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Abstract

Most verification tools and methodologies such as model checking, equivalence checking, hardware ver-

ification, software verification, and hardware-software coverification often flatten out the behavior of a target

system before verification. Inherentmodularities, either explicit or implicit, functional or structural, are not

exploited by these tools and algorithms. In this work, we show howassume-guarantee reasoning(AGR) can

be used for such exploitations by integrating AGR into a verification tool. Targeting at real-time embedded

systems, we propose procedures toautomaticallygenerate assumptions, guarantees, and time constraints,

which otherwise require manual efforts and human creativity. Through a complex but comprehensible real-

time embedded system example such as aVehicle Parking Management System(VPMS), we illustrate the

feasibility of the AGR approach and the extremely large (as much as 96%) reduction possible in state-space

sizes when AGR is applied. Due to AGR, we also found five errors in the VPMS design using muchlesser

CPU time and memory space than possible without AGR.

Keywords: assume-guarantee reasoning, modular verification, model-checking, state-space reduc-

tion techniques, real-time embedded systems

1 Introduction

With an escalating increase in the complexity of hardware-software real-time embedded systems such asSystem-

on-Chip(SoC), their functional and timing correctness are getting more and more difficult to guarantee. Vali-
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dation techniques such as full-chip simulation and testing are no longer adequate for system verification. Com-

mercial tools often fail to verify a complex system completely. With the advent of formal verification techniques

such asmodel checking, complete verification of systems are now a possibility. Nevertheless, the exponential

sizes of state-spaces still pose a hindrance in the application of formal verification to complex systems [17, 18].

Though numerous state-space reduction techniques have been proposed in the literature and implemented in

tools, yet their effectivity is limited when applied to large systems.

Without manually breaking down a complex system into smaller parts, commercial tools and methodologies

currently fail to verify thefull system or chip. Designers often resort to ad-hoc system decomposition, followed

by the verification of individual system parts, and finally derivation of a possibly wrong conclusion that the

whole system is correct due to each of its parts being verified correct. Furthermore, in the world of SoC design,

often modularized, reusable, functional parts are designed asIntellectual Properties(IPs), which are verified by

the IP vendors before putting them on the market. It is a pity that often a system designer must verify the whole

system without ever taking advantage of the verification results obtained by the IP vendors for each IP.

Motivated by the above status quo, we propose the following solution to the above posed problems. It is

shown how a divide-and-conquer approach calledAssume-Guarantee Reasoning(AGR) can be applied forau-

tomaticexploitation of system modularities during verification. There is extensive theory supporting the validity

of AGR, but its application to real-world systems is still very much limited [19]. The main effort in applying

AGR to the verification of a system lies in constructions of the assumptions and guarantees required for AGR.

We propose procedures to automate the generation of assumptions, guarantees, and time constraints for real-

time embedded systems. Through a complex but comprehensible example calledVehicle Parking Management

System(VPMS) we illustrate the feasiblity of our approach for integrating AGR into verification tools and also

the extremely large state-space reductions possible through the application of AGR. Due to AGR, we found

several errors in the VPMS design much earlier by using lesser CPU time and memory space compared to that

without AGR.

This article is organized as follows. Section 2 will summarize some previous work on the application of

assume-guarantee reasoning to formal verification of complex systems. Section 3 will formulate the problem
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to be solved and describe the system model along with an example of a real-time embedded system. Section 4

will illustrate how assume-guarantee reasoning can be applied to the formal verification of SoC, along with the

automatic generation of assumptions and guarantees. Section 5 will give the verification results and experiments

conducted for the VPMS example. Section 6 will conclude the article with some research directions for future

work.

2 Previous Work

The theory behindAssume-Guarantee Reasoning(AGR) has been well-studied and can be traced back to Misra

and Chandy’sassumption-commitmentapproach [26] and Jones’rely-guaranteeapproach [21] proposed around

two decades ago. Though AGR has a long history, yet it has been “more widely studied than actually used” [28].

Theoretically, AGR states that a system can be verified by first decomposing it into constituent parts, second

the parts are individually verified such that each part satisfies a guaranteeG only if its environment satisfies an

assumptionA, and finally discharging all the assumptions made for each component using acircular induction

over time. This reasoning will be explained in more details in Section 4. The main benefit of this approach is

that the explicit construction of the system global state-space, which is usually of an exponentially large size,

can be avoided. Thus, verification scalability is increased through the application of AGR.

