
 1

Data Replication and Job Scheduling on Cluster Grid for

Data-Intensive Applications

Ruay-Shiung Chang, Shin-Yi Lin, and Jih-Sheng Chang
Department of Computer Science and Information Engineering, National Dong Hwa

University, Shoufeng, Hualien 974, TAIWAN
rschang@mail.ndhu.edu.tw

Abstract

In data grids, distributed scientific and
engineering applications often require access
to large amount of data (terabytes or
petabytes). Data access time depends on
bandwidth, especially in cluster grid.
Network bandwidth within a grid cluster is
larger than across clusters. In a
communications environment, the major
bottleneck to support fast data access in
Grids is the high latencies of Wide Area
Networks (WANs). Effective scheduling in
such network architecture can reduce the
amount data transfer across WANs by
dispatch a job to where the needed data is
present. In another alternative, data
replication mechanism generates multiple
copies of the existing data to reduce the
access opportunity from remote site. To
avoid WAN bandwidth bottleneck in a
cluster grid, we develop a job scheduling
policy, called HCS (Hierarchical Cluster
Scheduling), and dynamic data replication
strategy, called HRS (hierarchical
Replication Strategy) to improve the latency
of data accesses. We use simulation studies
to evaluate various data access situations.
The simulation results show that HCS and
HRS successfully reduces data access time
and the amount of inter-communications in
comparing to other methods in cluster grid.

Keywords: Cluster Grid, Job Scheduling,
Data Replication

1. Introduction

In data grid [1], Distributed scientific
and engineering applications often require
access to large amount of data (terabytes or
petabytes). Access distributed and huge
amount of data depend on network
bandwidth, the broader bandwidth you take,
the less access latency you get. The major
bottleneck for supporting fast data access in
Grid is the high latencies of WANs and
Internet. Namely, slow data access can
throttle the performance of data-intensive
applications running on grid computers. This
situation can observe in hierarchical network
structure. In Figure1.1, a simplest
hierarchical form of a grid system, called
cluster grid, provides a computational
service to the group level. A Cluster
represents organization unit which is group
of sites that are geographically located
closely over Internet. We define two kinds
of communications between sites in cluster
grid. Intra-communication is the
communication between sites within cluster.
On the contrary, inter-communication is the
communication between sites across clusters.
Network bandwidth between sites within a
cluster will be broader than across clusters.
When the required data is
intra-communication, less time will be
consumed to fetch it. Therefore, to reduce
access latency and to avoid WAN bandwidth
bottleneck in cluster grid, it is important to
keep away from large number of
inter-communications.

 2

Figure 1.1: The Cluster Architecture

To address this problem, we make
inter-communication into two aspects, job
scheduling and replication mechanism.
Consider a case that any of the authorized
users submits jobs to solve data-intensive
problems. We demand that jobs be executed
as fast as possible. The size of the data used
on Data Grid is from terabyte to petabyte.
Scheduling is considered a necessity,
because data movement is time-consuming.
Making scheduling decisions for each job on
the appropriate resources is important based
on workload and features of computational
capability, location of data, and network
load. If scheduling a job to a site where the
required data is present, the job can process
data in this site without any transmission
delay for getting data from a remote site.
Otherwise, accessing data will have long
latency and consume network bandwidth. It
will also encumber the efficiency of job
execution. By data-intensive nature, it is
important to take data location into account
when dispatching job to a suitable site.

Therefore, it would be inefficient that
scheduling algorithm invariably stresses the
importance of computational capability and
disregard data locations, and vice versa.
Insufficient computing capability and cost
for fetching remote data both encumber the
efficiency of job execution. Job scheduling
policy affects implicitly the chances of
accessing data from remote sites. If we
consider additional cluster location,
inter-communications could be avoided.

Data replication is an important
optimization step to manage large data by
replicating data in geographically distributed
data stores. Previous replication strategies
show that replicating data can offer high
data availability, low bandwidth

consumption. If a site increases hit ratio of
amount of data, the frequency of remote data
access is going to decrease. This can reduce
job execution time and increase the
robustness of Grid application.
Inter-communications also can be avoided,
if data within cluster is the top priority for
accessing.

