
 1

Hardware Implementation of High-Throughput 3-D Rotation for Graphic
Engine Using Double Rotation CORDIC Algorithm

宋志雲 陳志炘

Tze-Yun Sung Chih-Sin Chen
Department of Microelectronics Engineering Institute of Engineering Science

Chung Hua University
Hsinchu, Taiwan 300-12

bobsung@chu.edu.tw

Abstract

High performance architectures can be
design for data intensive and latency tolerant
applications by maximizing the parallelism
and pipelining at the algorithm. The
hardware primitives for 3-D rotation for
high throughput 3-D graphics and animation
are presented in this paper. The primitives
are based on the 2-D CORDIC algorithm, in
contrast to conventional hardware for
graphic engine. The accelerated architecture
of the 3-D rotation based on double rotation
CORDIC algorithm is also presented in this
paper. The throughput is improved by more
than 30%, but the additional hardware is
required by less than 40%. The 3-D central
perspective method for graphic engine is
performed by double rotation CORDIC
processors. The throughput is also improved
by more than 30%.
Keywords: 3-D rotation, double rotation
CORDIC algorithm, graphic engine, 3-D
perspective method, high-throughput.

1. Introduction

Three dimensional rotation (3-D) is
utilized in 3-D graphics, animation, and
virtual reality applications [1] [2]. The
rotations are applied to large number of
points, which need quiet time consuming,
but can be effectively parallel and pipelined.
Moreover, 3-D computer hardware has been
receiving great attention recently. The
conventional hardware for 3-D rotation
consists mainly of multipliers and
accumulators.

The CORDIC algorithm [3] [4] is widely
recognized as well-suited for hardware

implementation and is applied to many
signal processing tasks, such as sine and
cosine generation, vector rotation,
coordinate transformation and linear system
solver. This algorithm is especially suitable
for implementation of 3-D rotation. The
CORDIC requires only shifters and adders,
its realization on reconfigurable hardware
platforms, especially on FPGA [5]. Thus, the
3-D rotation algorithm required in 3-D
graphics can be realized with vector rotation,
the CORDIC could be mainly used in this
function block [6].

In this paper, the architecture of 3-D
rotation with CORDIC algorithm is
proposed, the proposed architecture is very
suitable for VLSI implementation, and the
computation complexity is also evaluated.
The introduction of the new concept, double
rotation CORDIC algorithm, improves
throughput in the 3-D rotation, by up to 30%
without any noticeable error occurrence. The
view of observer in 2-D display system is
performed by the 3-D central perspective
method [7], the architecture of that is
performed by 2-D CORDIC processors.

The remainder of the paper is organized
as follows. Section 2 reviews the 2-D
CORDIC algorithm; section 3 presents the
algorithm of CORDIC rotation in 3-D space,
section 4 presents the double rotation
CORDIC algorithm, the 3-D rotation with
double CORDIC rotation algorithm is
proposed in section 5, the 3-D central
perspective method performed by CORDIC
algorithm is proposed in section 6, VLSI
architectures of 3-D rotation and perspective
are described in section 7, The impact of
new algorithms and architectures is
presented and analyzed in section 8, and

 2

finally, the conclusion is given in section 9.

2. The 2-D CORDIC Algorithm

CORDIC (COordinate Rotation DIgital
Computer) is an algorithm for performing a
sequence of iteration computations using
coordinate rotation [3] [4]. This algorithm
can generate some powerful elementary
functions realized only by a simple set of
adders and shifters. The basic CORDIC
iteration equations are

i
ims

iii ymxx),(
1 2−
+ −= σ (1)

i
ims

iii xyy),(
1 2−
+ += σ (2)

imiii zz ,1 ασ−=+ (3)
where m identifies circular (m=1), linear
(m=0), and hyperbolic (m=-1) coordinate
systems, i=0, 1,2,….,n-1,

,....,5,4,4,3,2,1
,....,6,5,4,3,2,1
,....,5,4,3,2,1,0

),(=ims
1

0
1

−=
=
=

m
m
m

]2[tan),(12/1
,

ims
im mm −−−=α (4)

the rotation iσ for rotation mode)0(→nz
is)(ii zsign=σ , while for vectoring
mode)0(→ny , it is

)()(iii ysignxsign ⋅−=σ .
 Table 1 shows the elementary functions
that can be evaluated by the CORDIC
algorithm. For the i-th iteration, a scale
factor becomes),(22

, 21 ims
iim mk −+= σ .

