GGM 5 & #c2 2%t 3¢

(‘,:qs

Performance Improvement for the GGM-Construction of

Pseudorandom Functions

g A

Yu-Sheng Chen
R SN

Gwoboa Horng
v e

EJRRR S
Chao-Liang Liu
R

Institute of Computer Science, National Chung Hsing University
e-mail : { s9356047, gbhorng, s9056001}@cs.nchu.edu.tw

K2

BRI TE- BaRZ2VBEIFNFE
PER SRR - L N A e ST S N
Sfic o AT 7&5——1 5*&?1‘ Sl o @ %ﬁi?l‘ S Hcd
Goldreich ~ Goldwasser 2 Mical = =% ?‘f B LA
I 2 &8s 42 (#§ f GGM-Construction) = & < ¢
AP D - BHESUIRA D PR AT KR
W N E R B - Rl FRRAZ
(R bR HT R B AL S () BT R
P50 2 £ 0% GGM-Construction 5% T %
Feno

MU | BB E B S R EALE
B e

Abstract

A pseudorandom function is a function that
cannot be efficiently distinguished from a truly
random function. The first construction of
pseudorandom functions was introduced by
Goldreich, Goldwasser, and Micali
(GGM-construction). In this paper, we propose a
simple variant of the GGM-construction that works
slightly faster than the original one. Interestingly, we
show that our construction is optimal under the
assumption that the cost of generating ¢
pseudorandom bits is g(¢).

Keywords: cryptography, pseudorandom function,
pseudorandom generator, pseudorandomness.

1 Introduction

Randomness is an important part of
cryptographic applications. However, generating true
randomness has been one of computer science's most
difficult challenges. In practice “pseudorandomness”
is often used instead of true randomness.

For cryptographic applications, we require that
pseudorandom sequences cannot be efficiently
distinguished from truly random sequences.
Pseudorandom generators, introduced by Blum and
Micali[3] and Yao[14] , are used to produce such
pseudorandom sequences. Though they are designed
to generate long pseudorandom sequences, yet they
do not provide efficiently random access to bits of a
huge pseudorandom sequence (even if they do, their
security in this “random” usage is not guaranteed).

Pseudorandom functions, introduced by
Goldreich et al.[6] , are more powerful than
pseudorandom generators. Informally, a
pseudorandom function has the property that its
input-output behavior is computationally
indistinguishable from that of a random function and
evaluating such a function can be implemented by an
efficient algorithm. Pseudorandom functions have a
number of applications[2] [5] [7] [10] . We may first
design a scheme allowing the users to have black-box
access to a random function and prove its security.
Then replace the random function with a
pseudorandom function. It can be argued that after
this replacement the scheme is still secure.

In addition to introducing pseudorandom
functions, Goldreich et al.[6] proposed a
construction of length-preserving pseudorandom
functions (the GGM-construction) using
pseudorandom generators as building blocks. Given a

pseudorandom function 7 :{0,3}* — {0,3* , each

evaluation requires k calls to the underlying
pseudorandom generator. Though it is not very
efficient, yet an advantage of such a generic
construction is that a pseudorandom function can be
built using any pseudorandom generators. This work
gives a simple variant of the GGM-construction and
shows that it can work slightly faster. We also show
that our construction is optimal under the assumption
that the cost of generating ¢ pseudorandom bits is

o(0) .

We remarked that based on
mathematical hard problems, more efficient
pseudorandom functions are possible. Using
pseudorandom synthesizers as building blocks, Naor
et al.[9] gave a parallel construction of
pseudorandom functions which can be evaluated in
NC% ' Naor and Reingold[12] showed two
constructions of pseudorandom functions: one
construction of length-preserving pseudorandom
functions based on the Decisional Diffie-Hellman
assumption, and the other construction of 1-bit-output
pseudorandom functions based on the Factoring
assumption. Both constructions use roughly 2k
modular multiplications per evaluation. In [11] , Naor
et al. further improved the later construction so that
the functions can be length-preserving and each
evaluation uses roughly 3k modular multiplications.

specific

2 Preliminaries

2.1 Definitions

In this section we will briefly review the
definitions of Pseudorandom Generators and
Pseudorandom Functions. The following notations
will be used:

x €, X :xisrandomly chosen from the set X.