Based on the above-mentioned
principles, our scheduling policy considers
the locations of required data, the access
cost and the job queue length of a computing
node, called HCS (Hierarchical
Cluster-based Scheduling). HCS is a
hierarchical scheduling model that takes
cluster information account and reduces
search time of appropriate computing node.
Our replication strategy, called HRS
(Hierarchical Replication Strategy),
integrates previous replication strategy and
increases the chances of accessing data at a
nearby node. They are simulated in
OptorSim[2] and experiments with various
replica strategies. The result show that HCS
and HRS successfully reduces data access
time and the amount of
inter-communications in comparing to other
combinations in cluster grid.

This rest of this thesis is organized as
follows. Section 2 gives an overview of
previous work. Section 3 introduces our
HCS policy and HRS replication strategy.
We show results from simulations in Section
4. Finally, Section 5 concludes the thesis and
outlines some future work.

2. Related Work

As jobs are data intensive, scheduling
issues often involve effective computation
and data management in the Data Grids. The
replication of data sets is not a really new
technique. Data replication has been around
for decades and it is now adapted to the Grid
environment. Similarly, the scheduling on
the data grid is still a recent grid computing
activities. In [3], K. Ranganathan and I.
Foster present six different replica strategies
and evaluate with three different data

 3

patterns. The results of simulation indicate
that different access pattern needs different
replica strategy and they have dramatically
improved in bandwidth savings or access
latency. Two strategies performed the best
in their simulation: Cascading and Fast
Spread when compared to traditional
strategies. They only show that the replica
strategy to be used depending on the data
access patterns.

K. Ranganathan and I. Foster also
propose a variety of techniques to
intelligently replicate data across sites and
assign jobs to sites in data grid [4]. They
show that job scheduling involves loosely
coupled jobs and large data sets distributed
remotely, so that these two methods can be
implemented and optimized separately. The
significance of data location also has
recognized in grid scheduling.

These replication strategies mentioned
above [3][4] aimed to reduce the message
traffic in the network but the data mapping
is not optimal. In [5], a replication algorithm
is tested which uses a cost model to predict
whether replicas are worth creating. It is
found to be more effective in reducing
average job time than the base case where
there is no replication. The simulation
architecture used was based on a structure
that contrasts to the Data Grid architecture.

Like previous scheduling algorithm, the
Close-to-Files (CF) algorithm [6] schedules
a job to least load processors close to a site
where data are present. The simulation
results show that CF can achieve good
performance when compared to WF
(Worst-Fit) job placement algorithm, which
places job components on the execution sites
with the largest number of idle processors.

A closer research to the results
presented in our paper is BHR (Bandwidth
Hierarchy based Replication) [7] and [4].
BHR extends current site-level replica
optimization study into the “network-level”
based on hierarchy of bandwidth appeared in
Internet. It means that BHR maximizes the
number of required data in the same region
in order to fetch replica faster, since

bandwidth within region would be broader.
They record regional popularity of files.
BHR optimizer selects the best replica for a
job and if local storage is already fill up, it
will delete duplicated replica in other site
within region. In case of storage space is
still deficient, BHR remove unpopular files
from the “regional point” for the second
time. Our replication strategy, HRS, follow
BHR concept of maximizing hit ratio of
required data within a cluster. Unlike BHR,
ours is focus on avoiding large number of
inter-communications.

3. Scheduling and Replication
Algorithm

We propose two functionalities by
utilizing the hierarchical network structure:
HCS, which is a job scheduling policy, and
HRS, which is a replication strategy. For
each, we define and evaluate various
different algorithms by using a simple
network performance model.

