
On Utilization of the Cluster Computing Technology for Video Conversion*

Chao-Tung Yang†, Chin-Ming Chi, and Ping-I Chen

High-Performance Computing Laboratory
Department of Computer Science and Information Engineering

Tunghai University, Taichung, 40704, Taiwan R.O.C.
email: {ctyang, g932834}@thu.edu.tw

* This work is supported in part by National Science Council Taiwan, under grant no. NSC94-2622-E-029-002-CC3.
† The corresponding author

Abstract

The popularization of broadband network and the

development of MPEG-4 compression technology
urge to the multiplexing development of Internet
information. Among these techniques, Video-on-
Demand is the most popular service. However, it
takes extremely long compression time to convert
audio and video data into MPEG-4 format. Although
MPEG-4 enhances the compression ratio, it still
needs massive storage equipment to deposit the
audio and video data. The price of MPEG-4 related
hardware equipment still stays at a high level
currently. Thus, these problems can easily be solved
by using the cluster computing technology, or PC
Clusters. In this paper, we use the Linux PC cluster
to achieve the high performance video conversion.
Moreover, we use diskless cluster computing
technology to make it more convenient in the system
administration. In video conversion aspect, we use
software tool called “dvd::rip” to perform in
parallel the video compression, with the goal to
achieve the best execution time, by enabling that
each node to perform in its best processing potency.

Keywords. Cluster computing, Linux PC Cluster,
Video conversion, MPEG-4.

1. Introduction

Advances in media technology permit to store the

content of complete DVDs in a CD-ROM, without
any noticeable loss of quality. This makes buying an
expensive DVD burner with limited record capacity
obsolete. To copy a video with up to 9 GB from a
DVD to a CD-ROM requires large amount of
computing power and time. All the data volume must
be reduced to about a 12th of its original size to
accommodate the 700 MB of limited storage capacity
of the CD-ROM. A data compression of this
magnitude for digital video is only possible with the
new video compression standard MPEG-4. Generally
speaking, MPEG-4 is an extension of the MPEG-2

technology, but MPEG-4 can be used more
universally, with additional extensions. Generally,
when we want to convert a DVD title to a MPEG-4
format on a single PC, we should perform the
following steps as shown in Figure 1.

It is difficult to reduce the transfer time from the
DVD to a storage device, unless upgrading the
transfer bus to the SCSI speed or to use a RAID
storage system. The Video Conversion time is the
key to reduce the total time. The sequential
processing machine needs a conversion time of 5
hours. If we divide the video file and then submit the
sub-file to the different conversion computing nodes,
it’s possible to reduce the video conversion time. It is
performed the broker in the cluster computing to find
an available resource then to complete the video
conversion job. After each node completes his
conversion job, the result is sent to the master node
of the cluster environment and then combined. It can
save quite a large amount of time. The references
listed show this need and technique usage [4, 8, 9, 18,
21, 22]. See Figure 2 for additional details.

Fig. 1. DVD conversion – single stream.

Fig. 2. Video conversion – using cluster computing

technology.

In this paper, we propose a Linux PC cluster
platform to achieve high-throughput DVD
transcoding, which is, we investigate the use of

cluster computing to perform the DVD conversion,
by using dvd::rip application running in cluster
computing testbed. The dvd::rip is a full featured
DVD copy program written in Perl. It provides an
easy to use but feature-rich Gtk+ GUI to control
almost all aspects of the ripping and transcoding
process, and it uses the widely known video
processing swissknife transcode, as also many other
Open Source tools. dvd::rip itself is licensed under
GPL / Perl Artistic License. Thus, we utilize
different test models to shorten the waiting time
between nodes, which will cause the execution time
as short as possible.

The remaining of this paper is organized as
follows. In section 2, some background reviews are
discussed, while in section 3 experimental platforms
and conversion applications are introduced. In
section 4, experimental results are discussed, and
finally, in section 5, some conclusion remarks and
future works are described.