I;: the set of all k-bit strings.
H,: be the set of all functions from 7, into 7,.

We say that a set S; is a samplable set if there
exists a probabilistic polynomial-time (PPT)
algorithm that on input 1“ outputs r <, S, .

A pseudorandom generator is a
polynomial-time algorithm that can stretch its random
input to a polynomially long string. There are several
definitions of a cryptographically strong
pseudorandom generator[1] [3] [4] [8] . For our
purpose, the following definition for pseudorandom

1 NC?is the class of all problems solvable in O(log®k)
paralle time with polynomial amount of total work.
See [13] .

generators would be sufficient.?

Definition 2.1.1 (Pseudorandom Generators)

Let P , P, be polynomials. Let S; be a
samplable set. Let G, ={g}, be a collection of

I, 1,,, functions. If the following conditions

hold, then G, is called a collection of pseudorandom
generators;

(1) (Efficient computation) There exists a
polynomial-time algorithm A4 such that
A(i,x)=g,(x), where je§, (index), and xe/, (a
seed of the pseudorandom generator g).

(2) (Pseuodrandomness) Let U, be a set of P,(k)
strings, each P(k)-bit long. For any PPT algorithm Ag,
for any polynomials P;, Q, and for all sufficiently

large &, | ,¢ _ R <i, where p¢ denotes the
| Py —pi | 0(k) Pr

probability that 45(1%, U) = 1 if U, consists of

P(k)-bit strings output by some pseudorandom

generator g, eG, on random k-bit seeds, where

i€, S,,and pf denotes the probability that Ag(15,
U,) = 1 if U, consists of random P(k)-bit strings.

We now move on to the definition of a
pseudorandom function[6] [8] [9] [12] . Loosely
speaking, a pseudorandom function is a collection of
functions which cannot be efficiently distinguished
from a randomly chosen function by any adversary
that has access to the functions as a black box.
Specifically, we give the following definition:

Definition 2.1.2 (Pseudorandom Functions)
Let S be a samplable set. Let F, ={f} be

xe$

a collection of 7+ 7, functions. If the following

conditions hold, then F, is called a collection of
pseudorandom functions:

(1) (Efficient evaluation) There exists a
polynomial-time algorithrm 4 such that
A(x,y)=f.(y) » where xesS, (the key of the

pseudorandom function 1) and y e 7, (query).

(2) (Pseudorandomness) For any PPT algorithm Ay,
for all polynomial Q, and for all sufficiently large %,

where p” denotes the

1
F H

- <——
| Py —pi | 0(k)
probability that 4, outputs 1 on input 1° and has

access to the oracle o, for some function £, e F,,

2 Actually, we define a pseudorandom generator as a
polynomial-time algorithm whose output sequences
on random seeds pass all polynomial-time statistical
test. See[6] [14] .

where xe€, S, , and p/" denotes the probability

that 4 outputs 1 on input 1* and has access to the
oracle O, forsome function re, H,.