3.1. Monitoring Network Performance
A poor network performance will limit

the efficiency of data transfer and increase
the job execution time further. Thus,
network performance is the main criteria
used in evaluating the access cost of
required files and replica selection. However,
network performance has kaleidoscopic
changes. Predicting Network performance
can be defined as estimating the future
available bandwidth between grid sites
across wide-area networks. To have a more
efficient use of the resource, our job
scheduling infrastructure and replica
selection relies heavily on prediction of
network performance. However, the
complexity of gathering end-to-end network
performance of resources would be
increased with the number of grid sites, even
if using some particular technology can
reduce complexity away from N2-N, such as
in NWS that network sensors are organized
hierarchically [8]. Because the wide-area
links often are orders of magnitude slower
than links of local networks, bandwidth

 4

within cluster would be broader than WANs.
To further reduce bandwidth consumption
from probes for prediction, we propose a
model to simplify current network
performance prediction. It only measures
bandwidth of WANs, shown as dotted lines
in Figure 3.1.

Figure 3.1: cluster-to-cluster Bandwidth

We assume each cluster has a leader or
gateway to probe other cluster leaders.
When communication is across two clusters,
each pair of sites between two clusters has
semantically related flows that share a
common intermediary path, typically
between first- and last-hop routers.
Moreover, bottleneck bandwidth of a
network path often occurs in wide-area links.
With less accuracy, then, it is enough to
probe a single clusterA-clusterB process pair
to determine what the performance of any
connection between clusterA and clusterB
will be. In addition, while communication is
within a cluster, each grid site observes
approximately the same network
performance, so the influence of bandwidth
within a cluster on scheduling and
replication can be ignored. This simple
model that gathers a set of cluster-to-cluster
performance would require C2-C probes,
where C is the number of clusters.

3.2. Hypothesis
Network performance can be converted

into cost model. There are three factors that
affect scheduling of job j: S, R, Q, where Sj
is the site to which the job j is scheduled, R
is the list of LFN of replicas needed by the
job and Q is the queuing latency for a job j
at the site Sj. The replicas needed to execute
this job are represented as R = {LFN1,
LFN2, …, LFNn}. For a grid site Sj, we
divide the replicas into three subsets

according to the availability of LFNi in Sj.
The first subset is on-site set Rj

on that
contains all the locally available replicas.
The second subset is intra-site set Rj

intra that
contains the rest of replicas that can be
found in the local cluster C. The third subset
is inter-site set Rj

inter that contains the other
replicas that must be accessed from other
clusters. For each LFNi in Rj

inter, assume the
bandwidth from Sj to PFNi (to the site that
LFNi resides) is Bji. Then the time needed to
retrieve PFNi to Sj is |LFNi|/Bji, where |LFNi|
denotes the size of replica denoted by LFNi.
We define some cost terms.

Inter-cluster-communication-cost(j
xIrC):

If the job j is dispatched to cluster x, the cost
of inter-communications would be
calculated by using the cluster-to-cluster
bandwidth.

∑×=
j

interi RinLFNallfor ji

i

j

j
x B

LFN
IrC

1
α

 (1)

where αj is a constant reflecting the
degree of parallelism in Sj for replica
downloading. j

xIrC represents the time
needed to have all the replicas in Rj

inter
available locally in Sj.
Intra-cluster-communication-cost(j

SjIaC):For
job j, the cost of intra-communications at
site Sj is represented as the total file size of
Rj

on, since bandwidth in the local cluster is
assumed to be plentiful and roughly the
same from sites to sites.

i
RLFNf

j
Sj LFNIaC

j
oni

∑=
in allor

 (2)

We assume that each file has the same
size, so j

SjIaC can be regarded as |Rj
on|

which denotes the number of replicas in
Rj

on.
Queuing latency (Qj): If job j is going to be
scheduled to Sj in cluster x, queuing latency
Qj will be the cost of running all the jobs
that have queued at Sj. Therefore,

∑
=

+=
m

k

k
x

k
xj IaCIrCQ

1

)((3)

 5

where 1,2,…,m are jobs queued before
job j.
3.3. HCS (Hierarchical Cluster-based
Scheduling) Algorithm