After n iterations, the product of all the scale
factors is

∏

∏∏

=

−

=

−

=

+=

+==

n

i

ims

n

i

ims
i

n

i
imm

m

mkK

0

),(2

0

),(22

0
,

21

21 σ
 (5)

where the rotation directions are defined to
}1,1{ +−=iσ .

3. CORDIC Rotation in Three-

Dimensional Space

A vector R in three dimensional space
is shown in Fig. 1. It has Cartesian

coordinates),,(iii ZYX and spherical
coordinates),,(iiiR φθ . The vector R can be
rotated to become a new vector S which has
cartesian coordinates),,(111 +++ iii ZYX and
spherical coordinates

),,(iiiiiR βφαθ ++ [8]. The relationship
between the Cartesian coordinates and
spherical coordinates of R and S are
derived as follows:

iiii RX φθ sincos= (6)

iiii RY φθ sinsin= (7)

iii RZ φcos= (8)
)sin()cos(1 iiiiii RX βφαθ ++=+ (9)

)sin()sin(1 iiiiii RY βφαθ ++=+ (10)
)cos(1 iiii RZ βφ +=+ (11)

The eqs. (9), (10) and (11) are expanded, we
can get

)sincoscos(sin
)sinsincos(cos1

iiii

iiiiii RX
βφβφ

αθαθ
+

−=+

iiiii

iiiii

R
R

βαφθ
βαφθ

sincoscoscos
coscossincos

+
=

iiiiiiiiii RR βαφθβαφθ sinsincossincossinsinsin −−

iiiiii

iiiiii

VY
UX

βαβα
βαβα

sinsincossin
sincoscoscos

−−
+= (12)

iiiiii

iiiiiii

UX
VYY

βαβα
βαβα

sinsincossin
sincoscoscos1

++
+=+ (13)

iiiii WZZ ββ sincos1 −=+ (14)
where the iU , iV and iW are defined as
follows:

iiii RU φθ coscos= (15)

iiii RV φθ cossin= (16)

iii RW φsin= (17)
Similarly, the 1+iU , 1+iV and 1+iW are
derived as follows:

iiiiii

iiiiiii

YV
XUU

βαβα
βαβα

sinsincossin
sincoscoscos1

+−
−=+ (18)

iiiiii

iiiiiii

XU
YVV

βαβα
βαβα

sinsincossin
sincoscoscos1

−+
−=+ (19)

iiiii ZWW ββ sincos1 +=+ (20)
According to eqs. (6), (7) and (8) of the
CORDIC algorithm, the eqs. (12), (13), (14),
(18), (19) and (20) can be split into a set of
CORDIC rotations and become as follows:

 3

)222(1 2
21

i
iii

i
ii

i
iii

i
i YVXU

k
U −−−

+ +−−= ρδδρ (21)

)222(1 2
21

i
iii

i
ii

i
iii

i
i XUYV

k
V −−−

+ −+−= ρδδρ (22)

)2(1
1

i
iii

i
i ZW

k
W −

+ += ρ (23)

)222(1 2
21

i
iii

i
ii

i
iii

i
i VYUX

k
X −−−

+ −−+= ρδδρ (24)

)222(1 2
21

i
iii

i
ii

i
iii

i
i UXVY

k
Y −−−

+ +++= ρδδρ (25)

)2(1
1

i
iii

i
i WZ

k
Z −

+ −= ρ (26)

where

ii 221
1cos

−+
=α (27)

i

i
i

i 221
2sin

−

−

+
=

δα (28)

ii 221
1cos

−+
=β (29)

i

i
i

i 221
2sin

−

−

+
=

ρβ (30)

i
ik 221 −+= (31)

In the two-dimensional CORDIC
algorithm, we choose i

ii
−−= 2tan 1δα and

i
ii

−−= 2tan 1ρβ , where iδ and iρ are
{ }1,1−∈ .

The eqs. (21) and (22) can be written in the
form of matrix multiplications as follows:

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

=⎥
⎦

⎤
⎢
⎣

⎡

−

−
−

−

−

+

+

i

i
i

i

i
ii

i

i

i
i

i

i
i

ii

i

Y
X

V
U

kV
U

12
21

2

12
21

1
2

1

1

δ
δ

ρ

δ
δ

 (32)

Similarly, the eqs. (24) and (25) can be
written in the form of matrix multiplications
as follows:

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅+

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

=⎥
⎦

⎤
⎢
⎣

⎡

−

−
−

−

−

+

+

i

i
i

i

i
ii

i

i

i
i

i

i
i

ii

i

V
U

Y
X

kY
X

12
21

2

12
21

1
2

1

1

δ
δ

ρ

δ
δ

 (33)

