strings.

Hk: be the set of all functions from Ik into Ik.

We say that a set Sk is a samplable set if there
exists a probabilistic polynomial-time (PPT)
algorithm that on input 1k outputs kR Sr ∈ .

A pseudorandom generator is a
polynomial-time algorithm that can stretch its random
input to a polynomially long string. There are several
definitions of a cryptographically strong
pseudorandom generator[1] [3] [4] [8] . For our
purpose, the following definition for pseudorandom

1 NC2 is the class of all problems solvable in O(log2k)
paralle time with polynomial amount of total work.
See [13] .

generators would be sufficient.2

Definition 2.1.1 (Pseudorandom Generators)

Let P , P1 be polynomials. Let Sk be a
samplable set. Let

kSiik gG ∈= }{ be a collection of

)(kPk II a functions. If the following conditions
hold, then Gk is called a collection of pseudorandom
generators:
(1) (Efficient computation) There exists a
polynomial-time algorithm A such that

)(),(xgxiA i= , where kSi∈ (index), and kIx∈ (a
seed of the pseudorandom generator gi).

(2) (Pseuodrandomness) Let Uk be a set of P1(k)
strings, each P(k)-bit long. For any PPT algorithm AG,
for any polynomials P1, Q, and for all sufficiently
large k,

)(
1 ||
kQ

pp R
k

G
k <− , where G

kp denotes the

probability that AG(1k, Uk) = 1 if Uk consists of
P(k)-bit strings output by some pseudorandom
generator ki Gg ∈ on random k-bit seeds, where

kR Si∈ , and R
kp denotes the probability that AG(1k,

Uk) = 1 if Uk consists of random P(k)-bit strings.

We now move on to the definition of a

pseudorandom function[6] [8] [9] [12] . Loosely
speaking, a pseudorandom function is a collection of
functions which cannot be efficiently distinguished
from a randomly chosen function by any adversary
that has access to the functions as a black box.
Specifically, we give the following definition:

Definition 2.1.2 (Pseudorandom Functions)

Let Sk be a samplable set. Let
kSxxk fF ∈= }{ be

a collection of kk II a functions. If the following
conditions hold, then Fk is called a collection of
pseudorandom functions:

(1) (Efficient evaluation) There exists a
polynomial-time algorithm A such that

)(),(yfyxA x= , where kSx∈ (the key of the
pseudorandom function fx) and kIy∈ (query).

(2) (Pseudorandomness) For any PPT algorithm AF,
for all polynomial Q, and for all sufficiently large k,

)(
1 ||
kQ

pp H
k

F
k <− , where F

kp denotes the

probability that AF outputs 1 on input 1k and has
access to the oracle

xfO for some function kx Ff ∈ ,

2 Actually, we define a pseudorandom generator as a
polynomial-time algorithm whose output sequences
on random seeds pass all polynomial-time statistical
test. See[6] [14] .

 3

where kR Sx∈ , and H
kp denotes the probability

that AF outputs 1 on input 1k and has access to the
oracle hO for some function kR Hh∈ .

2.2 GGM-Construction
The GGM-construction[6] is a generic

method to construct pseudorandom functions from
pseudorandom generators. It can use any
pseudorandom generator G that stretches a seed x∈Ik
into a 2k-bit-long sequence

kkk bbbbbxG 2121)(⋅⋅⋅⋅⋅⋅= + . By G0(x) we denote the
first k bits in G(x). By G1(x) we denote the second k
bits in G(x). Define the pseudorandom
function kkx IIGGM a: as

)))((()(
12

xGGG GGM
kx αααα ⋅⋅⋅= , where x R∈ Ik is the

key of the pseudorandom function, and
kk I∈= αααα ...21 is an input (query) to the

pseudorandom function. Its evaluation can be
implemented as the following algorithm:

 output

)(do
k to1For

i

v

vGv
i

x v

α←
←

←

We may imagine this construction as a full
binary tree rooted at the key x. Each left (right) edge
of this tree is labeled 0 (1). Each node at the i-th level
stores)(vG

iα
 if its parent stores v. To evaluate

)(αxGGM , we walk down along one of the all 2k
possible paths, depended on the value of α , and
finally reach the leaf, which stores)(αxGGM .