2. Background Review

2.1. Video Format

The history of MPEG goes back to the year 1987.
MPEG stands for Motion Pictures Expert Group, a
worldwide organization that develops manufacturer
and platform independent standards for video
compression. The first result was introduced as
MPEG-1 in 1992. It was the basis for the less
successful European Video-CD. Because of its
limited resolution of 352×288 pixels, MPEG-1 is
only suitable for the home environment, and the
achievable video quality in relation to the data rate is
rather low from today’s point of view. MPEG-2 was
introduced in 1995 and is mainly based on MPEG-1.
The higher resolution with a maximum of 720×576
pixels is a major improvement enabling a
significantly better video quality. The MPEG-4 was
released by the MPEG group in December 1999. The
detail information about MPEG-1, MPEG-2, and
MPEG-4 is listed in Table 1.

2.2. MPEG4 Conversion

In 1999, the MPEG-4 specifications for the

encoding of audio and video sequences were
completed [5, 6, 18]. They define a system that is
much more complex and requires much more
computational power for the encoding than former
MPEG specifications [16]. This work led to the need
for efficient tools and mechanisms that help the
implementation of systems based on this new
specification.

The MPEG-4 specification is the first encoding
specification that represents contents as a set of
audiovisual objects that compose a scene, and have a
defined behavior both in time and space. There are a

number of tools that can be used to describe a scene,
and each will give rise to a different class of objects.
This paper focuses exclusively on natural video
objects. These objects are the result of the evolution
and extension of the MPEG-1 and MPEG-2
specifications.

Table 1. Comparison of MPEG-1, MPEG-2, and
MPEG-4
 MPEG-1 MPEG-2 MPEG-4
Available since 1992 1995 1999
Max. video
resolution 352×288 1920×1152 720×576

Default video
resolution
(NTSC)

352×288 640×480 640×480

Max. audio
frequency
range

48 KHz 96 KHz 96 KHz

Max. number
of audio
channels

2 8 8

Max. data rate 3 Mb/sec 80 Mb/sec 5 to 10 Mb/sec
Regular data
rate used

1380 Kb/sec
(352×288)

6500 Kb/sec
(720×576)

880 Kb/sec
(720×576)

Frames per
second (NTSC) 30 30 30

Video quality Satisfactory Very good Good to very
good

Encoding
hardware
requirements

Low High Very high

Decoding
hardware
requirements

Very low Medium High

The central concept defined by the video section

of the MPEG-4 specification is the video object (VO).
It is the building block of the object-based
representation. Such representation is appropriate for
interactive applications, since it allows direct access
to the objects that compose a scene. Video Objects
can be natural—textures, image and video—or
synthetic—facial animation, body animation and
animated 2D or 3D meshes.

A video object can be made up of several layers
(VOL), in order to support spatial or temporal
scalability. The scalable syntax allows the
reconstruction of an object using a layer model,
beginning with a base layer and adding enhancement
layers. This way, applications generate a single data
stream that can be used in different bandwidth and/or
computational power conditions.

An MPEG-4 scene can be made up of one or more
VOs. Each VO is defined by information about its
temporal and spatial features, that is, about shape,
movement and texture. In some applications the VO
encoding may not be desired, whether by the
associate overhead or by the difficulty in creating the
objects.

For these cases, the MPEG-4 specification allows
the encoding of rectangular images that represent a
degenerate case of an arbitrary shape object. The
hierarchy description of a scene provided by an
MPEG-4 bit is illustrated in Figure 3.

Fig. 3. Logic structure of an MPEG-4 Stream.

The hierarchy levels that directly describe a scene

are:
• Video Object Scene (VS): The whole MPEG-

4 scene. It may contain 2D, 3D, natural or
synthetic objects,

• Video Object (VO): A video object is an
object present in the scene. In the simplest case
it can be a rectangular image,

• Video Object Layer (VOL): Each object can
be encoded in a scalable fashion (multi-layer)
or nonscalable (single layer). This scalability
can be spatial and/or temporal, thus allowing
different resolutions and frame rates,

• Group of Video Objects (GOV): A GOV is a
set of VOPs. The GOV start codes mark
positions in the bit stream where the VOPs are
encoded independently of each other, thus
allowing a random access to the bit stream.
GOVs are optional,

• Video Object Plane (VOP): A VOP is a
sample of a VO. It can be encoded based on
other VOPs, using motion compensation (see
below).

The MPEG-4 specification defines three VOP
encoding modes, as can be seen in Figure 4.

• I-VOP (intra VOP) - the encoding is
independent of any other VOP,

• P-VOP (predicted VOP) - the encoding is
based on the nearest past I-VOP,

• B-VOP (bidirectional VOP) - the encoding is
based on both past and future I-VOPs and P-
VOPs[11].