According to eqs. (32) and (33), we find that
there are four 2-dimensional CORDIC
rotations in the 3-dimensional rotation.
Nevertheless, the scale factor of 1+iZ and

1+iW is different from that of

1+iU , 1+iV , 1+iX and 1+iY , we can prescale the
inputs or post scale the outputs by the
constant scale factor K for 1+iZ and 1+iW ,
and 2K for 1+iU , 1+iV , 1+iX and 1+iY , where

∏
−

=

=
1

0

n

i
ikK (34)

∏
−

=

=
1

0

22
n

i
ikK (35)

4. Double Rotation 2-D CORDIC

Algorithm and Architecture

The basic concept of the accelerated
CORDIC algorithm is to reduce the
iterations. The double rotation CORDIC
algorithm is developed to reduce the
iterations or computation time [9] [10]. The
double rotation CORDIC iteration equations
should be derived and the computation
complexity should be also evaluated.

The CORDIC iteration equations in a
circular coordinate system are also written in
the form of matrix multiplications.

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

−

+

+

i

i
i

i

i
i

i

i

y
x

y
x

2

2
2

2

2
2

12

12

12
21

σ
σ (36)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

+

+
+−

+

+−
+

+

+

!2

12
)12(

12

)12(
12

22

22

12
21

i

i
i

i

i
i

i

i

y
x

y
x

σ
σ (37)

According to eqs. (6) and (7), we obtain
i

i
i

i
ii

i
iii yxx 2

)12(
12

2
22

)14(
12222)22()21(+−

+
−+−

++ +−−= σσσσ (38)
i

i
iii

i
i

i
ii yxy 2

)14(
1222

)12(
12

2
222)21()22(+−

+
+−

+
−

+ −++= σσσσ (39)
)12(1

12
21

2222 2tan2tan +−−
+

−−
+ −−= i

i
i

iii zz σσ (40)
 The additional computation complexity of
parallel processing for eqs. (38) and (39) is
two carry-save additions ((3,2)CSAs) and
one shift for each iteration. In n-bit operand

system, while 1
4
−≥

ni , eqs. (38) and (39)

becomes
i

i
i

i
iii yxx 2

)12(
12

2
2222)22(+−

+
−

+ +−= σσ (41)
ii

i
i

i
ii yxy 22

)12(
12

2
222)22(++= +−

+
−

+ σσ (42)
Thus, the additional computation complexity
of parallel processing is one (3,2)CSA and
one shift for each iteration.
 The basic intention to realize the double
rotation CORDIC algorithm is to generate

 4

more σ values in each step. Now, the
proposed architecture requires two σ values
in each step. The σ -value prediction
algorithm is described as below:

i2σ is determined by sign of)2(iz , and three
equations for determining z(2i+2) are
defined as

)2tan2(tan)2()22()12(121
21

+−−−− +−=+ ii
iiziz σ (43)

)2tan2(tan)2()22()12(121
22

+−−−− −−=+ ii
iiziz σ (44)

i
iiziz 21

23 2tan)2()22(−−−=+ σ (45)
The flowchart for the 12 +iσ -prediction and

)22(+iz determination algorithm is
illustrated in Fig. 2, detailed flowcharts for
specific cases are illustrated in Fig. 3 and 4,
respectively. Now, the 12 +iσ -prediction and

)22(+iz determination algorithm is
analyzed and developed, this algorithm is
simple and easy to implement on hardware.
Thus, the algorithm is very suited to VLSI
implementation. The determination circuit of

12 +iσ and z(2i+2) is shown in Fig. 5. The
series constants of)2tan2(tan)12(121 +−−−− + ii ,

)2tan2(tan)12(121 +−−−− − ii and
)2(tan 21 i−− are stored in ROM and the size

of ROM is n
2
3 words. The accelerated

CORDIC architecture with the rotation
mode in the circular coordinate system is
shown in Fig. 6. In this architecture, the (4,2)
carry-save adder (CSA) and
carry-propagation adder (CPA) consists of
two three-input, and two-output (3,2)
carry-save adders/subtractors and one
carry-look-ahead adder (CLA).

5. Accelerated 3-D Rotation Using the
Double Rotation 2-D CORDIC Algorithm

The basic concept of the accelerated

3-D rotation is to reduce the iterations. The
double rotation CORDIC algorithm [10] is
applied to reduce the iterations or
computation time. The 3-D double rotation
iteration equations are derived and the
computation complexity is also evaluated.