3 The Improvement and Efficiency
Analysis

3.1 The Improvement
For the reason of efficiency, we modify the

original binary-tree construction to a 4-ary-tree
construction. Instead of using a length-doubling
pseudorandom generator, we use a pseudorandom
generator G that stretches its input seed x to a
length-quadrupling sequence G(x). We use G(0,0)(x) to
denote the first quarter of G(x). Similarly, G(0,1)(x)
denotes the second quarter, G(1,0) denotes the third
quarter, and G(1,1) denotes the last quarter. We define
the function kkx IIGGM a:' as

))))(((()(),(),(),(),(
'

1234321
xGGGGαGGM ααααααααx kkkk

⋅⋅⋅=
−−−

if k is even and

))))(((()(),(),(),(),0(
'

123421
xGGGGαGGM αααααααx kkk

⋅⋅⋅=
−−

if k is odd, where x R∈ Ik is the key of the
pseudorandom function, and kI∈α is a query to the

function. This can be implemented as the following
algorithm:

⎣ ⎦

output

)(then
odd isk If

)(do
2/ to1For

),0(

),(

k

1-2i2i

v

vGv

vGv
ki

xv

α

αα

←

←
←

←

3.2 Proof of Correctness
In this section, we will prove that the functions

constructed by the variant, GGM’, possess the
essential “pseudorandomness” property of
pseudorandom functions. The proof is a careful
modification of the original proof of the
GGM-construction[6] . It uses a proof technique,
called the hybrid technique[4] .

Theorem: The functions constructed by GGM’ are
pseudorandom functions.

Proof:

We prove by contradiction. Assume that the
functions in Fk constructed by GGM’, using
pseudorandom generators Gk as build blocks, are not
pseudorandom. Then there exists a PPT algorithm AF
on input 1k and has access to an oracle can
distinguish kR Ff ∈ from kR Hh∈ with

non-negligible advantage, that is,
)(

1 ||
kQ

pp H
k

F
k ≥−

for some polynomial Q. We use AF to construct a PPT
algorithm AG that, on input 1k and Uk (a polynomially
bounded but sufficient large set of 4k-bit strings), can
determine whether the strings in Uk are generated by

kGG∈ on random seeds or just randomly chosen

4k-bit strings, the advantage i.e.
)(

1 ||
1 kQ

pp R
k

G
k ≥−

for some polynomial Q1.
We only prove the case when k is odd since the

proof when k is even is a direct modification of the
original proof. Consider when AF’s queries are
answered by one of the following probabilistic
algorithms Ai , ⎡ ⎤2/...,,2,1,0 ki = . Let

kyyyy ⋅⋅⋅= 21 be a query of AF. For ⎣ ⎦2/0 ki ≤≤ ,
Ai answers the oracle query as follows:

If y is the first query with prefix y = y1y2…y2i
Then Ai selects a string kR Ir ∈ ,

stores the pair (y1…y2i , r), and
answers).('

...12
rGGM

ki yy +

Else Ai retrieves the pair (y1…y2i , v) and
answers).('

...12
vGGM

ki yy +

 4

For ⎡ ⎤2/ki = , Ai answers the oracle query as

follows:

If y is the first query with prefix y = y1y2…yk
Then Ai selects a string kR Ir ∈ ,

stores the pair (y1…yk , r), and
answers r.

Else Ai retrieves the pair (y1…yk , v) and

answers v.

We may imagine that a hybrid tree associated to
Ai is a tree starting at the i-th level. Each node in the
i-th level stores a randomly chosen k-bit string. For
the nodes of the j-th level, where j > i, it stores

)(),(1222
dG

jj yy ++
 if its parent stores d. Define i

kp to

be the probability that AF outputs 1 when its queries
are answered by Ai . Note that F

kk pp =0 and

⎡ ⎤ H
k

k
k pp =2/ . Consequently, ⎡ ⎤

)(
1 || 2/0

kQ
pp k

kk ≥− .

Let Uk be a set of P1(k) strings, each 4k-bit long.
We now describe how to construct AG that, on input k
and Uk, can determine whether the strings in Uk are
generated by G or just randomly chosen 4k-bit
strings:

Step 1: AG randomly picks i between 0 and ⎣ ⎦2/k .