2.2 GGM-Construction

The GGM-construction[6] is a generic
method to construct pseudorandom functions from
pseudorandom generators. It can use any
pseudorandom generator G that stretches a seed xe I,
into a 2k-bit-long sequence
G(x)=bpb, - b.b,,, b, - By Gox) we denote the
first k bits in G(x). By G1(x) we denote the second k
bits in G(x). Define the pseudorandom
function GGM I, — 1, as
GGM, (@) =G, (-G, (G, (x))), where xe, I is the
key of the pseudorandom function, and
a=aa,.a, el, 1S an input (query) to the
pseudorandom function. Its evaluation can be
implemented as the following algorithm;

V < X
For i « 1to k

do v« G, (v)
output v

We may imagine this construction as a full
binary tree rooted at the key x. Each left (right) edge
of this tree is labeled 0 (1). Each node at the i-th level
stores G, (v) if its parent stores v. To evaluate

GGM () , we walk down along one of the all 2*

possible paths, depended on the value of «, and
finally reach the leaf, which stores GGM («) -

3 The Improvement and Efficiency
Analysis

3.1 The Improvement

For the reason of efficiency, we modify the
original binary-tree construction to a 4-ary-tree
construction. Instead of using a length-doubling
pseudorandom generator, we use a pseudorandom
generator G that stretches its input seed x to a
length-quadrupling sequence G(x). We use G)(x) to
denote the first quarter of G(x). Similarly, G (x)
denotes the second quarter, G denotes the third
quarter, and G4y denotes the last quarter. We define

the function GGM I, > 1, as
GGM\? ((Z) = G(a,‘ J0_1) (G(ak,z,ak,a) (' .G(a‘,,aa) (G(aQ,ul) ()C))))
if k is even and

GGM\' (a) = G(O,a‘) (G(a,_l,aA,Z) (: .G({l4,(13) (G(az,al) (X))))
if k is odd, where x e, [, is the key of the
pseudorandom function, and « < 7, is a query to the

function. This can be implemented as the following
algorithm;

V < X
For i « 1to [k /2]
do v « G(az.,azi,l)(")
If k is odd
then v « G(o,ak)(")
output v

3.2 Proof of Correctness

In this section, we will prove that the functions
constructed by the variant; GGM’, possess the
essential “pseudorandomness” property of
pseudorandom functions. The proof is a careful
modification of the original proof of the
GGM-construction[6] . It uses a proof technique,
called the hybrid technique[4] .

Theorem: The functions constructed by GGM are
pseudorandom functions.

Proof:

We prove by contradiction. Assume that the
functions in F, constructed by GGM’, using
pseudorandom generators G, as build blocks, are not
pseudorandom. Then there exists a PPT algorithm Ay
on input 1 and has access to an oracle can
distinguish e, F, from he, H, with

non-negligible advantage, that is, | pF = pi| ZL
0(k)
for some polynomial Q. We use 4 to construct a PPT
algorithm Ag that, on input 1 and U; (a polynomially
bounded but sufficient large set of 4k-bit strings), can
determine whether the strings in Uy are generated by
G e G, on random seeds or just randomly chosen

4k-bit strings, the advantage i.e. | p¢ - pX|= 1
CT o

for some polynomial Q.

We only prove the case when Kk is odd since the
proof when Kk is even is a direct modification of the
original proof. Consider when Az’s queries are
answered by one of the following probabilistic
algorithms 4, , ;=012,..[k/2] . Let

y=yy, -y, beaqueryof . For 0<i<|k/2],
A; answers the oracle query as follows:
If y is the first query with prefix y = yiy,...y,
Then A; selects astring r e, 1,,
stores the pair (...y,), and
answers GGM, _ (r).
Else A, retrieves the pair (y;...y,, V) and
answers GGM |).

Yaiv1 Vi

For j=[k/2], 4; answers the oracle query as
follows:
If y is the first query with prefix y = yiy,...yx
Then A; selects astring r e, I, ,

stores the pair (y;...yx, r), and
answers r.

Else A, retrieves the pair (y;...yx, V) and

answers v.

We may imagine that a hybrid tree associated to
A; is a tree starting at the i-th level. Each node in the
i-th level stores a randomly chosen k-bit string. For
the nodes of the j-th level, where j > i, it stores
(d) if its parent stores d. Define p, to

(/V2j+2vy2/ 1)
be the probability that 45 outputs 1 when its queries
are answered by 4; . Note that p’=p/ and

[k/ﬂ . Consequentl fk/ﬂ
Q(k)

Let U, be a set of P,(k) strings, each 4k-bit long.