The 3-D rotation equations are also
written in the form of matrix multiplications

as follows:

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

=⎥
⎦

⎤
⎢
⎣

⎡

−

−
−

−

−

+

+

i

i
i

i

i
ii

i

i

i
i

i

i
i

ii

i

Y
X

V
U

kV
U

2

2
2

2

2
22

2

2

2
2

2

2
2

2
212

12

12
21

2

12
21

1

δ
δ

ρ

δ
δ

(46)

)2(1
2

2
22

2
12 i

i
ii

i
i ZW

k
W −

+ += ρ (47)

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅+

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

=⎥
⎦

⎤
⎢
⎣

⎡

−

−
−

−

−

+

+

i

i
i

i

i
ii

i

i

i
i

i

i
i

ii

i

V
U

Y
X

kY
X

2

2
2

2

2
22

2

2

2
2

2

2
2

2
212

12

12
21

2

12
21

1

δ
δ

ρ

δ
δ

 (48)

)2(1
2

2
22

2
12 i

i
ii

i
i WZ

k
Z −

+ −= ρ (49)

According to eqs. (46), (47), (48) and (49),
we obtain

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅=⎥

⎦

⎤
⎢
⎣

⎡

+

+
−−

+

−−
+

++

+

12

12
12

12

12
12

2
1222

22

12
211

i

i
i

i

i
i

ii

i

V
U

kV
U

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅⋅−

+

+
−−

+

−−
+−−

+
+ 12

12
12

12

12
1212

122
12 12

21
21

i

i
i

i

i
ii

i
i Y

X
k δ

δ
ρ (50)

)2(1
12

12
1212

12
22 +

−−
++

+
+ += i

i
ii

i
i ZW

k
W ρ (51)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅=⎥

⎦

⎤
⎢
⎣

⎡

+

+
−−

+

−−
+

++

+

12

12
12

12

12
12

2
1222

22

12
211

i

i
i

i

i
i

ii

i

Y
X

kY
X

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⋅⋅+

+

+
−−

+

−−
+−−

+
+ 12

12
12

12

12
1212

122
12 12

21
21

i

i
i

i

i
ii

i
i V

U
k δ

δ
ρ (52)

)2(1
12

12
1212

12
22 +

−−
++

+
+ −= i

i
ii

i
i WZ

k
Z ρ (53)

where eqs. (52) and (53) are iteration
equations of the 3-D double rotation
algorithm.
Thus, the 3-D double rotation equations is
modified as shown below

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅=⎥

⎦

⎤
⎢
⎣

⎡

−

−

−−
+

−−
+

++

+

i

i
i

i

i
i

i
i

i
i

iii

i

V
U

kkV
U

2

2
2

2

2
2

12
12

12
12

2
2

2
1222

22

12
21

12
211

δ
δ

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
−

−

−

−−
+

−−
+

+

−−
+

i

i
i

i

i
i

i
i

i
i

ii

i
ii

V
U

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

14
122

12
21

12
212

δ
δ

δ
δρρ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
−

−

−

−−
+

−−
+

+

−

i

i
i

i

i
i

i
i

i
i

ii

i
i

Y
X

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

2
2

12
21

12
212

δ
δ

δ
δρ

 5

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
−

−

−

−−
+

−−
+

+

−−
+

i

i
i

i

i
i

i
i

i
i

ii

i
i

Y
X

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

12
12

12
21

12
212

δ
δ

δ
δρ

 (54)

)222(

1

2
12

122
2

22
14

1222

122
22

i
i

ii
i

ii
i

iii

ii
i

ZZWW

kk
W

−−
+

−−−
+

+
+

++−

=

ρρρρ
(55)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅=⎥

⎦

⎤
⎢
⎣

⎡

−

−

−−
+

−−
+

++

+

i

i
i

i

i
i

i
i

i
i

iii

i

Y
X

kkY
X

2

2
2

2

2
2

12
12

12
12

2
2

2
1222

22

12
21

12
211

δ
δ

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
−

−

−

−−
+

−−
+

+

−−
+

i

i
i

i

i
i

i
i

i
i

ii

i
ii

Y
X

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

14
122

12
21

12
212

δ
δ

δ
δρρ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
+

−

−

−−
+

−−
+

+

−

i

i
i

i

i
i

i
i

i
i

ii

i
i

V
U

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

2
2

12
21

12
212

δ
δ

δ
δρ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
+

−

−

−−
+

−−
+

+

−−
+

i

i
i

i

i
i

i
i

i
i

ii

i
i

V
U

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

12
12

12
21

12
212

δ
δ

δ
δρ

 (56)