Only in the recent few years has there been some applications of the AGR technique to real-world systems

such as asynchronous systems [1, 2], synchronous reactive systems [7, 8, 19], Tomasulo’s algorithm [24], a

pipelined implementation of a directory-based coherence protocol in Silicon Graphics Origin 2000 servers [10],

a VGI dataflow processor array designed by the Infopad project at U. C. Berkeley [11], pipelined implementation

of an ISA architecture [14], audio output interface of a multimedia extension SoC [27], and a software supervisor

for a multi-user phone system [30].

The AGR technique has also been extended in several ways, for example, to accomodate multiple constraints

on a single output port [24], branching time refinement [15], different implementation and specification time

scales [13], and liveness constraints [25].
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Currently, the MOCHA tool [9, 3] is the only comprehensive formal verification environment that has im-

plemented some basic assume-guarantee reasoning into its verification procedure. MOCHA has aproof man-

ager, which helps in applying AGR to a system under verification by suggesting proof obligations to be model

checked for one or moreuser-specifiedsystem decompositions. Though the application of AGR can be semi-

automatically performed by a user of MOCHA through its proof manager, the user was still burdened with the

task of constructingabstractionandwitnessmodules [12], which in general requires human creativity. Recently,

there are some works on mechanizing the construction of both abstraction modules [4] and witness modules [6].

Automation for the application of AGR has been greatly enhanced by such mechanizations. Nevertheless, the

automation is still limited to refinement checking.

All the above-cited previous works show that the AGR technique is gaining importance due to the increase

in system complexity. Nevertheless, the above literatures mainly consists of case studies, where it is shown

how AGR can be applied to a particular system. As detailed above, the application of AGR is also limited to

refinement checking in the current version of the MOCHA tool. In our present work, firstly, we show how the

application of AGR can be generalized for the verification of a typical real-time embedded system. We propose

automating the application of AGR not only inrefinement checking, but also ininvariant checking. Secondly,

we show how assumptions, guarantees, and time constraints can be automatically generated for a real-time

embedded system. Finally, we illustrate through an example how state-spaces can be drastically reduced by

AGR, how AGR interacts with other state-space reduction techniques, and how AGR helps in uncovering design

faults using lesser CPU time and memory space.

3 System Model and Verification

Our target system for verification is aReal-Time Embedded System(RTES), which we basically view as a

collection of embedded hardware components, software components, and interfaces. A complex system is

generally designed in a top-down, iterative manner such that the functionalities of a system are implemented

progressively through replacing a higher-level component by one or more lower-level components. Starting
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with an initial functional block-diagram for a system, it can be designed after going through several iterations of

refinement. A system designS obtained in an iteration is said torefinea designS′ from a previous iteration ifS

is a more detailed implementation ofS′, which can be represented notationally asS 4 S′. Speaking in relative

terms, at the iteration in whichS is designed,S is called theimplementationandS′ is called thespecification.

3.1 System Model

The most widely used and popular model for formal analysis of real-time systems is theTimed Automata(TA)

model proposed by Alur and Dill in [5], which basically extends conventional automata by adding clock variables

and time semantics. Our real-time embedded system model is based on the timed automata model, which

is defined as follows, where the sets of integers and non-negative real numbers are denoted byN andR≥0,

respectively.

Definition 1 : Mode Predicate

Given a setC of clock variables and a setD of discrete variables, the syntax of amode predicateη overC and

D is defined as:η := false| x ∼ c | x− y ∼ c | d ∼ c | η1 ∧ η2 | ¬η1, wherex, y ∈ C, ∼∈ {≤, <, =,≥, >},

c ∈ N , d ∈ D, andη1, η2 are mode predicates. ‖

Let B(C, D) be the set of all mode predicates overC andD.

Definition 2 : Timed Automaton

A Timed Automaton(TA) is a tupleAi = (Mi, m
0
i , Ci, Di, Li, χi, Ei, λi, τi, ρi) such that:Mi is a finite set of

modes,m0
i ∈ M is the initial mode,Ci is a set of clock variables,Di is a set of discrete variables,Li is a set of

synchronization labels,χi : Mi 7→ B(Ci, Di) is aninvariancefunction that labels each mode with a condition

true in that mode,Ei ⊆ Mi ×Mi is a set of transitions,λi : Ei 7→ Li associates a synchronization label with

a transition,τi : Ei 7→ B(Ci, Di) defines the transition triggering conditions, andρi : Ei 7→ 2Ci∪(Di×N ) is an

assignmentfunction that maps each transition to a set of assignments such as resetting some clock variables and

setting some discrete variables to specific integer values. ‖

Using the above TA definition, our SoC model can be defined as follows.
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Definition 3 : Real-Time Embedded System (RTES)