Previous job schedulers except
Random scheduler search all resources to
find the best one that has the lowest cost.
HCS improves traditional schedulers in two
aspects. First, HCS takes into account
hierarchical cluster grid structure and all of
data replicas owned by a cluster. Figure 3.2
is a simple example. There is a grid job that
requires four files for execution and the four
files are distributed over four clusters. If we
schedule a job to the cluster based on
highest hit ratio of required replicas (most of
required replicas for the job available within
cluster), like clusterB, the job execution time
and the number of
inter-cluster-communications would be
reduced since access data can be faster
(broader bandwidth within a cluster). In
contrast, if scheduling a job to the cluster
with few of required replicas, like clusterD,
the number of inter-cluster-communications
and access latency would be increased. It is
possible that the amount of replica in one
cluster is more than the other clusters but the
total replicas size may be smaller,
scheduling a job by using the number of
replicas is inexact. Thus, to distribute the
jobs to different sites, we propose to
schedule jobs based on the cost model
described in that last section.

Figure 3.2: As example in Cluster Grid

Second, searching the best site from a
huge amount of distributed sites would lead
to long latency. HCS uses a hierarchical tree
to schedule a job and minimize the overhead
of searching for the suitable site, as shown
in Figure 3.3. There are two-step decision
processes. The first step selects a cluster to

minimize the
inter-cluster-communication-cost (j

CIrC).
Referring back to the example shown in
Figure 3.2, the values of j

CIrC for each
cluster are:
(1) In clusterA, it needs to access File2 and
File4. The best PFNs of File2 and File4
are both from clusterC that has minimum
data latency (j

ClusterAIrC = 4 sec).

(2) In ClusterB, it has most of the required
replicas and only needs to access File3. But
external bandwidth may be congested.
Accessing the best PFN of File3 from
clusterA, (j

ClusterBIrC =5sec).

(3) In ClusterC, it lacks File1 and File3.
The best PFNs of File1 and File3 are in
clusterA (j

ClusterCIrC =4sec).

(4) In ClusterD, it needs to access File1,
File2, and File4 for job execution. The
latency of moving File1 from clusterA, File2
and File4 form clusterC is j

CusterDIrC =7sec.

More than one cluster has minimum
value of j

CIrC (clusterA and clusterC), in
this situation, we will select one cluster
randomly. Therefore, the job is scheduled
onto clusterA or clusterC. This example
shows that the cluster that has highest match
of required replicas may not be the optimal
solution.

After the suitable cluster is selected
from Cluster Grid, the second step selects
the best site Sj from local cluster based on
the combined cost of moving replicas into
the site Sj (intra-cluster-communication-cost)
and the wait time in the queue in the site Sj
(Queuing latency). The job is scheduled
onto the site which has the minimum
combined cost.

Figure 3.3: HCS Job Scheduling

 6

3.4. HRS (Hierarchical Replication
Strategy) Algorithm

After a job is scheduled to Sj, the
requested data will be transferred to Sj to
become replicas. HRS (Hierarchical
Replication Strategy) then determines how
to handle this replica, as shown in Figure 3.4.
If there is enough disk space, the replica is
stored. Otherwise, if this replica is from a
site in the local cluster, it is only stored in
the temporary buffer and will be deleted
after the job completes. If this replica is
from other clusters, occupied space will be
released to make room for this new replica,

as presented by procedure 1 in Figure 3.4.
The first choice to be removed is the replica
that already exists in other sites in the same
cluster. After all these locally available
replicas are deleted, if the space is still
insufficient, least frequently used replica
will be the next target for removal, and so on
until enough space is available. To conclude,
HRS considers inter-cluster replica
transference as very costly. Therefore, the
successfully received replicas must be stored
locally such that all other sites in the same
cluster will not have to replicate them again
later.