We now describe how to construct A that, on input k
and U, can determine whether the strings in U, are
generated by G or just randomly chosen 4k-bit
strings:

Step 1: 4 randomly picks i between 0 and | k/2].

Step 2: Ag gives 1* as input to Ay and answers A4;’s

queries using the set U; properly.
If 0<i<|k/2],Acanswers as follows:

If y is the first query with prefix y = y1y,...Yy;

Then Ag picks the next string u = uUgoUgiUieUy; IN
Uk (Where [Ugo| = [Uos| = [U10] = |un| = K), stores

the pairs (yi...¥2i00, Ug), (Y1...Y201, ug),and

(y1...¥2i10, Ug), (Y1...y2i11, uy), and answers

GGM }“ oy,)

Else A; retrieves the pair (y;...Ya+2 , V) and
answers GGM)m--u (v).

If i=|k/2], Ag answers as follows:
If y is the first query with prefix y=yy...Yx1
Then Ag picks the next string u = UgoUgiUieUys iN

Uk (where |ugo| = [Uoa| = [uzo| = una]

the pairs (yi...Yk10, Ugo), (V1...Ykal, Uoi),
discards ujg and uy;, and answers U, -

=K), stores

Else A; retrieves the pair (y;...yx, v) and answers
V.
Step 3: Finally, 45 outputs A;’s output.

If U, consists of 4k-bit strings output by G on
randomly selected £-bit input seeds, then 4 acts for
oracle 4;. If U, consists of randomly selected 44-bit
strings, then A; acts for oracle 4,.;. So we have
Pridq(1,Uy) =1] Uk consists of 4k-bit strings output

by G = S/l .p! and
2o |—k/2-|

Prldc(1*,U)=1| U, consists of randomly chosen
1 i+l

4k-bit strings] = St . These

0 (l-k/2-|) Py
probabilities differ by at least
L.|p0_ fk/21|2¥ which contradicts
[kr2] " [k12]-O(k)

to the fact that G is a pseudorandom generator.

3.3 Efficiency Analysis

By processing 2 bits at each level and 1 bit at
the last level if necessary, we get a variant of the
original binary-tree construction. We claim that this
4-ary-tree construction can work faster than the
binary one under the assumption that the cost of
generating ¢ pseudorandom bits is 4(¢) . And

counterintuitively, expanding to 2° -ary-tree
construction, for any ¢ > 2, dose not gain better
efficiency. That is, 4-ary-tree construction is optimal
among all tree constructions. (Here we do not
consider trees other than 2°-ary-trees, because the
input domain and output domain of our PRFs both
are binary domains.)

At the (i-I)-th iteration of the evaluating
process of the GGM-construction, we compute G(x)
if o, =0 and compute Gy(x) if ¢, =1.We denote as
T, and 7, the cost of time for these two cases,
respectively. Since G is a generic generator, we can
reasonably assume that in order to generate the

second half output G,(x), we need to first generate the
first half output G(x). So 7, =2-T,. To estimate the

expected cost of time per evaluation of the GGM
pseudorandom function, denoted as E[Tggu], wWe
observe that the binary-tree corresponding to
GGM-construction has depth £ and each call to the
generator G takes 7, or 7, depending on the i-th

bit of input ¢ . So we have

E[TGGM] E[Z,l 1=, 1E[T]
DGR AR IR @

For our 4-ary-tree construction, the
corresponding 4-ary-tree has depth [k /2] and each

call to the generator G will take Ty, 2Ty, 3Ty, or 4T,
depending on its input accordingly. So its expected

cost of time per evaluation, denoted as E[Tggy], is

k/2

[GGM]l E[ZL =1 = @2i%; 11 1
kl2
=y 0+Z-2TO+Z-3TO+Z~4TO)

5
= ZkTo < E[Tgen] 2

for k even, where 7 denotes the cost of time

computing G, . (x).Andif kis odd, we have

Lklzj
GGM [(Z ‘12 Lon 1 ak]

:§. E .To+§k
212 2

5 3 .
<ZkT° +§k<E[TGGM] if 7,>6 3)

This shows that GGM -construction performs
better than GGM-construction on average.