A Real-Time Embedded Systemis defined as a collection of hardware, software, and interface components. Each

component is modeled by one or more timed automata. A system is modeled by a network of communicating

timed automata. Notationally, if a systemS has a set of hardware components{H1,H2, . . . ,Hn} and a set

of software components{S1, S2, . . . , Sm}, thenS = H1‖H2‖ . . . ‖Hn‖S1‖S2‖ . . . ‖Sm, where‖ is a parallel

composition operator resulting in the concurrent behavior of its two operands. IfHi is modeled by a TAAHi ,

1 ≤ i ≤ n, andSj is modeled by a TAASj , 1 ≤ j ≤ m, then the TA defined byAS = AH1 × . . . × AHn ×

AS1× . . .×ASm is a TA model for systemS, where× is the Cartesian product operator for two timed automata.

Concurrency semantics is defined as follows. Two concurrent transitions with the same synchronization label

are represented by a single synchronized transition. Two concurrent transitions without any synchronization

label are represented by interleaving them, resulting in possibly two different paths (computations). ‖

For simplicity, it is assumed that a single hardware or software component is modeled by a single TA, instead

of the more general case of one or more TA. The above definition and the rest of the discussion on verification

can be easily extended to the general case.

3.2 System Verification

Model checking(MC) takes a formal description of a system under verification and a property specification. It

checks if the system satisfies the property. In case of property violation by the system, MC generates a counter-

example in the form of a system behavior trace, which shows exactly where the system violates the property.

Due to its algorithmic and automatic execution, MC gained popularity very fast, leaving other formal verification

methods such asprocess algebraway behind in their industry acceptability. MC can be categorized into two

classes of problems.

• Refinement Checking(RC): This is also calledequivalence checking(EC) and is mainly used by hardware

system designers to verify if a lower level design implementation (Sl) satisfies an upper level design

specification (Su). In case of satisfaction, we saySl refinesSu, denoted bySl 4 Su.
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Figure 1: Vehicle Parking Management System

• Invariant Checking(IC): A system, described in some formal model such as timed automata, is checked

for satisfaction of a property, which is specified by a logic such astimed computation tree logic(TCTL)

[16]. If systemS satisfies a TCTL propertyφ, it is denoted asS |= φ.

3.3 Vehicle Parking Management System Example

An embedded real-time system calledVehicle Parking Management System(VPMS) [22, 23] will be used to

illustrate our verification methodology throughout this article.

VPMS controls the entry and exit of vehicles into and from a parking garage or lot. Functionally, it consists

of the three subsystems: an ENTRY Management Subsystem, which controls the entry of vehicles into a garage

such that each driver gets a parking ticket with an entry time stamp, an EXIT Management Subsystem, which

controls the exit of vehicles from a garage such that only drivers with a valid paid ticket gets permission to exit,

and a DISPLAY Subsystem, which indicates the number of vacant parking spaces currently available in a garage

or lot.

The architecture of VPMS is illustrated in Figure 1 using theUnified Modeling Language(UML). An ENTRY

(or an EXIT) subsystem consists of three parts: a ticket processor, a motor-controlled gate, and a set of sensors.
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Constraints for the VPMS system include: a maximum system cost of $1,300, a maximum ticket emission time

of 20 ns, a maximum display response time of 250 ns. VPMS is modeled using five TA: one for each of the

three subsystems, namely ENTRY, EXIT, and DISPLAY, and two for the environment, which includes the user

and other external devices such as the Display Board. Further details on VPMS can be found in [22, 23].

4 Assume-Guarantee Verification

Assume-guarantee reasoning(AGR) is the dual counterpart to formal verification just asdivide-and-conqueris

to discrete optimization. Informally, AGR combines verification results of each constituent part of a system to

make conclusions on the verification of the whole system, instead of directly verifying the full system. AGR

can be beneficial in terms of higher verification scalability, provided the size of the state-space for the individual

verification of each constituent part is significantly smaller than that for the full system. Furthermore, the

adoption or application of AGR is often restrained by the necessity for human creativity in the following tasks:

(1) In refinement checking, abstraction modules[4] andwitness moduleshave to be constructed [6], and (2) In

invariant checking, assumptions and guarantees have to be generated.

4.1 Assume-Guarantee Rules for Invariant Checking

The rules for assume-guarantee reasoning appear in several different forms in the literature. Here, we give the

form of rules on which our work is based.