HRS replication strategy :
1. if (the needed replica is not in a site)
 if (replica is in the same cluster)

select the replica with minimum intra-cluster-communication-cost within cluster.
else

select the replica with minimum intra-cluster-communication-cost between cluster.
2. if (enough available space in local storage to store new replica)

Store it;
else {

3. if (new replica is duplicated in other sites within region) {
 Terminate optimizer; // avoid duplication in the same cluster
 }else {
 for (each file in local storage) {
 if (file is duplicated in other sites within region)
 delete duplicated file;
 if (enough free space to store new replica)
 break;
 }
 }
4. if (!enough free space) {

using LFU replacement algorithm to delete unpopularity files
until has enough available space.

 if (enough free space)
 break;
 }
 }
 if (enough free space)

 7

 Store new replica;
}

Figure 3.4: HRS replication strategy

3.5. HRS vs. BHR (Bandwidth Hierarchy
based Replication)[16]

HRS replication strategy uses the
concept of “network locality” as BHR [7].
The difference between HRS and BHR can
be observed in two aspects. First, required
replica within the same cluster is always the
top priority used in HRS, while BHR
searches all sites to find the best replica and
has no distinction between intra-cluster and
inter-cluster. It could be anticipated that
HRS will avoid
inter-cluster-communications and be stable
in hierarchical network architecture with
variable bandwidth. Second, HRS considers
popularity of replicas at site level, while
BHR is based on region level.

4. Experiments

We use OptorSim to evaluate the
performance of different combinations of
job scheduling algorithms and replication
strategies. OptorSim was developed to
mimic the structure of a real Data Grid. All
of general components are included into it
with an emphasis on file access optimization
and dynamic replication strategies. We have
modified some components and embedded
HCS and HRS modules in OptorSim to
exactly match our needs. Behavior of
OptorSim is set up and controlled by using
configuration files. We describe in turn the
simulation framework, experiments
performed, and results.

4.1. Simulation Framework
To simplify the requirements, data

replication approaches in Data Grid
environments commonly assume that the
data is read-only. It means that they can be
replicated without having to assure change
propagation back to the master copy. This is

reasonable assumption as it is discussed in
several scenarios [9] [10]. Consequently, all
replicas are consistent. To prevent that all
copies of a same file are deleted, for each
file, there is one master file that contains the
original copy of data samples and cannot be
deleted by the replication strategies.

4.2. Experimental Environment
For the experiments, the cluster grid

topology of the simulated platform is given
in Figure 4.1 and this topology is from the
simulation architecture of BHR. Node 35
holds all the master files at the beginning of
the simulation. Each dotted line between
two nodes shows the inter-cluster
communication.

Figure 4.1: Topology of the simulated
platform.

Table 1 specifies the simulation
parameters used in our study. While running,
jobs were randomly picked from 50 job
types based on probability of each job, then
submitted to the Resource Broker at regular
intervals until 1000 jobs are submitted. Thus,
some job types would occur frequently so
that certain required replica access
repeatedly.

Table 1: Simulation parameters
Topology Parameter Value

No. of cluster 4
No. of sites in each cluster 13
Storage space at each site 50GB

1000 Mbps (WAN)Connectivity Bandwidth 1000 Mbps (LAN)

 8

Grid Job Parameter Value
No. of jobs 1000
No. of job types 50
No. of file accessed per job 15
Size of single file 1GB
Total size of files 750GB

Files are accessed sequentially within a
job without any access pattern. HCS will be
compared with an OptorSim scheduler that
searches all sites to find available CE by
using a combination of access cost for the
files and the queue length of waiting jobs,
called QAC (Queue Access Cost). QAC
performs better than other scheduler in
OptorSim [11]. Additionally, HRS will be
compared with LRU (Least Recently Used),
LFU (Least Frequently Used), BHR
(Bandwidth Hierarchy based Replication).
The LRU algorithm always replicates and
then deletes those files that have been used
least recently. Similarly, LFU deletes the
least frequently accessed file in recent past.
We ran a total of six simulation experiments,
which two kinds of scheduling policy
combined four kinds of replication strategies.
For experiment, we measure:
(1) Total job execution time (queuing
time+ access latency+ executing time)
(2) Number of inter-communications
(3) Computing resource usage: the
percentage of time that CEs are in active
state at the period of job completion.
4.3. Experiment Results and Discussion

The following figures show the
achieved results to complete 1000 jobs for
each combination of the data replication and
job scheduling algorithms. For replication
strategies, LRU and LFU show similar
performance in Figure 4.2. [1] shows the
same results. We implement BHR
replication strategy into OptorSim. Total job
execution time is about 30% faster using
BHR optimizer than LRU and LFU.
Furthermore, we take benefit from
network –level locality of BHR and simplify
its replica replacement model. Thus, HRS
successfully accelerates total time up to
40%.