In general, we can consider the 2°-ary-tree
construction. Let the expected cost of time per
evaluation of a pseudorandom function from
GGM®-construction for ce N be denoted as
E[Tsey]- To simplify the discussion, we assume & is
a multiple of ¢,

k/c

EIT,,, J=EY0T,

- ZZ;—C(TO +2T, +3T, -

2€.(i-1)+1
.
+2°T,)

k 1 (1+2)2‘ T, - 1+2"kT0 4)
c 2C 2 2c

It is easy to verify that E[Tgerl > ElTgeu] if
¢> 2. Therefore, the 4-ary-tree construction GGM’ is
optimal.

Acknowledgement

This research was partially supported by the
National Science Council, Taiwan, R.O.C., under
contract number: NSC 94-2213-E-005-028.

Reference

(1] L. Blum, M. Blum, and M. Shub, "A Simple
Unpredictable Pseudo-Random Number
Generator”, SIAM Journal on Computing,
\Vol.15, No.2, pp.364-383, 1986.

[2] M. Blum, W. S. Evans, P. Gemmell, S. Kannan,
and M. Naor, "Checking the Correctness of
Memories", Algorithmica, Wol.12, No.2/3,
pp.225-244, 1994,

[3] M. Blum and S. Micali, "How to Generate
Cryptographically ~ Strong Sequences of
Pseudo-Random Bits", SIAM Journal on

Computing, Vol.13, No.4, pp.850-864, 1984,

[4] O. Goldreich, "Foundations of Cryptography
(Fragments of a Book)", electronic
publication:http://theory.lcs.mit.edu/~oded/frag.
html, 1995.

[5] O. Goldreich, S. Goldwasser,and S. Micali, "On
the Cryptographic Applications of Random
Functions", CRYPTO 1984, pp.276-288, 1984.

[6] O. Goldreich, S. Goldwasser,and S. Micali,
"How to construct random functions", Journal of
the ACM, Wol.33, No.4, pp.792-807, 1986.

[71 O. Goldreich and R. Ostrovsky, "Software
Protection and Simulation on Oblivious RAMs",
Journal of the ACM, Vol.43, No.3, pp.431-473,
1996.

[8] S. Goldwasser and M. Bellare, "Lecture Notes
on Cryptography",
http://www.cs.ucsd.edu/users/mihir/papers/gb.ht
ml, 2001.

[9] M. Naor and O. Reingold, "Synthesizers and
Their Application to the Parallel Construction of
Pseudo-Random Functions”, Journal of
Computer and System Sciences, Vol.58, No.2,
pp.336-375, 1999.

[10] M. Naor and O. Reingold, "On the Construction
of Pseudorandom Permutations: Luby-Rackoff
Revisited", Journal of Cryptology, Vol.12, No.1,
pp.29-66, 1999.

[11] M. Naor, O. Reingold, and A. Rosen,
"Pseudorandom Functions and Factoring”,
SIAM Journal on Computing, Vol.31, No.5,
pp.1383-1404, 2002.

[12] M. Naor and O. Reingold, "Number-theoretic
constructions of efficient pseudo-random
functions”, Journal of the ACM, Vol.51, No.2,
pp.231-262, 2004.

131 C. H. Papadimitriou, "Computational
Complexity", Addison Wesley, 1995.

[14] A. C. Yao, “Theory and applications of trapdoor
functions”, Proceedings of the 23 IEEE
Symposium on Foundations of Computer
Science, pp.80-91, 1982.