)222(

.1

2
12

122
2

22
14

1222

122
22

i
i

ii
i

ii
i

iii

ii
i

WWZZ

kk
Z

−−
+

−−−
+

+
+

−−−

=

ρρρρ
 (57)

The additional computation complexity
of parallel processing for eqs. (54), (55), (56)
and (57) is three additions, one double
rotation CORDIC computation and one shit
for each iteration. In the n-bit operand

system, when 1
4
−≥

ni , eqs. (54), (55), (56)

and (57) become

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅=⎥

⎦

⎤
⎢
⎣

⎡

−

−

−−
+

−−
+

++

+

i

i
i

i

i
i

i
i

i
i

iii

i

V
U

kkV
U

2

2
2

2

2
2

12
12

12
12

2
2

2
1222

22

12
21

12
211

δ
δ

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
−

−

−

−−
+

−−
+

+

−

i

i
i

i

i
i

i
i

i
i

ii

i
i

Y
X

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

2
2

12
21

12
212

δ
δ

δ
δρ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
−

−

−

−−
+

−−
+

+

−−
+

i

i
i

i

i
i

i
i

i
i

ii

i
i

Y
X

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

12
12

12
21

12
212

δ
δ

δ
δρ

 (58)

)22(1
2

12
122

2
22

122
22 i

i
ii

i
ii

ii
i ZZW

kk
W −−

+
−

+
+ ++= ρρ (59)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅=⎥

⎦

⎤
⎢
⎣

⎡

−

−

−−
+

−−
+

++

+

i

i
i

i

i
i

i
i

i
i

iii

i

Y
X

kkY
X

2

2
2

2

2
2

12
12

12
12

2
2

2
1222

22

12
21

12
211

δ
δ

δ
δ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
+

−

−

−−
+

−−
+

+

−

i

i
i

i

i
i

i
i

i
i

ii

i
i

V
U

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

2
2

12
21

12
212

δ
δ

δ
δρ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡ −
⋅

⋅
+

−

−

−−
+

−−
+

+

−−
+

i

i
i

i

i
i

i
i

i
i

ii

i
i

V
U

kk

2

2
2

2

2
2

12
12

12
12

2
2

2
12

12
12

12
21

12
212

δ
δ

δ
δρ

 (60)

)22(1
2

12
122

2
22

122
22 i

i
ii

i
ii

ii
i WWZ

kk
Z −−

+
−

+
+ −−= ρρ (61)

Thus, the additional computation complexity
of parallel processing is two additions, one
double rotation CORDIC computation and
one shift for each iteration. The computation
time of the double rotation CORDIC
algorithm is also reduced [10]. The 3-D
rotation with conventional CORDIC
algorithm versus the 3-D rotation with
double rotation CORDIC algorithm is
shown in Fig. 7.

6. 3-D Central Perspective Method Using

CORDIC Algorithm

The 3-D central perspective method is
shown in Fig. 8 [7]. The graphic is rotated in
3-D space and mapped onto Y’-Z’ plane
perspectively. We obtain the coordinate

),,0("" zy in Y’-Z’ plane as follows:
0" =x (62)

'
'

" y
xD

Dy ⋅
−

= (63)

'
'

" z
xD

Dz ⋅
−

= (64)

where 2
0

2
0

2
0 zyxD ++= ,),,(000 zyx is the

 6

coordinate of observer, and),,(''' zyx is the
rotated coordinate.

7. VLSI Architectures for 3-D Rotation
and Perspective with CORDIC Algorithm

7.1 The Architecture of 3-D Rotation with
Conventional CORDIC Algorithm

Fig. 9 shows the architecture of the 3-D
rotation with the rotation mode in a
CORDIC circular coordinate system. In this
architecture, the),(11 ++ ii VU and),(11 ++ ii YX
generator each consists of two 2-D CORDIC
processors, two hardwire shifts and two
adders/subtrators. The 1+iW and 1+iZ
generator each consists of a half of 2-D
CORDIC Processor.

7.2 The Architecture of 3-D Rotation with
Double Rotation CORDIC Algorithm

The architecture of the 3-D rotation with
double rotation CORDIC algorithm is
shown in Fig. 10. In this architecture, the

),(11 ++ ii VU and),(11 ++ ii YX generator each
consists of two 2-D CORDIC processors, six
hardwire shifts and three adders/subtrators.
The 1+iW and 1+iZ generator each consists
of a half of 2-D double rotation CORDIC
Processor. The 3-D rotation with double
rotation CORDIC algorithm can improve the
latency time by more than thirty percent
[10].