As shown in Equation (1), we have extended the rules for applying AGR to invariant checking from [30] by

including timing constraints. A systemS has an assumptionA, a guaranteeG, and a Boolean timing constraint

T . Each component of the system also has an assumptionAi, a guaranteeGi, and a timing constraintTi. The

precise definitions for assumption, guarantee, and timing constraint will be introduced in Section 4.3. From

Equation (1), we see there are2n + 1 premises to be satisfied for a system withn components to be completely

verified and to arrive at the conclusionA →T G, where→T denotes logical implication while satisfying time

constraintsT . The first set ofn premisesAi →Ti Gi gives the rule for verifying that each component satisfies
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its own guaranteeGi under its assumptionAi and time constraintTi. The second set ofn premises constitute

the discharging of all the assumptions by ensuring that eachAi can be implied by the system assumptionA and

the guaranteesGj , j 6= i of the other components under the time constraintsT andTj , ∀j 6= i. The last premise

simply states that the system behaviorG is constructed from a conjunction of the behaviors of each system

componentGj . This last premise must be considered and ensured whileG and eachGj are being constructed.

Ai −→Ti Gi, ∀i ∈ {1, . . . , n}

A ∧∧
j 6=i Gj −→T∧Vj∈{1,...,n} Tj

Ai, ∀i ∈ {1, . . . , n}
∧

j∈{1,...,n}Gj −→T∧Vj∈{1,...,n} Tj
G

A −→T G

(1)

A complete systemS with assumptionA, guaranteeG, and time constraintT can thus be verified by checking

that each individual component guarantee is implied by its corresponding assumption under its time constraint

(first rule) and by discharging each component assumption (second rule). It is assumed that the full system

behaviorG can be segregated into the individual behaviorsGi of each component (third rule). The above

summarizes the AGR rules that can be applied to invariant checking. The algorithms by which AGR rules can

be applied to invariant checking will be discussed in Section 4.2.

4.2 Assume-Guarantee Algorithm for Invariant Checking

An algorithm is given in this section for the application of assume guarantee reasoning to invariant checking.

This algorithm can be incorporated into any generic verification tool so as to enhance it with AGR and the

benefits of applying AGR.

The assume-guarantee algorithm for invariant checking is given in Table 1. First, the assumption, guarantee,

and time constraint for the given system are generated (GenSysAG() in Step 1). During the generation of the

guarantee and time constraint, it is ensured that specification of a property is implied by the conjunction of the

guarantee and time constraint of the system (i.e.G ∧ T → φ). If the system is not already partitioned, then it

is partitioned in Step 2. The assumptions, guarantees, and time constraint for each of the system components
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Table 1: Assume-Guarantee Algorithm for Invariant Checking
AG Invariant Check(S, φ)
S = {H1, . . . , Hn, S1, . . . , Sm};
φ = TCTL formula;
{
{A,G, T} = GenSysAG(S, φ); // G ∧ T → φ (1)
X = AG Partition(S, φ); // X = {X1, . . . , Xk} (2)
for i = 1, . . . , k { (3)
{Ai, Gi, Ti} = GenCompAG(Xi); } //

∧
j Gj →T∧Vj Tj

G (4)
for i = 1, . . . , k // Invariant checking each module (5)

if Ai 6→Ti Gi return FALSE; (6)
for i = 1, . . . , k { // Discharging assumptions (7)

Wi = A; (8)
for j = 1, . . . , k { if j 6= i Wi = Conjunct(Wi, Gj); } (9)
if Wi 6→T∧Vj 6=i Tj

Ai return FALSE;} (10)
return TRUE; (11)

}

(partitions) are generated (GenCompAG() in Steps 3, 4). During the generation of the guarantees, it is ensured

that the conjunction of all the guarantees of the components is equivalent to the system guarantee under all time

constraints (i.e.
∧

j Gj →T∧Vj Tj
G). The details of this generation procedure will be presented in Section 4.3.

After having generated all the assumptions and guarantees, the AGR rules for invariant checking are applied

as follows. It is checked that each of the assumptions must imply the corresponding guarantee (Steps 5, 6). If

any one of the assumption does not imply its corresponding guarantee, then the invariant checking terminates.

Next, each of the assumptions must be discharged by first obtaining the conjunctA ∧ ∧
j 6=i Gj for the ith

component, and then checking if that conjunct implies the assumptionAi. All the above logical implications are

checked under the given time constraints of the system and components. If all the components are verified and

assumptions discharged, then the algorithm returns TRUE, otherwise FALSE.

