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Abstract 

In data grids, distributed scientific and 
engineering applications often require access 
to large amount of data (terabytes or 
petabytes). Data access time depends on 
bandwidth, especially in cluster grid. 
Network bandwidth within a grid cluster is 
larger than across clusters. In a 
communications environment, the major 
bottleneck to support fast data access in 
Grids is the high latencies of Wide Area 
Networks (WANs). Effective scheduling in 
such network architecture can reduce the 
amount data transfer across WANs by 
dispatch a job to where the needed data is 
present. In another alternative, data 
replication mechanism generates multiple 
copies of the existing data to reduce the 
access opportunity from remote site. To 
avoid WAN bandwidth bottleneck in a 
cluster grid, we develop a job scheduling 
policy, called HCS (Hierarchical Cluster 
Scheduling), and dynamic data replication 
strategy, called HRS (hierarchical 
Replication Strategy) to improve the latency 
of data accesses. We use simulation studies 
to evaluate various data access situations. 
The simulation results show that HCS and 
HRS successfully reduces data access time 
and the amount of inter-communications in 
comparing to other methods in cluster grid. 

Keywords: Cluster Grid, Job Scheduling, 
Data Replication 

1. Introduction 

In data grid [1], Distributed scientific 
and engineering applications often require 
access to large amount of data (terabytes or 
petabytes). Access distributed and huge 
amount of data depend on network 
bandwidth, the broader bandwidth you take, 
the less access latency you get. The major 
bottleneck for supporting fast data access in 
Grid is the high latencies of WANs and 
Internet. Namely, slow data access can 
throttle the performance of data-intensive 
applications running on grid computers. This 
situation can observe in hierarchical network 
structure. In Figure1.1, a simplest 
hierarchical form of a grid system, called 
cluster grid, provides a computational 
service to the group level. A Cluster 
represents organization unit which is group 
of sites that are geographically located 
closely over Internet. We define two kinds 
of communications between sites in cluster 
grid. Intra-communication is the 
communication between sites within cluster. 
On the contrary, inter-communication is the 
communication between sites across clusters. 
Network bandwidth between sites within a 
cluster will be broader than across clusters. 
When the required data is 
intra-communication, less time will be 
consumed to fetch it. Therefore, to reduce 
access latency and to avoid WAN bandwidth 
bottleneck in cluster grid, it is important to 
keep away from large number of 
inter-communications.  
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Figure 1.1: The Cluster Architecture 

To address this problem, we make 
inter-communication into two aspects, job 
scheduling and replication mechanism. 
Consider a case that any of the authorized 
users submits jobs to solve data-intensive 
problems. We demand that jobs be executed 
as fast as possible. The size of the data used 
on Data Grid is from terabyte to petabyte. 
Scheduling is considered a necessity, 
because data movement is time-consuming. 
Making scheduling decisions for each job on 
the appropriate resources is important based 
on workload and features of computational 
capability, location of data, and network 
load. If scheduling a job to a site where the 
required data is present, the job can process 
data in this site without any transmission 
delay for getting data from a remote site. 
Otherwise, accessing data will have long 
latency and consume network bandwidth. It 
will also encumber the efficiency of job 
execution. By data-intensive nature, it is 
important to take data location into account 
when dispatching job to a suitable site.  

Therefore, it would be inefficient that 
scheduling algorithm invariably stresses the 
importance of computational capability and 
disregard data locations, and vice versa. 
Insufficient computing capability and cost 
for fetching remote data both encumber the 
efficiency of job execution. Job scheduling 
policy affects implicitly the chances of 
accessing data from remote sites. If we 
consider additional cluster location, 
inter-communications could be avoided.  

Data replication is an important 
optimization step to manage large data by 
replicating data in geographically distributed 
data stores. Previous replication strategies 
show that replicating data can offer high 
data availability, low bandwidth 

consumption. If a site increases hit ratio of 
amount of data, the frequency of remote data 
access is going to decrease. This can reduce 
job execution time and increase the 
robustness of Grid application. 
Inter-communications also can be avoided, 
if data within cluster is the top priority for 
accessing. 