Fig. 4. VOP encoding modes.

2.3. Parallel Programming for MPEG

The parallel encoder developed explores the data

parallelism found in the MPEG-4 specification. In
order to establish the best data-partitioning model,
some approaches where considered:

2.3.1 VO partitioning

As seen in the previous section the MPEG-4 bit

stream is composed of independent objects. The first
and most natural partitioning approach would be to
attribute a different object to each processor [21].
However,

• Different object may have very different
computational needs, thus being very difficult
to have some balance in the workload of the
different processors,

• The maximum number of processors that
would be possible to use would be the same as
the number of objects, which could be unity.

2.3.2. VOL partitioning

The next in hierarchy level is VOL. Its size and

complexity are similar to those of the VO, so the
inconvenience presented in the previous section is
also valid here.

The encoding of the enhancement layers uses the
reconstructed images from lower level layers, so
there can be dependencies issues when encoding
different VOLs. In order to work around this
difficulty, it was decided not to implement multi-
layer support. This way it is assumed that the
encoding process only generates the base layer.

2.3.3. GOV partitioning

Each VOL is constituted by VOPs that can be

grouped in GOVs (group of VOPs). The main
characteristic of a GOV is that it starts in an I-VOP,
and all the included VOPs are encoded based on
others that are also part of the GOV. So, a GOV is a
small set of VOPs (typically around 15) that have no
external data dependencies.

A GOV based data partitioning will achieve a
rather fine granularity, and a consequent load-
balancing capability. Another relevant aspect is that
the computational needs for successive GOVs are
similar, because there is a high probability that the
characteristics of an image in a sequence don’t vary
much with time.

The GOV division is not, however, mandatory in
the MPEG-4 specification. Although it could be
defined as a requisite for the parallel encoding, a
slightly different solution was chosen.

2.3.4. Pseudo-GOV partitioning
From the VOP encoding definitions, it is known

that the smallest set of VOPS without external
dependencies is defined by the number of frames
between two successive IVOPs (intra-period). This is
also the size of the smallest GOV that can be defined.
The data partitioning solution was built upon a
virtual hierarchy entity that was called pseudo-GOV
that is a GOV that has the smallest possible size, and
only has meaning during the parallel encoding
process. This way the work batch contains an integer
number of pseudo-GOVs.

Figure 5 shows the data dependencies for each
VOP type and the proposed data distribution. In this
the batch contains a single pseudo-GOV, but the
model is valid for any integer number of pseudo-
GOVS.[11]

Fig. 5. VOP sequence and its distribution.

The first VOP of each pseudo-GOV is the same as

the last VOP of the preceding pseudo-GOV. This is
required because each I-VOP is the reference for the
encoding of BVOPs on the previous pseudo-GOV
and both P-VOPs and B-VOPs on the next pseudo-
GOV.

3. Scheduling Approaches

In order to achieve an efficient parallelization,

four scheduling algorithms were considered, namely
Round-Robin, Adapted Batch Size Round Robin,
Dynamic Scheduling and Adapted Batch Size
Dynamic Scheduling. The algorithms are discussed
with detail in next subsections.

3.1. Round-Robin

The first one used was the round robin scheduling.

It is the usual starting point when developing
scheduling algorithms. An equal number of work
batches are sent to each slave and the processed data
blocks are then received in the same order as they
were sent. This way the master can become blocked
waiting for a slave to finish its work and return the
processed data, as can be seen in Figure 6.

Fig. 6. Activity diagram for the Round-Robin
scheduling.

In this example the workload/capacity of the

computers is not uniform. If one of the computers
takes more time than the others to process its data, it
will cause time intervals when some computers are
idle.

3.2. Adapted Batch Size Round-Robin

This is used to solve the problem of extra standby

period caused by the Slaves due to their different
processing time while performing Round-Robin test.
This method is mainly used to guarantee that each
Slave has same material processing time. In order to
achieve the goal, the computation ability of each
Slave must be pre-measured, after that the data
material can be assigned to each Slave for data
processing. Therefore, in the beginning, the Master
assigns the same small amount material to each Slave
for surveying and recording the computation time.
Afterward, by the estimating result, the Master can
distribute different suitable material size to each
Slave. Comparing with Round-Robin, in the
environment of Adapted Batch Size Round Robin,
each Slave computation time is approximately same
and the standby period of each Slave is also
shortened. However, the server platoon regulation
method is still Round-Robin, and each Slave still
need massive time in waiting feedback and receiving
material. Moreover, the Master server engine also
needs extra computing time to figure out the
computation ability of other server engines.