4.3 Automatic Generation of Assumptions, Guarantees, and Time Constraints

To apply and take advantage of assume-guarantee reasoning in verifying a complex system,assumptions, guar-

antees, and time constraintsare required for each system component and for the system environment. Our

algorithm to automatically generate them for a system component is as detailed in Table 2.
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Table 2: Automatic Generation of Assumptions, Guarantees, and Timing Constraints
Gen Comp AG(Xi)
Xi ∈ S = {H1, . . . , Hn, S1, . . . , Sm};
{

Ai = {}; Gi = {}; Ti = {}; (1)
schedule set = All Finite Schedules(Xi,m

0
i ); (2)

while (ψ = OneFinite Schedule(schedule set) 6= NULL) { (3)
last signal = NULL; first time = second time = NULL; (4)
// start generating assumption and guarantee (5)
while (γ = Get Signal(ψ) 6= NULL) { (6)

if ( last signal = NULL and type(γ) = out) (7)
return UnsupportedSystemERROR; // schedule begins with output signals (8)

switch (type(γ)) { (9)
case ‘in’: (10)

if ( last signal = in) Basic a = Basic a⊕ γ; // ⊕ ∈ {≺,¹} (11)
else{ (12)

if (Basic a 6= NULL) Schedule a = 〈Schedule a,Basic a〉; (13)
Basic a = γ; (14)
last signal = in; } break; (15)

case ‘out’: (16)
if ( last signal = in) { (17)

if (Basic g 6= NULL) Schedule g = 〈Schedule g, Basic g〉; (18)
Basic g = γ; (19)
last signal = out;} (20)

else Basic g = Basic g ⊕ γ; break;} } (21)
if (Basic a 6= NULL) Schedule a = 〈Schedule a,Basic a〉; (22)
if (Basic g 6= NULL) Schedule g = 〈Schedule g, Basic g〉; (23)
if |Schedule a| 6= |Schedule g| return UnsupportedSystemERROR; (24)
else{ Ai = Ai ∪ Schedule a; Gi = Gi ∪ Schedule g; } (25)
// start generating time-constraints (26)
while (ζ = Get TemporalSignal(ψ) 6= NULL) { (27)

if (there is signal with temporal value inζ) (28)
frist time = ζ; (29)

if (fist time 6= NULL and there is signal with temporal value inζ) (30)
second time = ζ; (31)

if (fist time 6= NULL andsecond time 6= NULL){ (32)
Basic t = EvaluateTime Constraint(first time, second time); (33)
Schedule t = Schedule t ∧Basic t; (34)
first time = second time = NULL; } } (35)

Ti = Ti ∪ Schedule t; } (36)
return (Ai, Gi, Ti); (37)

}
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The algorithm in Table 2 works as follows. We assume that each component is modeled by a single TAXi,

which can be easily generalized to more than one TA. Before traversing a TAXi, we generate all finite schedules

in theXi by procedure AllFinite Schedules() in Step (2). For each finite scheduleψ generated by the procedure

OneFinite Schedule() in Step (3), we first generate schedule assumption and guarantee. We traverse along the

schedule to extract all signalsγ (Get Signal() in Step (6)) and then the following actions are performed:

1. First, a maximal sequenceBasic a of consecutively occurringinput signals is searched for. Then, the

partial order (⊕ ∈ {≺,¹}) between two signals is determined by analyzing the temporal precedence

between them (Step (11)).

2. Next, a maximal sequenceBasic g of consecutively occurringoutputsignals is searched for. Then, the

partial order between two signals is determined by analyzing the temporal precedence between them (Step

(21)).

3. The above two actions are repeated alternatingly to form a schedule assumption (Schedule a in Step (13))

and a schedule guarantee (Schedule g in Step (18)).

4. After the assumption and guarantee are generated for each scheduleψ of componentXi, all of them are

collected into sets of assumptions and guarantees for the component, respectively (Step 25).

Then, we traverse along the scheduleψ again to extract signal and temporal value in a transitionζ

(Get TemporalSignal() in Step (27)). If there is temporal difference between two signals, we calculate the

time interval between the occurrence of these two signals by the procedure EvaluateTime Constraint() (Step

(33)). The above action is repeated to form a schedule time constraint (Schedule t in Step(34)). After the

time-constraint is generated for each scheduleψ of componentXi, all are collected into set of time-constrains

for the component (Step (36)).