7.3 The Architecture of 3-D perspective
Method with CORDIC Algorithm

The proposed architecture of 3-D
perspective method consists of five 2-D
CORDIC processors and one subtractor.
Two CORDIC processors operate in the
circular coordinate system for computing

2
0

2
0

2
0 zyx ++ , and three CORDIC

processors operate in the linear coordinate
system for computing "x and "y . The
architecture of 3-D central perspective
method is shown in Fig. 11.

The hardware codes of both that with
CORDIC algorithm and double rotation
algorithm are written in Verilog-hardware
description Language (HDL) [11] running
on SUN Blade 1000 workstation under
ModelSim simulation tool [12]. Both of two
architectures were synthesized by Xilinx
FPGA express tools [13] and emulated on
the Xilinx XC2V4000 FPGA platform [14].
In the 32-bit accelerated architecture of 3-D
rotation, compared with the conventional
CORDIC-based architecture of 3-D rotation,
the accelerated design improves the latency
by more than 30%. The timing diagram for
the conventional CORDIC-based
architecture and the accelerated architecture
of 3-D rotation is shown in Fig. 12. It is
designed to evaluate the hardware and to
provide an intellectual property (IP) for 3-D
graphic engine.

8. Impact of New Architectures and
Algorithms

The Euler angle method consists of

sequence of three rotations [2] [6], each
rotates one of three orthogonal axes. This
method is represented by Euler angles
correspond to the sequence of rotations
about the coordinate axes. The 3-D rotation
method is implemented by cascading two
2-D CORDIC processors [2] [6]. Lang and
Antelo proposed a method that replaces two
2-D CORDIC processors by one 3-D
CORDIC processor [6]. The sequence of
rotations consists of one 2-D CORDIC
rotation and one 3-D CORDIC rotation.
Both of them require more than two 2-D
CORDIC computations. According to the
proposed 3-D rotation algorithm, the
architecture with conventional CORDIC
processors requires one 2-D CORDIC
computation in parallelism to perform 3-D
rotation, and the architecture with double
rotation 2-D CORDIC processors requires
less than one 2-D CORDIC computation in
parallelism to perform 3-D rotation.

The 3-D central perspective method
requires four 2-D CORDIC computations in
parallelism; this method with CORDIC

 7

algorithm saves multipliers and square-root,
and the implementation of this architecture
is required by CORDIC processors only.

9. Conclusions

We have presented two

high-throughput 3-D rotation algorithms and
architectures both of them are based on 2-D
CORDIC algorithm and 2-D double rotation
CORDIC algorithm. It is required one or
less 2-D CORDIC computation to perform
3-D rotation; and the central perspective
method is also performed by 2-D CORDIC
algorithm, the architecture of the central
perspective method saves hardware and
achieves high-performance.

The proposed architectures are
implemented by 2-D CORDIC processors;
the architectures are simple and regular, and
suitable for VLSI implementation. The
graphic engine should be improved by the
proposed algorithms and architectures.

10. References

[1] D. Luebke, M. Reddy, J. D. Cohen, A.

Varshney, B. Watson, R. Huebner,
“Level of Detail for 3-D Graphics,”
Morgan Kaufmann Pub., 2003.

[2] D. H. Eberly, “3-D Game Engine
Design-A Practical Approach to
Real-Time Computer Graphics,” Morgan
Kaufmann Pub., 2001.

[3] J. E. Volder, “The CORDIC
Trigonometric Computing Technique,”
IRE Transactions on Electronic
Computers, Vol. EC-8, 1959, pp.
330-334.

[4] J. S. Walther, “A Unified Algorithm for
Elementary Functions,” Spring Joint
Computer Conference Proceedings,

Vol.38, 1971, pp.379-385.
[5] O. Mencer, L. Semeria, M. Morf, J.

Delosme, “Application of
Reconfigurable CORDIC Architecture,”
The Journal of VLSI Signal Processing,
Special Issue on Reconfigurable
Computing, March 2000.

[6] T. Lang, E. Antelo, “High-Throughput
3-D Rotations and Normalizations,”
Thirty-Fifth Asilomar Conference on
Signal, Systems and Computers, 2001,
pp.846-851.