3.3. Dynamic Scheduling

This is used to solve the problem of the standby

period while performing Round-Robin test in order.
The procedures are shown in Figure 7 as follows:

Fig. 7. Activity diagram for the Dynamic Scheduling

From this chart we can see that the Master no

longer waits for the slave in order, but decide to

receive the feedback material when the Slave is able
to complete the computation. Comparing with the
Round-Robin method, dynamic scheduling has
omitted big share of standby period. Because Master
does not receive material in order, therefore
preparation of an extra buffer is necessary for
depositing the material in order to re-organize the
computed result. To avoid the buffer oversized,
Master must try to receive the feedback material in
order occasionally.

3.4. Adapted Batch Size Dynamic Scheduling

This method is the combination of Adapted Batch

Size Round-Robin and Dynamic Scheduling
algorithm in order to reduce the waiting time that the
Master spends to receive the feedback from the
Slaves after finishing its own task. Such procedure in
theoretically indeed is able to shorten the waiting
time of the various server engines to the lowest.
However, the idea cannot be achieved in reality
resulted from that the Master is not able to calculate
the computing time of each server engines precisely
[11].

3.5. Parallel Video Transcoding (transcode)

The transcode is a Linux text-console utility for

video stream processing, running on a platform that
supports shared libraries and threads. Decoding and
encoding were done by loading modules that are
responsible for feeding transcode with raw
video/audio streams (import modules) and encoding
the frames (export modules). It supports elementary
video and audio frame transformations, including de-
interlacing or fast resizing of video frames and
loading of external filters.

A number of modules are included to enable
import of DVDs on-the-fly, MPEG elementary (ES)
or program streams (VOB), MPEG video, Digital
Video (DV), YUV4MPEG streams, Nuppel Video
file format, AVI based codecs and raw or
compressed (pass-through) video frames and export
modules for writing DivX;-), XviD, DivX 4.xx/5.xx
or uncompressed AVI and raw files with MPEG,
AC3 (pass-through) or PCM audio. Additional
export modules to write single frames (PPM) or
YUV4MPEG streams are available, as well as an
interface import module to the avi file library. It is
modular concept intended to provide flexibility and
easy user extensibility to include other video/audio
codecs or file types. A set of tools are included to
demux (tcdemux), extract (tcextract) and decode
(tcdecode), while the sources into raw video/audio
streams for import, probing (tcprobe) and scanning
(tcscan) your sources. To enable post-processing of
AVI files, fixing AVI file header information (avifix),
merging multiple files (avimerge), splitting large

AVI files (avisplit) to fit on a CD and avi sync to
correct AV-offsyncs [19].

4. Experiments

4.1. Experimental Cluster Platform

We build a cluster computing testbed as shown in

Figure 8 includes four Linux (Fedora Core 3) PC
nodes:

• Master (FC3-01): Single Celeron 2000
processor, 512MB DDRAM and 3Com 3c905
1 interface.

• Client 1 (FC3-02): Single Celeron 2000
processor, 384MB DDRAM and 3Com 3c905
1 interface.

• Client 2 (FC3-03): Single Pentium 3 866
processor, 256MB SDRAM and 3Com 3c905 1
interface.

• Client 3 (FC3-04): Single Pentium 3 866
processor, 256MB SDRAM and 3Com 3c905 1
interface.

Fig. 8. Experimental Cluster computing testbed.

4.2. Software for Video Compression

This section gives an introduction of DVD to

DivX compression in video conversion cluster. The
related software installation on master and client
nodes is listed in Table 2. As shown in Figure 9, the
first step is to split VOB files into a number of
chunks according to the number of nodes that the
video conversion cluster system has. The sizes of
divided files are based on their information available
in dvd::rip (see Figure 10).

VOB
6.8GB

Split

Chunk 1

.

.

.

Chunk 2

Chunk 3

Chunk N

Merge DivX
700MB

Fig. 9. Split and merge the video files.