Similar to the algorithm in Table 2, assumptions, guarantees, and time-constraints can also be generated

for the environments of a system. The main difference lies in the type of signals in basic assumptions and

guarantees. For components,inputsignals constitute a basic assumption, whileoutputsignals constitute a basic

guarantee. For system environments, it is exactly the opposite,outputsignals constitute a basic assumption,
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while input signals constitute a basic guarantee. The reason for this difference comes from the opposite roles

that a system environment and system components play. When one is transmitting a signal, the other is receiving

thatsignal.

5 Verification Results and Experiments for the VPMS Example

We applied the assume-guarantee reasoning principles to theVehicle Parking Management System(VPMS)

[22, 23] example, which was introduced in Section 3.3. After applying the algorithm from Table 2 in Sec-

tion 4.3, the assumptions, guarantees, and time constraints for VPMS were generated as given in Table 3. There

are three computation runs for each of ENTRY and EXIT subsystems, and four computations runs for the DIS-

PLAY subsystem. As given in the last two rows of Table 3, namely EntryEnvironment and ExitEnvironment,

the assumptions, guarantees, and time constraints for the system environment were derived from user-given

requirements (see Section 3.3).

5.1 Verification Results

The AGR rules for invariant checking given in Equation (1) of Section 4.1 were all checked with the assumptions,

guarantees, and time constraints of VPMS (Table 3). There were five errors found as follows.

• Component Assumption Error: While using the second rule (Equation (1)) for discharging the com-

ponent assumption with time-constraints in the Entry component (see first row of Table 3), two er-

rors were found in the Entry assumptions countabovezero? and countzero? with time constraints

δ(count request!, countabovezero?) = [200, 200] andδ(count request!, countzero?) = [200, 200]. It

was found that these time constraints could not be satisfied because of contradiction with the component

guarantees countabovezero! and countzero! with time constraintsδ(count request?, countabovezero!) =

[18, 18] andδ(count request?, countzero!) = [18, 18] in the Display component. Solutions to the first er-

ror could consist of changing either of the two time constraints, but because the signal countabovezero

could be output (guaranteed) by 18 ns, our solution to this error was to change the time constraint of the
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Table 3: Assumptions, Guarantees, and Time Constraints for VPMS
Subsystem Schedule # Assumption(A), Guarantee(G), Time Constraints∗ (T )

Entry 1

A : 〈pushbutton?, countabovezero?, taketicket?〉
G : 〈count request!, ticketout!, car in!〉
T : δ(count request!, countabovezero?) = [200, 200]∧

δ(take ticket?, carin!) = [244,∞)∧
δ(car in!, pushbutton?) = [244,∞)

Entry Entry 2
A : 〈pushbutton?, countzero?〉
G : 〈count request!, noticket out!〉
T : δ(count request!, countzero?) = [200, 200]

Entry 3

A : 〈pushbutton?, countabovezero?, taketicket?〉
G : 〈count request!, ticketout!, ent time out!〉
T : δ(count request!, countabovezero?) = [200, 200]∧

δ(ent time out!, pushbutton?) = [244,∞)

Exit 1
A : 〈ticket insert?〉, G : 〈ticket ok! ≺ car out!〉
T : δ(ticket ok!, car out!) = [244,∞) ∧

δ(car out!, ticket insert?) = [244,∞)Exit
Exit 2 A : 〈ticket insert?〉, G : 〈ticket error!〉
Exit 3

A : 〈ticket insert?〉, G : 〈ticket ok! ¹ ex time out!〉
T : δ(ex time out!, ticket insert?) = [244,∞)

Display 1

A : 〈initialize?, carin?〉
G : 〈resetdboard!, entupdatedboard!〉
T : δ(initialize?, resetdboard!) = [0, 100] ∧

δ(car in?, entupdatedboard!) = [42, 142]

Display
Display 2

A : 〈initialize?, countrequest?〉
G : 〈resetdboard!, countzero!〉
T : δ(initialize?, resetdboard!) = [0, 100] ∧

δ(count request?, countzero!) = [18, 18]

Display 3

A : 〈initialize?, countrequest?〉
G : 〈resetdboard!, countabovezero!〉
T : δ(initialize?, resetdboard!) = [0, 100] ∧

δ(count request?, countabovezero!) = [18, 18]

Display 4

A : 〈initialize?, carout?〉
G : 〈resetdboard!, exupdatedboard!〉
T : δ(initialize?, resetdboard!) = [0, 100] ∧

δ(car out?, exupdatedboard!) = [42, 142]