Step 2: AG gives 1k as input to AF and answers AF’s

queries using the set Uk properly.
If ⎣ ⎦2/0 ki <≤ , AG answers as follows:

If y is the first query with prefix y = y1y2…y2i
Then AG picks the next string u = u00u01u10u11 in

Uk (where |u00| = |u01| = |u10| = |u11| = k), stores
the pairs (y1…y2i00, u00), (y1…y2i01, u01),and
(y1…y2i10, u10), (y1…y2i11, u11), and answers

)(
122232

'
... +++ kkki yyyy uGGM

Else Ai retrieves the pair (y1…y2i+2 , v) and
answers).('

...32
vGGM

ki yy +

If ⎣ ⎦2/ki = , AG answers as follows:

If y is the first query with prefix y=y1y2…yk-1
Then AG picks the next string u = u00u01u10u11 in

Uk (where |u00| = |u01| = |u10| = |u11| = k), stores

the pairs (y1…yk-10, u00), (y1…yk-11, u01),
discards u10 and u11, and answers

kyu0 .

Else Ai retrieves the pair (y1…yk, v) and answers
v.

Step 3: Finally, AG outputs AF’s output.

If Uk consists of 4k-bit strings output by G on
randomly selected k-bit input seeds, then AG acts for
oracle Ai. If Uk consists of randomly selected 4k-bit
strings, then AG acts for oracle Ai+1. So we have
Pr[AG(1k,Uk) =1| Uk consists of 4k-bit strings output
by G] =

⎡ ⎤
⎣ ⎦∑ =

⋅
2/

0
)

2/
1(k

i
i
kp

k
 and

Pr[AG(1k,Uk)=1| Uk consists of randomly chosen

4k-bit strings] =
⎡ ⎤

⎣ ⎦∑ =
+⋅

2/

0
1)

2/
1(k

i
i
kp

k
. These

probabilities differ by at least

⎡ ⎤
⎡ ⎤

⎡ ⎤)(2/
1 ||

2/
1 2/0

kQk
pp

k
k

kk ⋅
≥−⋅ which contradicts

to the fact that G is a pseudorandom generator.

3.3 Efficiency Analysis

By processing 2 bits at each level and 1 bit at
the last level if necessary, we get a variant of the
original binary-tree construction. We claim that this
4-ary-tree construction can work faster than the
binary one under the assumption that the cost of
generating l pseudorandom bits is)(lθ . And
counterintuitively, expanding to c2 -ary-tree
construction, for any c > 2, dose not gain better
efficiency. That is, 4-ary-tree construction is optimal
among all tree constructions. (Here we do not
consider trees other than 2c-ary-trees, because the
input domain and output domain of our PRFs both
are binary domains.)

At the (i-1)-th iteration of the evaluating
process of the GGM-construction, we compute G0(x)
if 0=iα and compute G1(x) if 1=iα . We denote as

0T and 1T the cost of time for these two cases,
respectively. Since G is a generic generator, we can
reasonably assume that in order to generate the
second half output G1(x), we need to first generate the
first half output G0(x). So 01 2 TT ⋅= . To estimate the
expected cost of time per evaluation of the GGM
pseudorandom function, denoted as E[TGGM], we
observe that the binary-tree corresponding to
GGM-construction has depth k and each call to the
generator G takes 0T or 1T depending on the i-th
bit of input α . So we have

kTTT

TETETE
k

i

k

i

k

i

k

iGGM ii

2
3

2
3)

2
1

2
1(

][][][

1 011 0

11

=⋅=⋅+⋅=

==

∑∑
∑∑

==

== αα

For our 4-ary-tree construction, the
corresponding 4-ary-tree has depth ⎡ ⎤2/k and each
call to the generator G will take T0, 2T0, 3T0, or 4T0
depending on its input accordingly. So its expected

(1)

 5

cost of time per evaluation, denoted as E[TGGM’], is

][
4
5

)4
4
13

4
12

4
1

4
1(

][][

0

000
2/

1 0

2/

1 122'

GGM

k

i

k

iGGM

TEkT

TTTT

TETE
ii

<=

⋅+⋅+⋅+⋅=

=

∑
∑

=

= −αα

for k even, where
122 −ii

T αα denotes the cost of time
computing)(),(122

xG
ii −αα . And if k is odd, we have

⎣ ⎦

6 if][
2
3

4
5

2
3

22
5

])[(][

00

0

2/

1 122
'

><+<

+⋅⎥⎦
⎥

⎢⎣
⎢⋅=

+= ∑ = −

TTEkkT

kTk
TTETE

GGM

k

iGGM kii ααα

This shows that GGM’-construction performs
better than GGM-construction on average.