By dvd::rip, a cluster consists of the following

components:
1. A computer with a full dvd::rip and transcode

installation, DVD access and local storage or
access to a NFS server, where all files are
stored.

2. A computer with a dvd::rip installation, but no
GUI access and no transcode installation,
where the cluster control daemon runs on. This
may be the same computer as noted less than 1
(which is usually the case).

3. An arbitrary number of computers with a full
transcode installation, dvd::rip are not
necessary here. These are the transcode nodes
of the cluster.

4. The GUI dvd::rip computer and the transcode
nodes must all have access to the project
directory, shared via NFS or something similar.
It doesn't make any difference which computer
on the network is the NFS server.

5. The communication between the cluster control
daemon and the transcode nodes is done via
SSH. All transcode commands are calculated
by the cluster control daemon and executed via
SSH on the transcode nodes. Dvd::rip assumes
that the cluster control computer has user key
authentication based access to the nodes. That
means that no password needs to be given
interactively.

Table 2. The related software installation on our
cluster computing testbed.

aalib divx41linux faac

ffmpeg fping Gtk-Perl

lame libdvbpsi libdvdcss

libdvdplay libdvdread libfame

libmad libmpeg3 libpostproc

lirc lzo mjpegtools

mpg321 mplayer ogle

perl-
libintl rar subtitlerippe

r

a52dec faad2 imlib2

libdvdnav libid3tag libquicktime

mpeg2dec transcode xine

unrar vcdimager vobcopy

Master

xvidcore perl-Video-
DVDRip

Cluster transcode

This may look confusing, but in fact all the

different services described here can be distributed in
arbitrary ways on your hardware. You can even use
the cluster mode with one computer, which runs all
services: dvd::rip GUI, cluster control daemon,
transcode node (naturally using local data access), as

in Figure 11. In this case you may “misuse” the
cluster mode as a comfortable job controller, which
is in fact a regular use case, because dvd::rip has no
specific job features besides this.

Fig. 10. Components of dvd::rip cluster.

Fig. 11. System components.

A typical two-node installation may look like this:

Master computer runs services:
• dvd:rip GUI
• dvd::rip cluster control daemon
• transcode node with local storage access
• NFS server

Client computer runs services:
• Transcode node with NFS access to the project

data [2],

4.2.1. The dvd::rip Cluster Project Job

The job queue shows all tasks which must be

completed as shown in Figure 12. Mainly the work is
divided into four phases:

1. Transcode video: as many nodes as possible
will be used in parallel for this phase. They will
transcode different chunks of the video from
MPEG to AVI, but without audio,

2. Transcode audio: due to technical reasons
audio has to be transcoded independent from
the video and it's not possible to break up the
job into chunks which can be processed in
parallel. If you selected more than one audio
track, an appropriate number of audio
transcoding jobs will appear,

3. Merge video + audio: The transcoded audio file
of the first selected audio track and all video
chunks are merged and multiplexed into one
file. This is done preferably on the node with
local hard disk access,

4. Split: If you decided to split the AVI
afterwards, this is the final phase [2].

Fig. 12. Complete workflow one dvd::rip cluster

project job.

4.3. Testing Model

In this experiment environment, we utilize

different three testing models to shorten the waiting
time between nodes, let execution time contract to
get shortest. Let each node all to display the biggest
operation potency. We use “Dynamic Scheduling” of
Scheduling approach methods to plan our test model.

4.3.1. Static Processing Potency Model

In this testing model we calculate the chunks

between each node the ratio according to /Proc/ in
cpuinfo bogomips data in each node. The complete
frames will sliver each ratio assembling. In this
experiment environment we can get everyone node
cpuinfo bogomips data x1, x2, x3, x4; x1 is minimum
value.
x1 = 1695.74 for FC3-03 node.
x2 = 1699.84 for FC3-04 node.
x3 = 3948.54 for FC3-01 node.
x4 = 3973.12 for FC3-02 node.
Calculates each between the proportions yi as shown
in Table 3:
 yi= xi/x1 for each i=1, 2, 3, 4.

Table 3. For each yi value.
yi y1 y2 y3 y4
 1.00 1.00 2.32 2.34

The computation cuts the Frame chunks zj as shown
in Table 4:

 ∑=
=

4

1
*

i
ij jyz

 for each j=1,2..,10.