[7] T. Y. Sung, “Survey of 3-D Perspective
Methods for Graphic Engine,” Technical
Report (SV-041117), SoC and VLSI
Signal Processing Lab., Department of
Microelectronics Engineering, Chung
Hua University, Hsinchu, Taiwan, 2004.

[8] J. Euh, J. Chittamuru, W. Burson,
“CORDIC Based Interporator for 3-D
Graphics,” IEEE Workshop on Signal
Processing Systems, 2002, pp.240-245.

[9] S. Wang, E. E. Swartzlander Jr., “Merged
CORDIC Algorithm,” Proc. Int’l Symp.
Circuits and Systems, 1995, pp.1988-1991.

[10] T. Y. Sung, C. S. Chen, M. C. Shih,
“The Double Rotation CORDIC
Algorithm: New Results for VLSI
Implementation of Fast Sine/Cosine
Generation,” 2004 International
Computer Symposium (ICS-2004),
Taipei, Taiwain, Dec. 15-17, 2004.

[11] D. E. Thomas, P. H. Moorby, The
Verilog Hardware Description Language,
Fifth Edition, Kluwer Academic Pub.
2002.

[12] Model ModelSim Products: http://www.
model.com/products.

[13] Synopsys FPGA Express, http://www.
synopsys.com/products.

[14] Xilinx FPGA products, http://www.
xilinx.com/products.

 8

Fig. 2. Flowchart for the 12 +iσ -prediction and)22(+iz determination
algorithm. Detailed flowcharts for specific cases when sign(z(2i))
evaluation returns +1 , -1, and when the algorithm is in a branching are

Table 1 Functions of CORDIC arithmetic

Coordinate
System

Rotation Mode
0)(→nz

Vectoring Mode
0)(→ny

Linear
m=0

)0()(xnx =
)0()0()0()(zxyny ⋅+=

)0()(xnx =

)0(
)0()(

x
yznz +=

Circular
m=1

))0(sin)0()0(cos)0((1)(
1

zyzx
K

nx −=

))0(sin)0()0(cos)0((1)(
1

zxzy
K

ny +=

))0()0((1)(22

1
yx

K
nx +=

)
)0(
)0((tan)0()(1

x
yznz −−=

Hyperbolic
m=-1

))0(sinh)0()0(cosh)0((1)(
1

zyzx
K

nx +=
−

))0(sinh)0()0(cosh)0((1)(
1

zxzy
K

ny +=
−

))0()0((1)(22

1
yx

K
nx −=

−

)
)0(
)0((tanh)0()(1

x
yznz −+=

iφ

iθ

z

x

iR

y

Fig.1. A vector R in three dimensional space

Begin

Evaluate
))2((2 izsigni =σ ==1

Branching No

Flowchart in Fig. 3

Yes

Flowchart in Fig. 2

For (++−≤= inii ;1
2

;0)

 9

1))2((2 +=== izsigniσ

Perform in parallel

if)"")22((()"")22(((21 +=+∧+=+ izsignizsign
then)22()22(,1 112 +=++=+ iziziσ

if)"")22((()"")22((()"")22(((321 −=+∧+=+∧−=+ izsignizsignizsign
then)22()22(,1 212 +=+−=+ iziziσ
if)"")22((()"")22((()"")22(((321 +=+∧+=+∧−=+ izsignizsignizsign

then)22()22(,1 112 +=++=+ iziziσ

if)"")22((()"")22(((21 −=+∧−=+ izsignizsign
then)22()22(,1 212 +=+−=+ iziziσ

Fig. 3. Flowchart for i-iteration for the case when))2((2 izsigni =σ evaluation returns +1

1))2((2 −=== izsigniσ

Perform in parallel

if)"")22((()"")22((()"")22(((321 +=+∧−=+∧+=+ izsignizsignizsign

then)22()22(,1 212 +=++=+ iziziσ

if)"")22((()"")22((()"")22(((321 −=+∧−=+∧+=+ izsignizsignizsign
then)22()22(,1 112 +=+−=+ iziziσ

if)"")22((()"")22(((21 +=+∧+=+ izsignizsign
then)22()22(,1 212 +=++=+ iziziσ

if)"")22((()"")22(((21 −=+∧−=+ izsignizsign
then)22()22(,1 112 +=+−=+ iziziσ

Fig. 4. Flowchart for i-iteration for the case when))2((2 izsigni =σ evaluation returns -1

σ2i+1

z(2i+2)

Sign(z2(2i+2))

2：1 Multiplexer

z1(2i+2) z2(2i+2)

Sign(z1(2i+2))