Based on the above-mentioned 
principles, our scheduling policy considers 
the locations of required data, the access 
cost and the job queue length of a computing 
node, called HCS (Hierarchical 
Cluster-based Scheduling). HCS is a 
hierarchical scheduling model that takes 
cluster information account and reduces 
search time of appropriate computing node. 
Our replication strategy, called HRS 
(Hierarchical Replication Strategy), 
integrates previous replication strategy and 
increases the chances of accessing data at a 
nearby node. They are simulated in 
OptorSim[2] and experiments with various 
replica strategies. The result show that HCS 
and HRS successfully reduces data access 
time and the amount of 
inter-communications in comparing to other 
combinations in cluster grid. 

This rest of this thesis is organized as 
follows. Section 2 gives an overview of 
previous work. Section 3 introduces our 
HCS policy and HRS replication strategy. 
We show results from simulations in Section 
4. Finally, Section 5 concludes the thesis and 
outlines some future work. 

2. Related Work 

As jobs are data intensive, scheduling 
issues often involve effective computation 
and data management in the Data Grids. The 
replication of data sets is not a really new 
technique. Data replication has been around 
for decades and it is now adapted to the Grid 
environment. Similarly, the scheduling on 
the data grid is still a recent grid computing 
activities. In [3], K. Ranganathan and I. 
Foster present six different replica strategies 
and evaluate with three different data 
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patterns. The results of simulation indicate 
that different access pattern needs different 
replica strategy and they have dramatically 
improved in bandwidth savings or access 
latency. Two strategies performed the best 
in their simulation: Cascading and Fast 
Spread when compared to traditional 
strategies. They only show that the replica 
strategy to be used depending on the data 
access patterns.  

K. Ranganathan and I. Foster also 
propose a variety of techniques to 
intelligently replicate data across sites and 
assign jobs to sites in data grid [4]. They 
show that job scheduling involves loosely 
coupled jobs and large data sets distributed 
remotely, so that these two methods can be 
implemented and optimized separately. The 
significance of data location also has 
recognized in grid scheduling.  

These replication strategies mentioned 
above [3][4] aimed to reduce the message 
traffic in the network but the data mapping 
is not optimal. In [5], a replication algorithm 
is tested which uses a cost model to predict 
whether replicas are worth creating. It is 
found to be more effective in reducing 
average job time than the base case where 
there is no replication. The simulation 
architecture used was based on a structure 
that contrasts to the Data Grid architecture. 

Like previous scheduling algorithm, the 
Close-to-Files (CF) algorithm [6] schedules 
a job to least load processors close to a site 
where data are present. The simulation 
results show that CF can achieve good 
performance when compared to WF 
(Worst-Fit) job placement algorithm, which 
places job components on the execution sites 
with the largest number of idle processors. 

A closer research to the results 
presented in our paper is BHR (Bandwidth 
Hierarchy based Replication) [7] and [4]. 
BHR extends current site-level replica 
optimization study into the “network-level” 
based on hierarchy of bandwidth appeared in 
Internet. It means that BHR maximizes the 
number of required data in the same region 
in order to fetch replica faster, since 

bandwidth within region would be broader. 
They record regional popularity of files. 
BHR optimizer selects the best replica for a 
job and if local storage is already fill up, it 
will delete duplicated replica in other site 
within region. In case of storage space is 
still deficient, BHR remove unpopular files 
from the “regional point” for the second 
time. Our replication strategy, HRS, follow 
BHR concept of maximizing hit ratio of 
required data within a cluster. Unlike BHR, 
ours is focus on avoiding large number of 
inter-communications. 

3. Scheduling and Replication 
Algorithm 

We propose two functionalities by 
utilizing the hierarchical network structure: 
HCS, which is a job scheduling policy, and 
HRS, which is a replication strategy. For 
each, we define and evaluate various 
different algorithms by using a simple 
network performance model. 