Table 4. For each zj value.

zj z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

 6 14 20 26 34 40 46 54 60 66

4.3.2. Processor Number Model

In this method the data material of the video

frames intended for conversion is divided into the
same quantities as the PCs without considering the
different computing ability among the individual PCs.
In this experimental environment, we use 4 nodes
and therefore the data material was divided into 4
portions.

4.3.3. Dynamic Processing Potency Model

We first will test the material to make the

operation to each node, and takes it actually operates
the potency, again depends on the proportion to cut a
frames. a1, a2, a3, a4 is actually operates the potency,
a1 is minimum value.
a1 = 6.9fps for FC3-04 node.
a2 = 7.0fps for FC3-03 node.
a3 = 8.8fps for FC3-01 node.
a4 = 9.0fps for FC3-02 node.

Calculates each between the proportions bi as shown
in Table 5.

bi = 1a
ai

 for each i=1, 2 , 3, 4.

Table 5. For each bi value.
bi b1 b2 b3 b4
 1.00 1.01 1.27 1.30

The computation cuts the Frame chunks cj as shown
in Table 5.

∑=
=

4

1
*

i
ij jbc

 for each j=1, 2 .., 10.

Table 6. For each cj value.
cj c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

 4 10 14 18 23 28 32 36 41 45

5. Performance Results

We choose two DVD movies with different

content and capacity as the source data for testing.
Following table (Table 7) shows the detailed
information of the source data.

Table 7. Source data of DVD.

Case Video
Length

Video
Type Ratio Video

Frames Resolution Video
Size

Case 1 01:38:48 NTSC 16:9 143364 720x480 3.2 GB
Case 2 01:48:37 NTSC 16:9 197041 720x480 6.6 GB

Transcode Data:

• Format: Divx4; Video code: xvid.
• Target Size:1400M, 700M, 400M.

5.1. Static Processing Potency Model

We use aforementioned test model to measure the

processing time and find it takes less in j. By this
experiment we know when j=2, Case 1 and Case 2
both achieve the best performance as shown in
Figures 13, 14 and 15.

Fig. 13. Static Processing Time with Case 1.

Fig. 14. Static Processing Time with Case 2.

Fig. 15. Static Processing Time with Case 1 and Case

2.
The parallel performance ratio in each j can be

achieved by 80% in average as shown in Figure 16.

Fig. 16. Static Processing Parallel Performance

Ratio with Case 1 and Case 2.

5.2. Dynamic Processing Potency Model

We use aforementioned test model to measure the
processing time and found it takes less in j. By this
experiment we know when j=3, case 1 and case 2
achieve the best performance as shown in Figures 17,
18 and 19.

Fig. 17. Dynamic Processing Time with Case 1.

Fig. 18. Dynamic Processing Time with Case 2.

Fig. 19. Dynamic Processing Time with Case 1 and

Case 2.

The parallel performance ratio in each j can be
achieved by 80% in average as shown in Figure 20.

Fig. 20. Dynamic Processing Parallel Performance

Ratio with Case 1 and Case 2.

5.3. Different Target Size

In here we compare video conversion time on

different target size. We use test model “Dynamic
Processing Potency Model”, to do comparison
processing time. By this experiment we know when
target size is reduced the video conversion time is
reduced accordingly. The results are shown in
Figures 21 and 22.

Fig. 21. Comparison of conversion time on different

target size by Case 1.

Fig. 22. Comparison of conversion time on different

target size by Case 2.

5.4. Comparison between Single PC and
Cluster system

Here we compare video conversion time from

DVD to Divx4 of single PC and cluster system.
Obviously the answer is positive as shown in Figure
23.

Fig. 23. The comparison of conversion time from
DVD to Divx4 of single PC and cluster system.

6. Conclusions

Nowadays, single PC has processed mostly video

conversion, which not only takes long time but also
wastes the waiting period. Better performance can be
achieved with powerful hardware, although the cost
is higher. Using cluster system can certainly satisfy
both.

In this paper, we use dvd::rip to assist in job
assignment to nodes, and hope that cluster platform
is capable to shorten the video conversion time and
meanwhile obtain higher efficiency.

In this experimental research, we utilize different
types of cluster systems, and therefore, the
computing ability of each individual node must be
considered when assigning job. Here we use
“Dynamic Scheduling” of scheduling approaches
methods to plan our test model.