Entry Env 1

A : 〈pushbutton!, taketicket!〉
G : 〈ticket out?, entupdatedboard?〉
T : δ(pushbutton!, ticketout?) = [0, 20) ∧

δ(take ticket!, entupdatedboard?) = [0, 250]

Entry Env 2
A : 〈pushbutton!〉, G : 〈no ticket out?〉
T : δ(pushbutton!, noticket out?) = [0, 20)

Entry Environment

Entry Env 3
A : 〈pushbutton!, taketicket!〉
G : 〈ticket out?, enttime out?〉
T : δ(pushbutton!, ticketout?) = [0, 20)

Entry Env 4 A : 〈initialize!〉, G : 〈resetdboard?〉
Exit Env 1

A : 〈(ticket insert!〉, G : 〈ticket ok?≺ ex updatedboard?〉
T : δ(ticket ok?, exupdatedboard?) = [0, 250]Exit Environment

Exit Env 2 A : 〈ticket insert!〉, G : 〈ticket error?〉
Exit Env 3 A : 〈ticket insert!〉, G : 〈ticket ok?¹ ex time out?〉

∗All times are in nanoseconds.
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Entry component toδ(count request!, countabovezero?) = [0, 200]. Similarly, our solution to the sec-

ond error was to change the time constraint of the Entry component toδ(count request!, countzero?) =

[0, 200].

• Environment Guarantee Errors: While using the third rule (Equation (1)) for checking whether the en-

vironment guarantee was conjunctively implied by the component guarantees, two errors were found in the

environment guarantees entupdatedboard? and exupdatedboard? with time constraints

δ(take ticket!, entupdatedboard?) = [0, 250] andδ(ticket ok?, exupdatedboard?) = [0, 250]. The time

constraints were originally derived from the user-given constraint that the maximum display response time

should be 250 ns. These time constraints could not be satisfied by the system components. For example,

consider the first time constraint mentioned above. The conjunction ofδ(take ticket?, carin!) = [244,∞)

from Entry with δ(car in?, entupdatedboard!) = [42, 142] from Display results in

δ(take ticket!, entupdatedboard?) = [286,∞), which does not satisfy the user-given constraint of 250

ns maximum. Solutions to this error could consist of changing either component or environment time con-

straints, but because the component constraints could not be changed due to physical device restrictions,

our solution was to ask the user to relax his/her constraint to at least 286 ns.

• Environment Assumption Error: While using the second rule (Equation (1)) for discharging the ba-

sic assumption pushbutton? with time constraintδ(car in!, pushbutton?) = [244,∞) in the Entry1

schedule of the Entry component (see first row of Table 3), it was found that the time constraint could

not be guaranteed unless there was an environment assumptionδ(ent updatedboard?, pushbutton!) =

[202,∞). This is because there is only a time constraint between signals carin and entupdatedboard

(i.e.,δ(car in?, entupdatedboard!) = [42, 142] in the Display1 schedule of the Display component), but

no time constraint between signals entupdatedboard and pushbutton. Our solution was to add the time

constraint to the environment assumptions.

Since we used AGR to verify VPMS, the above five errors were found using lesser CPU time and memory

space, compared to that without using AGR. The first two and last errors were found by merely constructing
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a state-graph representing the concurrent behavior of EntryEnvironment and Display, with a size of 54 modes

and 159 transitions, which is much smaller compared to the total sizes of state-graphs constructed without AGR:

1375 modes and 4360 transitions. The third and forth errors were found by constructing the following two

state-graphs: (1) Concurrent merge of Entry and Display: 14 modes, 17 transitions, and (2) Concurrent merge of

Exit and Display: 251 modes, 636 transitions. All these state-graphs were much smaller in size compared to the

total sizes when AGR was not used. This shows we can scale-up verification for complex systems and speed-up

verification for simple systems. Further experiments on quantifying the benefits of AGR were conducted as

shown in Section 5.2.

5.2 Verification Experiments

Previous related work stressed on the importance on applying AGR to model checking, but the benefits of AGR

were neverquantifiedthrough the use of some verification tool. We will now illustrate the benefit of applying

AGR to the verification of VPMS through actual numbers. All our experiments were carried out using theState-

Graph Manipulators(SGM) tool [20, 29], which is a high-level verification tool for real-time systems modeled

as timed automata and specifications given in TCTL. The reason we chose SGM as our verification tool was

because the tool adopts a compositional approach (merging two TA in each iteration) and allows full flexibility

for a user to choose which two TA to merge in each iteration. Further, it also has several state-space reduction

techniques packaged as reusable high-level state-graphmanipulators.