3.1. Monitoring Network Performance  
A poor network performance will limit 

the efficiency of data transfer and increase 
the job execution time further. Thus, 
network performance is the main criteria 
used in evaluating the access cost of 
required files and replica selection. However, 
network performance has kaleidoscopic 
changes. Predicting Network performance 
can be defined as estimating the future 
available bandwidth between grid sites 
across wide-area networks. To have a more 
efficient use of the resource, our job 
scheduling infrastructure and replica 
selection relies heavily on prediction of 
network performance. However, the 
complexity of gathering end-to-end network 
performance of resources would be 
increased with the number of grid sites, even 
if using some particular technology can 
reduce complexity away from N2-N, such as 
in NWS that network sensors are organized 
hierarchically [8]. Because the wide-area 
links often are orders of magnitude slower 
than links of local networks, bandwidth 
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within cluster would be broader than WANs. 
To further reduce bandwidth consumption 
from probes for prediction, we propose a 
model to simplify current network 
performance prediction. It only measures 
bandwidth of WANs, shown as dotted lines 
in Figure 3.1.  

 

 

 

 

 
Figure 3.1: cluster-to-cluster Bandwidth 

We assume each cluster has a leader or 
gateway to probe other cluster leaders. 
When communication is across two clusters, 
each pair of sites between two clusters has 
semantically related flows that share a 
common intermediary path, typically 
between first- and last-hop routers. 
Moreover, bottleneck bandwidth of a 
network path often occurs in wide-area links. 
With less accuracy, then, it is enough to 
probe a single clusterA-clusterB process pair 
to determine what the performance of any 
connection between clusterA and clusterB 
will be. In addition, while communication is 
within a cluster, each grid site observes 
approximately the same network 
performance, so the influence of bandwidth 
within a cluster on scheduling and 
replication can be ignored. This simple 
model that gathers a set of cluster-to-cluster 
performance would require C2-C probes, 
where C is the number of clusters.  

3.2. Hypothesis 
Network performance can be converted 

into cost model. There are three factors that 
affect scheduling of job j: S, R, Q, where Sj 
is the site to which the job j is scheduled, R 
is the list of LFN of replicas needed by the 
job and Q is the queuing latency for a job j 
at the site Sj. The replicas needed to execute 
this job are represented as R = {LFN1, 
LFN2, …, LFNn}. For a grid site Sj, we 
divide the replicas into three subsets 

according to the availability of LFNi in Sj. 
The first subset is on-site set Rj

on that 
contains all the locally available replicas. 
The second subset is intra-site set Rj

intra that 
contains the rest of replicas that can be 
found in the local cluster C. The third subset 
is inter-site set Rj

inter that contains the other 
replicas that must be accessed from other 
clusters. For each LFNi in Rj

inter, assume the 
bandwidth from Sj to PFNi (to the site that 
LFNi resides) is Bji. Then the time needed to 
retrieve PFNi to Sj is |LFNi|/Bji, where |LFNi| 
denotes the size of replica denoted by LFNi. 
We define some cost terms. 

Inter-cluster-communication-cost( j
xIrC ):

If the job j is dispatched to cluster x, the cost 
of inter-communications would be 
calculated by using the cluster-to-cluster 
bandwidth. 
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downloading. j
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needed to have all the replicas in Rj
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Intra-cluster-communication-cost( j

SjIaC ):For 
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same from sites to sites.  
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We assume that each file has the same 
size, so j

SjIaC  can be regarded as |Rj
on| 

which denotes the number of replicas in 
Rj

on. 
Queuing latency (Qj): If job j is going to be 
scheduled to Sj in cluster x, queuing latency 
Qj will be the cost of running all the jobs 
that have queued at Sj. Therefore, 
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where 1,2,…,m are jobs queued before 
job j. 
3.3. HCS (Hierarchical Cluster-based 
Scheduling) Algorithm 