In the experiment of “Static Processing Potency
Model”, when j=3, we obtain the best conversion
time. The result is certain and proved by using two
video movies, cases 1and 2, as shown in previous
sections.

In the experiment of “Dynamic Processing
Potency Model”, when j=2, we obtain the best
conversion time. We have used two additional video
movies, cases1 and 2, to prove the result. It also
shows the best performance when zj and cj=14.

We also obtain the comparison result between
traditional cluster and diskless cluster that both are
similar in computing capability. However, it is more
convenient and efficient to organize and administrate
in the environment of diskless cluster system.

We are planning to use this testing model to link a
lager cluster system, to see if we can obtain and
prove that the best performance of conversion time
also falls on j.

As future work, we will work on transforming this
entire system into diskless system, to evaluate if
these changes affect the computing ability of the
overall system.

References

[1] B. Wilkinson and M. Allen, “Parallel Programming:

Techniques and Applications Using Networked

Workstations and Parallel Computers”, Prentice Hall
PTR, NJ, 1999.

[2] “dvd::rip”, http://www.exit1.org/dvdrip/.
[3] “Grid Computing”, http://www.globus.org.
[4] Gunawan, T.S.; Cai Wen Tong, “Parallel motion

estimation on SMP system and cluster of SMPs”,
2002. APCCAS ‘02. 2002 Asia-Pacific Conference
on Circuits and Systems, Volume: 2, 28-31 Oct.
2002.

[5] ISO/IEC, “MPEG-4 Overview -(Melbourne
Version)”, JTC1/SC29/WG11 N2995,Oct 1999.

[6] ISO/IEC, “Information Technology-Generic Coding
of Audio-Visual Objects, Final Draft of International
Standard”, JTC1/SC29/WG11 N2502, Oct 1998

[7] “LAM/MPI Parallel Computing”, http://www.lam-
mpi.org.

[8] Lee, J.Y.B., “Parallel video servers: a tutorial”,
IEEE Multimedia, Volume: 5 Issue: 2, April-June
1998.

[9] “MPEG-4 - Copying a DVD Video to CD-ROM”,
http://www.tomshardware.com/video/20000913/.

[10] M. Wolfe, “High-Performance Compilers for
Parallel Computing”, Addison-Wesley
Publishing,NY, 1996.

[11] Po-Kai Chiu., “Design and Implement a MP4
Video-on-Demand System based on PC Cluster”,
Volume: 19-24,2003.

[12] “PVM”,
http://www.epm.ornl.gov/pvm/pvm_home.html/.

[13] R. Buyya, “High Performance Cluster Computing:
System and Architectures”, Volume: 1, Prentice
Hall PTR, NJ, 1999.

[14] R. Buyya, “High Performance Cluster Computing:
Programming and Applications”, Volume: 2,
Prentice Hall PTR, NJ, 1999.

[15] Richard S. Morrison, “Cluster Computing”,
Revision Version 2.1, Saturday, 26 January 2002.

[16] “The MPEG home page”,
http://drogo.cselt.stet.it/mpeg/.

[17] Tierney, B.L.; Johnston, W.E.; Herzog, H.; Hoo, G.;
Guojun Jin; Lee, J.; Chen, L.T.; Rotem, D., “Using
high speed networks to enable distributed parallel
image server systems”, Supercomputing ‘94.
Proceedings, Volume: 14-18, Nov. 1994.

[18] Touradj Ebrahimi, Caspar Home, “MPEG-4 natural
video coding-An overview”,Image Communication
Journal 1999.

[19] “Transcode”, http://zebra.fh-
weingarten.de/~transcode/.

[20] Yong He; Ahmad, T.; Liou, M.L., “MPEG-4 based
interactive video using parallel processing”, 1998.
Proceedings. 1998 International Conference on
Parallel Processing, Volume: 10-14, Aug. 1998.

[21] Yong He; Ahmad, T.; Liou, M.L., “Real-Time
Interactive MPEG-4 System Encoder Using a cluster
of Workstations”, IEEE Transactions on Multimedia,
Volume: 1 Issue: 2, June 1999.

[22] Young He, Ishfaq Ahmad and Ming L. Liou, “Real-
Time Interactive MPEG-4 System Encoder Using a
cluster of Workstations”, IEEE Transactions on
Multimedia, Volume: 1 Issue: 2, June 1999.