First, we experimented with how much efforts are saved through AGR, in terms of the number of modes and

transitions, the CPU time, and the amount of memory space. We recorded both the maximum readings and the

total sums. Then, we experimented with how AGR interacts with other state-space reduction techniques, such as

read-write, shield-clock, andbypass-internal-transition[29]. Our experiment results are as tabulated in Tables 4

and 5, which was obtained from SGM running on a personal computer with Linux OS version 2.4.4, Pentium III

733 MHz, and 256 MBytes of RAM.

From Table 4, we observe that there are extremely large reductions in both the maximum and the total sizes of

state-spaces when AGR is applied, compared to that without applying AGR. On applying AGR, themaximum
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Table 4: AGR Experiment Results for VPMS (without reduction)
No. of Modes No. of Trans. Time (sec) Memory (KB)
Max Total Max Total Max Total Max Total

Without AGR 1,089 1,375 3,592 4,360 0.331 0.663 885 1,044
With AGR 54 132 159 335 0.008 0.017 32 78
With / Without % 4.96 9.6 4.43 7.68 2.42 2.56 3.7 7.45

Max: maximum size of all intermediate and global state-graphs, Total: sum of all state-graph sizes

Table 5: AGR Experiment Results for VPMS (with reduction)
No. of Modes No. of Trans. Time (sec) Memory (KB)
Max Total Max Total Max Total Max Total

Without AGR 497 663 2,653 3,321 0.625 0.730 1,012 1,135
With AGR 37 92 143 274 0.013 0.032 29 70
With / Without % 7.44 13.88 5.39 8.25 2.08 4.38 2.83 6.14

Reduction Sequence Used in SGM:〈 read-write, shield-clock, bypass-internal-transition〉

number of modes (collections of states) is reduced to less than5% of the original number of modes without

AGR. Themaximumnumber of transitions is also reduced to less than5% of the original number of transitions

without AGR. In terms of thetotal CPU time required for state-graph construction and verification, it is reduced

to 2.56% of that without AGR. In terms of thetotal memory space required for state-graph construction and

verification, it is reduced to7.45% of that without AGR.

In Table 5, we have recorded the reductions in state-space sizes when AGR is applied in combination with

other reduction techniques such asread-write reduction, shield-clock, andbypass-internal-transition, which

have been implemented as high-level manipulators in the SGM tool [29]. A very interesting observation we

perceive from this experiment is that all state-space reduction techniques have a limited effect in reducing the

state space sizes, compared to the extremely large reductions possible when AGR is applied. For an example,

let us consider themaximum number of modesfor VPMS: from Table 4, we see that it is originally 1,089 modes,

on applying three state-space reduction techniques it is reduced to 497 modes (54% reduction), but if AGR is

also applied, it is reduced to 37 modes (more than96% reduction). This fact is also much more emphasized in

the cases of the maximum number of transitions, the CPU time, and the memory space. Further, comparing the

With AGR rows in the two Tables, we observe that though the numbers are smaller when state-space reduction

techniques are applied along with AGR, yet the difference between them (with and without reduction techniques)
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is not significantly large. For example, the maximum number of modes when AGR is applied without other state-

space reduction technique is 54, while that with state-space reduction technique is 37 (less than32% reduction).

Thus, the main reductions are performed by AGR rather than by the state-space reduction techniques. All the

above observations further support our claim that AGR is an indispensable technique for state-space reduction

and verifying complex systems.

6 Conclusion

With the rapid progress of computer and electronic technology, guaranteeing the correctness of systems is no

more easier than actually designing the system. For example, the verification of a System-on-Chip accounts for

as much as 70% of the total design time. We need practical automatic techniques that can handle such highly

complex systems. The work presented on assume-guarantee reasoning (AGR) in this article is one step towards

that goal. Besides giving an algorithm for incorporating AGR into tools, we proposed an automatic generation

procedure for assumptions, guarantees, and time constraints in real-time embedded systems. We quantified the

advantages of applying AGR as against that without AGR. Our experiments on a fairly complex system such as

theVehicle Parking Management Systemcorroborates our claims of the benefits obtained from applying AGR

to invariant checking. When AGR is applied the maximum number of modes is reduced to5% of that without

AGR. The total time and memory are approximately2% and7%. The experiments also show that AGR is

much superior compared to other state-space reduction techniques. Future research directions include applying

AGR to other larger applications and integrating AGR techniques with informal validation techniques such as

simulation and testing.
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