Previous job schedulers except 
Random scheduler search all resources to 
find the best one that has the lowest cost. 
HCS improves traditional schedulers in two 
aspects. First, HCS takes into account 
hierarchical cluster grid structure and all of 
data replicas owned by a cluster. Figure 3.2 
is a simple example. There is a grid job that 
requires four files for execution and the four 
files are distributed over four clusters. If we 
schedule a job to the cluster based on 
highest hit ratio of required replicas (most of 
required replicas for the job available within 
cluster), like clusterB, the job execution time 
and the number of 
inter-cluster-communications would be 
reduced since access data can be faster 
(broader bandwidth within a cluster). In 
contrast, if scheduling a job to the cluster 
with few of required replicas, like clusterD, 
the number of inter-cluster-communications 
and access latency would be increased. It is 
possible that the amount of replica in one 
cluster is more than the other clusters but the 
total replicas size may be smaller, 
scheduling a job by using the number of 
replicas is inexact. Thus, to distribute the 
jobs to different sites, we propose to 
schedule jobs based on the cost model 
described in that last section. 

Figure 3.2: As example in Cluster Grid 

Second, searching the best site from a 
huge amount of distributed sites would lead 
to long latency. HCS uses a hierarchical tree 
to schedule a job and minimize the overhead 
of searching for the suitable site, as shown 
in Figure 3.3. There are two-step decision 
processes. The first step selects a cluster to 

minimize the 
inter-cluster-communication-cost ( j

CIrC ). 
Referring back to the example shown in 
Figure 3.2, the values of j

CIrC  for each 
cluster are:  
(1) In clusterA, it needs to access File2 and 
File4. The best PFNs of File2 and File4   
are both from clusterC that has minimum 
data latency ( j

ClusterAIrC = 4 sec). 

(2) In ClusterB, it has most of the required 
replicas and only needs to access File3. But 
external bandwidth may be congested. 
Accessing the best PFN of File3 from 
clusterA, ( j

ClusterBIrC =5sec). 

(3) In ClusterC, it lacks File1 and File3. 
The best PFNs of File1 and File3 are in 
clusterA ( j

ClusterCIrC =4sec). 

(4) In ClusterD, it needs to access File1, 
File2, and File4 for job execution. The 
latency of moving File1 from clusterA, File2 
and File4 form clusterC is j

CusterDIrC =7sec. 

More than one cluster has minimum 
value of j

CIrC  (clusterA and clusterC), in 
this situation, we will select one cluster 
randomly. Therefore, the job is scheduled 
onto clusterA or clusterC. This example 
shows that the cluster that has highest match 
of required replicas may not be the optimal 
solution. 

After the suitable cluster is selected 
from Cluster Grid, the second step selects 
the best site Sj from local cluster based on 
the combined cost of moving replicas into 
the site Sj (intra-cluster-communication-cost) 
and the wait time in the queue in the site Sj 
(Queuing latency). The job is scheduled 
onto the site which has the minimum 
combined cost. 

Figure 3.3: HCS Job Scheduling 
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3.4. HRS (Hierarchical Replication 
Strategy) Algorithm 

After a job is scheduled to Sj, the 
requested data will be transferred to Sj to 
become replicas. HRS (Hierarchical 
Replication Strategy) then determines how 
to handle this replica, as shown in Figure 3.4. 
If there is enough disk space, the replica is 
stored. Otherwise, if this replica is from a 
site in the local cluster, it is only stored in 
the temporary buffer and will be deleted 
after the job completes. If this replica is 
from other clusters, occupied space will be 
released to make room for this new replica, 

as presented by procedure 1 in Figure 3.4. 
The first choice to be removed is the replica 
that already exists in other sites in the same 
cluster. After all these locally available 
replicas are deleted, if the space is still 
insufficient, least frequently used replica 
will be the next target for removal, and so on 
until enough space is available. To conclude, 
HRS considers inter-cluster replica 
transference as very costly. Therefore, the 
successfully received replicas must be stored 
locally such that all other sites in the same 
cluster will not have to replicate them again 
later.  