0

500000

1000000

1500000

2000000

LRU LFU BHR HRS

QAC
HCS

Figure 4.2: Total job execution times for
various job scheduling and replication

algorithms.

For job scheduling policy, HCS can
improve performance about 10%~20%. The
reason is that LRU and LFU do not take
hierarchy network structure into account, so
that HCS can reduce access latency and
reduce 20% of total job execution time.

However, BHR and HRS both consider
hierarchy of bandwidth in Internet,
improved space of HCR is within limits.
Total job execution time is about 10% faster
using HCS job scheduling with BHR or
HRS. HCS combined with HRS is about
50% less than QAC with LRU or LFU.

0%

20%

40%

60%

80%

100%

LRU LFU BHR HRS

QAC
HCS

Figure 4.3: Computing resource usage.

As Figure 4.3 illustrates, computing
resource usage is the percentage of time that
CEs are in active state. It depends on job
execution time, thus, computing resource
usage shows almost the same performance
in Figure 4.2. In the same simulation, total
job execution time is decreased, computing
resource usage is relative to increase.

 9

0

500

1000

1500

2000

2500

LRU LFU BHR HRS

QAC
HCS

Figure 4.4: Number of
inter-communications.

Based on Cluster Grid, HCS and HRS
both reduce the number of
inter-communications at about 20%, as
shown in Figure 4.4. The results show that
HCS and HRS save successfully on
bandwidth over Internet.

4.4. Discussions
To analyze the distribution of jobs

easily, there is a simplified example built in
four clusters, each cluster has three grid sites
and 500 jobs. HCS schedules jobs to certain
specific sites and specific cluster. After all
jobs are done, it can be observed that the
distribution of jobs centralizes in some sites
shown in Figure 4.6 (a). Similarly, the
remainder of file on the site would belong to
fixed file types.

On the contrary, the job distribution of
QAC is out of order shown in Figure 4.6 (b).
One site may have executed every job type.
Files in that site are changeful.

0

10

20

30

40

0 3 6 9 12

jobA

jobB

jobC
jobD

jobE

jobF

0

10

20

30

40

0 3 6 9 12

jobA

jobB

jobC
jobD

jobE

jobF

Figure 4.6: 500 jobs distribution (a) HCS

with HRS (b) QAC with LFU.

HCS might lead some specific sites to
heavy load, if a large amount of that certain
job is submitted to grid. Also, some sites
would be in starvation. However, scheduling
jobs to site or cluster without data present
spent more access latency than queue time at
site with data and heavy load, since network
bandwidth still fail to keep up with
computing capacity, specifically the size of
data is from terabyte to petabyte.

5. Conclusions and Future Work

We have addressed the problem of data
movement operations in cluster grid
environment. To achieve good network
bandwidth utilization and data access time,
we reduce the amount of inter-cluster
communications. In support of this
investigation, we propose a job scheduling
policy (HCS) that considers not only
computational capability and data location
but also cluster information, and a dynamic
replica optimization strategy (HRS) where
the nearby data is the top priority to access
then generating new replicas.

The simulation results show, first of all,
that HCS and HRS both get better
performance of inter-cluster bandwidth than
other scheduling policy and replica
strategies. Second, we can achieve
particularly good performance with HCS in
which jobs are always scheduled to cluster
where most of data are located, and a
separate HRS process at each site access
dataset within the same cluster. Experiment
data showed HCS scheduling with HRS
replica strategy have an almost 50%
reduction in total job execution time from
the traditional algorithms such as LRU or
LFU. Future work will implement our HCS
job scheduling and HRS replication strategy
into Taiwan UniGrid [12].