(a) Determination circuit of)22(+iz

z(2i+2)

Sign(z1(2i+2))

Sign(z2(2i+2))
σ2i

z (2i)

Δ1(2i) z1(2i+2)

z2(2i+2)
Determination

Circuit

(2:1 Multiplexer)
σ2i

z (2i)

Δ2(2i)

±

±

z (2i)

Δ3(2i)

±

σ2i+1

(b) 122 , +ii σσ and)22(+iz generator

Fig. 5. The determination circuit of i2σ , 12 +iσ and)22(+iz

 10

Hardwire shift 2-(4i+1)

σ2i

σ2i+1

y2i

Hardwire shift 2-2i Hardwire shift 2-(2i+1)

x2iσ2i σ2i+1

(4,2)CSA╱(3,2)CSA

CLA

Counter-
4
n

y2i+2

(a) (3,2)CSA/(4,2)CSA

CLA

(3,2)CSA

(3,2)CSA

X0X1X2X3

(b) vector [x2i+2 y2i+2] generator

Fig. 6. The accelerated CORDIC architecture with the rotation mode in the circular
coordinate system.

Fig. 7 3-D rotation with conventional CORDIC algorithm versus 3-D rotation with double
rotation CORDIC algorithm (

3
,

2
,

4
,

3
,1 00000

πφπθπβπα =====R)

 11

iU iV iX iY iαiδ

2-D CORDIC 2-D CORDIC

Hardwire Shift i−2 Hardwire Shift i−2 1+iα
1+iδ

ADD/SUB ADD/SUB
iρ

iρ

1+iU 1+iV
iX iY iU iV iαiδ

2-D CORDIC 2-D CORDIC

Hardwire Shift i−2 Hardwire Shift i−2 1+iα
1+iδ

ADD/SUB ADD/SUB
iρ

iρ

1+iX 1+iY

Y’

X’

Z’

z’

z’’

y’

y’’

(y’’,z’’)

(x’,y’,z’)

ρ (x0,y0,z0)

D= 2
0

2
0

2
0 zyx ++

Fig. 8. The 3-D central perspective method

 12

Hardwire Shift i−2

ADD/SUB

iW iZ

1+iW

iρ ADD/SUB

i−− 2tan 1
iβ

1+iρ

iρ

1+iβ
Fig. 9. The architecture of the 3-D Rotation with 2-D CORDIC algorithm

iU 2 iV2 iX 2 iY2 i2α i2δ

Double Rotation CORDIC Double Rotation CORDIC

 i22− 122 −− i

22 +iα
22 +iδ

ADD

22 +iU 22 +iV

SUB

 i22− 122 −− i 142 −− i 142 −− i

SUB

12 +iρ

12 +iρ

i2ρ

22 +iδ

12 +iρ

iX 2 iY2 iU 2 iV2 i2α i2δ

Double Rotation CORDIC Double Rotation CORDIC

 i22− 122 −− i

22 +iα

ADD

22 +iX 22 +iY

SUB

 i22− 122 −− i 142 −− i 142 −− i

ADD

12 +iρ

i2ρ

Hardwire Shift i−2

ADD/SUB

iZ

1+iZ

iρ

iW

 13

12,222 , ++ iii ρρβ Generator
i2β

22 +iβ

12 +iρ

i2ρ

Fig. 10. The architecture of the 3-D Rotation with Double Rotation CORDIC
algorithm

142 −− i

SUB

iZ 2

22 +iW

i2ρ

iW2

i−2 12 −−i

ADD

12 +iρ

SUB

iW2

iZ 2

142 −− i

SUB

22 +iW

i2ρ

i−2 12 −−i

ADD

12 +iρ

ADD

iZ 2

 14

2-D CORDIC

(Vectoring Mode, Circular Coordinate)

2-D CORDIC

(Vectoring Mode, Circular Coordinate)

0x 0y 0

0 0z

D

SUB

2-D CORDIC

(Vectoring Mode, Linear Coordinate)

D 'x

'xD −
0

'xD
D
−

2-D CORDIC

(Rotation Mode, Linear Coordinate)

0 'xD
D
−

 'y

''y

2-D CORDIC

(Rotation Mode, Linear Coordinate)

0 'xD
D
−

 'z

''z

Fig. 11. The architecture of 3-D central perspective method

Fig. 12. The timing diagram for the conventional CORDIC-based architecture and the
accelerated architecture of 3-D rotation (CORDIC_01: Conventional CORDIC,
CORDIC 02: Double rotation CORDIC)