 
HRS replication strategy : 
1. if (the needed replica is not in a site) 
 if (replica is in the same cluster) 

select the replica with minimum intra-cluster-communication-cost within cluster. 
else 

select the replica with minimum intra-cluster-communication-cost between cluster. 
2.   if (enough available space in local storage to store new replica) 

Store it; 
else { 

3.        if (new replica is duplicated in other sites within region) { 
           Terminate optimizer; // avoid duplication in the same cluster 
          }else { 
          for (each file in local storage) { 
            if (file is duplicated in other sites within region) 
             delete duplicated file; 
            if (enough free space to store new replica) 
               break; 
        }  
       } 
4.        if (!enough free space) { 

using LFU replacement algorithm to delete unpopularity files  
until has enough available space. 

        if (enough free space) 
             break; 
  }  
 } 
 if (enough free space) 
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  Store new replica; 
} 

Figure 3.4: HRS replication strategy

3.5. HRS vs. BHR (Bandwidth Hierarchy 
based Replication)[16] 

HRS replication strategy uses the 
concept of “network locality” as BHR [7]. 
The difference between HRS and BHR can 
be observed in two aspects. First, required 
replica within the same cluster is always the 
top priority used in HRS, while BHR 
searches all sites to find the best replica and 
has no distinction between intra-cluster and 
inter-cluster. It could be anticipated that 
HRS will avoid 
inter-cluster-communications and be stable 
in hierarchical network architecture with 
variable bandwidth. Second, HRS considers 
popularity of replicas at site level, while 
BHR is based on region level.  

4. Experiments 

We use OptorSim to evaluate the 
performance of different combinations of 
job scheduling algorithms and replication 
strategies. OptorSim was developed to 
mimic the structure of a real Data Grid. All 
of general components are included into it 
with an emphasis on file access optimization 
and dynamic replication strategies. We have 
modified some components and embedded 
HCS and HRS modules in OptorSim to 
exactly match our needs. Behavior of 
OptorSim is set up and controlled by using 
configuration files. We describe in turn the 
simulation framework, experiments 
performed, and results. 

4.1. Simulation Framework 
To simplify the requirements, data 

replication approaches in Data Grid 
environments commonly assume that the 
data is read-only. It means that they can be 
replicated without having to assure change 
propagation back to the master copy. This is 

reasonable assumption as it is discussed in 
several scenarios [9] [10]. Consequently, all 
replicas are consistent. To prevent that all 
copies of a same file are deleted, for each 
file, there is one master file that contains the 
original copy of data samples and cannot be 
deleted by the replication strategies.  

4.2. Experimental Environment 
For the experiments, the cluster grid 

topology of the simulated platform is given 
in Figure 4.1 and this topology is from the 
simulation architecture of BHR. Node 35 
holds all the master files at the beginning of 
the simulation. Each dotted line between 
two nodes shows the inter-cluster 
communication.  

Figure 4.1: Topology of the simulated 
platform. 

Table 1 specifies the simulation 
parameters used in our study. While running, 
jobs were randomly picked from 50 job 
types based on probability of each job, then 
submitted to the Resource Broker at regular 
intervals until 1000 jobs are submitted. Thus, 
some job types would occur frequently so 
that certain required replica access 
repeatedly.  

Table 1: Simulation parameters 
Topology Parameter Value 

No. of cluster 4 
No. of sites in each cluster 13 
Storage space at each site 50GB 

1000 Mbps (WAN)Connectivity Bandwidth 1000 Mbps (LAN) 
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Grid Job Parameter Value 
No. of jobs 1000 
No. of job types 50 
No. of file accessed per job 15 
Size of single file 1GB 
Total size of files 750GB 

Files are accessed sequentially within a 
job without any access pattern. HCS will be 
compared with an OptorSim scheduler that 
searches all sites to find available CE by 
using a combination of access cost for the 
files and the queue length of waiting jobs, 
called QAC (Queue Access Cost). QAC 
performs better than other scheduler in 
OptorSim [11]. Additionally, HRS will be 
compared with LRU (Least Recently Used), 
LFU (Least Frequently Used), BHR 
(Bandwidth Hierarchy based Replication). 
The LRU algorithm always replicates and 
then deletes those files that have been used 
least recently. Similarly, LFU deletes the 
least frequently accessed file in recent past. 
We ran a total of six simulation experiments, 
which two kinds of scheduling policy 
combined four kinds of replication strategies. 
For experiment, we measure:  
(1) Total job execution time (queuing 
time+ access latency+ executing time) 
(2) Number of inter-communications 
(3) Computing resource usage: the 
percentage of time that CEs are in active 
state at the period of job completion. 
4.3. Experiment Results and Discussion 