In general, we can consider the c2 -ary-tree
construction. Let the expected cost of time per
evaluation of a pseudorandom function from
GGMc-construction for Nc∈ be denoted as
E[TGGM

c]. To simplify the discussion, we assume k is
a multiple of c,

00

000
/

1 0

/

1

2
21

2
2)21(

2
1

)232(
2
1

][][
1)1(22

kT
c

T
c
k

TTTT

TETE

ccc

c

cck

i c

ck

iGGM icic
c

+
=

⋅+
⋅⋅=

+⋅⋅⋅++=

=

∑

∑

=

= ⋅⋅⋅
+−⋅⋅

αα

It is easy to verify that E[TGGM
c] > E[TGGM’] if

c> 2. Therefore, the 4-ary-tree construction GGM’ is
optimal.

Acknowledgement

This research was partially supported by the
National Science Council, Taiwan, R.O.C., under
contract number: NSC 94-2213-E-005-028.

Reference

[1] L. Blum, M. Blum, and M. Shub, "A Simple
Unpredictable Pseudo-Random Number
Generator", SIAM Journal on Computing,
Vol.15, No.2, pp.364-383, 1986.

[2] M. Blum, W. S. Evans, P. Gemmell, S. Kannan,
and M. Naor, "Checking the Correctness of
Memories", Algorithmica, Vol.12, No.2/3,
pp.225-244, 1994.

[3] M. Blum and S. Micali, "How to Generate
Cryptographically Strong Sequences of
Pseudo-Random Bits", SIAM Journal on

Computing, Vol.13, No.4, pp.850-864, 1984.

[4] O. Goldreich, "Foundations of Cryptography
(Fragments of a Book)", electronic
publication:http://theory.lcs.mit.edu/~oded/frag.
html, 1995.

[5] O. Goldreich, S. Goldwasser,and S. Micali, "On
the Cryptographic Applications of Random
Functions", CRYPTO 1984, pp.276-288, 1984.

[6] O. Goldreich, S. Goldwasser,and S. Micali,
"How to construct random functions", Journal of
the ACM, Vol.33, No.4, pp.792-807, 1986.

[7] O. Goldreich and R. Ostrovsky, "Software
Protection and Simulation on Oblivious RAMs",
Journal of the ACM, Vol.43, No.3, pp.431-473,
1996.

[8] S. Goldwasser and M. Bellare, "Lecture Notes
on Cryptography",
http://www.cs.ucsd.edu/users/mihir/papers/gb.ht
ml, 2001.

[9] M. Naor and O. Reingold, "Synthesizers and
Their Application to the Parallel Construction of
Pseudo-Random Functions", Journal of
Computer and System Sciences, Vol.58, No.2,
pp.336-375, 1999.

[10] M. Naor and O. Reingold, "On the Construction
of Pseudorandom Permutations: Luby-Rackoff
Revisited", Journal of Cryptology, Vol.12, No.1,
pp.29-66, 1999.

[11] M. Naor, O. Reingold, and A. Rosen,
"Pseudorandom Functions and Factoring",
SIAM Journal on Computing, Vol.31, No.5,
pp.1383-1404, 2002.

[12] M. Naor and O. Reingold, "Number-theoretic
constructions of efficient pseudo-random
functions", Journal of the ACM, Vol.51, No.2,
pp.231-262, 2004.

[13] C. H. Papadimitriou, "Computational
Complexity", Addison Wesley, 1995.

[14] A. C. Yao, “Theory and applications of trapdoor
functions”, Proceedings of the 23rd IEEE
Symposium on Foundations of Computer
Science, pp.80-91, 1982.

(2)

(3)

(4)