Acknowledgements: This research is
supported in part by NSC under contract
number 93-2213-E-259-013 and
93-2213-E-259-014. The authors would also

 10

like to acknowledge the National Center for
High-Performance Computing in providing
resources under the national project
“ Taiwan Knowledge Innovation National
Grid”.
6. References

[1] A. Chervenak, I. Foster, C. Kesselman,
C. Salisbury, and S. Tuecke, “The Data
Grid: Towards an Architecture for
Distributed Management and Analysis
of Large Scientific Datasets”, Journal
of Network and Computer Applications,
vol. 23, pages 187-200, 2000.

[2] W. H. Bell, D.G. Cameron, L. Capozza,
P. Millar, K. Stockinger, and F. Zini,
“Simulation of Dynamic Grid
Replication Strategies in OptorSim”,
Proceedings of the Third ACM/IEEE
International Workshop on Grid
Computing (Grid2002), Baltimore,
USA, vol. 2536 of Lecture Notes in
Computer Science, pages 46-57,
November 2002.

[3] I. Foster, and K. Ranganathan,
“Identifying Dynamic Replication
Strategies for High Performance Data
Grids”, Proceedings of 3rd IEEE/ACM
International Workshop on Grid
Computing, vol. 2242 of Lecture Notes
on Computer Science, pages 75-86,
Denver, USA, November 2002.

[4] I. Foster, and K. Ranganathan,
“Decoupling Computation and Data
Scheduling in Distributed
Data-intensive Applications”,
Proceedings of the 11th IEEE
International Symposium on High
performance Distributed Computing
(HPDC-11), IEEE, CS Press, pages
352-358, Edinburgh, U.K., July 2002.

[5] E. Deelman, H. Lamehamedi, B.
Szymanski, and S. Zujun, “Data
Replication Strategies in Grid
Environments”, Proceedings of 5th
International Conference on
Algorithms and Architecture for
Parallel Processing (ICA3PP'2002),
IEEE Computer Science Press, pages

378-383, Bejing, China, October 2002.
[6] H.H. Mohamed and D.H.J. Epema, “An

Evaluation of the Close-to-Files
Processor and Data Co-Allocation
Policy in Multiclusters”, In 2004 IEEE
International Conference on Cluster
Computing, IEEE Society Press, pages
287-298, San Diego, California, USA ,
September 2004.

[7] Sang-Min Park, Jae-Hoon Kim,
Young-Bae Go, and Won-Sik Yoon,
"Dynamic Grid Replication strategy
based on Internet Hierarchy", Lecture
Note in Computer Science,
International Workshop on Grid and
Cooperative Computing, vol. 1001,
pp.1324-1331, Dec. 2003.

[8] Jim Hayes, Neil T. Spring, and Rich
Wolski, “The network weather service:
a distributed resource performance
forecasting service for metacomputing”,
Future Generation Computer Systems,
Vol.15 n.5-6, Pages 757-768, October
1999.

[9] Wolfgang Hoschek, Francisco Javier
Jaén-Martínez, Asad Samar, Heinz
Stockinger, and Kurt Stockinger. "Data
Management in an International Data
Grid Project," Proceedings of First
IEEE/ACM International Workshop on
Grid Computing (Grid'2000), Lecture
Notes in Computer Science, Vol. 1971,
pages 77-90, Bangalore, India,
December 2000.

[10] P. Kunszt, E. Laure, H. Stockinger, and
K. Stockinger, “Advanced Replica
Management with Reptor”,
Proceedings of 5th International
Conference on Parallel Processing and
Applied Mathemetics (PPAM 2003),
pages 848-855, Czestochowa, Poland,
September 2003.

[11] DG Cameron, AP Millar, and C.
Nicholson, “OptorSim: a Simulation
Tool for Scheduling and Replica
Optimisation in Data Grids”,
Proceedings of Computing in High
Energy Physics, CHEP 2004, Interlaken,

 11

Switzerland, September 2004.
[12] Taiwan UniGrid Project Portal Site,

2003, http://unigrid.nchc.org.tw/