The following figures show the 
achieved results to complete 1000 jobs for 
each combination of the data replication and 
job scheduling algorithms. For replication 
strategies, LRU and LFU show similar 
performance in Figure 4.2. [1] shows the 
same results. We implement BHR 
replication strategy into OptorSim. Total job 
execution time is about 30% faster using 
BHR optimizer than LRU and LFU. 
Furthermore, we take benefit from 
network –level locality of BHR and simplify 
its replica replacement model. Thus, HRS 
successfully accelerates total time up to 
40%.  

0

500000
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1500000

2000000

LRU LFU BHR HRS

QAC
HCS

 

Figure 4.2: Total job execution times for 
various job scheduling and replication 

algorithms. 

For job scheduling policy, HCS can 
improve performance about 10%~20%. The 
reason is that LRU and LFU do not take 
hierarchy network structure into account, so 
that HCS can reduce access latency and 
reduce 20% of total job execution time. 

However, BHR and HRS both consider 
hierarchy of bandwidth in Internet, 
improved space of HCR is within limits. 
Total job execution time is about 10% faster 
using HCS job scheduling with BHR or 
HRS. HCS combined with HRS is about 
50% less than QAC with LRU or LFU. 
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Figure 4.3: Computing resource usage. 

As Figure 4.3 illustrates, computing 
resource usage is the percentage of time that 
CEs are in active state. It depends on job 
execution time, thus, computing resource 
usage shows almost the same performance 
in Figure 4.2. In the same simulation, total 
job execution time is decreased, computing 
resource usage is relative to increase. 
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Figure 4.4: Number of 
inter-communications. 

Based on Cluster Grid, HCS and HRS 
both reduce the number of 
inter-communications at about 20%, as 
shown in Figure 4.4. The results show that 
HCS and HRS save successfully on 
bandwidth over Internet. 

4.4. Discussions 
To analyze the distribution of jobs 

easily, there is a simplified example built in 
four clusters, each cluster has three grid sites 
and 500 jobs. HCS schedules jobs to certain 
specific sites and specific cluster. After all 
jobs are done, it can be observed that the 
distribution of jobs centralizes in some sites 
shown in Figure 4.6 (a). Similarly, the 
remainder of file on the site would belong to 
fixed file types.  

On the contrary, the job distribution of 
QAC is out of order shown in Figure 4.6 (b). 
One site may have executed every job type. 
Files in that site are changeful.  
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Figure 4.6: 500 jobs distribution (a) HCS 

with HRS (b) QAC with LFU. 

HCS might lead some specific sites to 
heavy load, if a large amount of that certain 
job is submitted to grid. Also, some sites 
would be in starvation. However, scheduling 
jobs to site or cluster without data present 
spent more access latency than queue time at 
site with data and heavy load, since network 
bandwidth still fail to keep up with 
computing capacity, specifically the size of 
data is from terabyte to petabyte. 

5. Conclusions and Future Work 

We have addressed the problem of data 
movement operations in cluster grid 
environment. To achieve good network 
bandwidth utilization and data access time, 
we reduce the amount of inter-cluster 
communications. In support of this 
investigation, we propose a job scheduling 
policy (HCS) that considers not only 
computational capability and data location 
but also cluster information, and a dynamic 
replica optimization strategy (HRS) where 
the nearby data is the top priority to access 
then generating new replicas.  

The simulation results show, first of all, 
that HCS and HRS both get better 
performance of inter-cluster bandwidth than 
other scheduling policy and replica 
strategies. Second, we can achieve 
particularly good performance with HCS in 
which jobs are always scheduled to cluster 
where most of data are located, and a 
separate HRS process at each site access 
dataset within the same cluster. Experiment 
data showed HCS scheduling with HRS 
replica strategy have an almost 50% 
reduction in total job execution time from 
the traditional algorithms such as LRU or 
LFU. Future work will implement our HCS 
job scheduling and HRS replication strategy 
into Taiwan UniGrid [12].  
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