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Abstract

With the rapid accumulation of released three-
dimensional protein  structure database, the
importance of structural comparison parallels that of
sequence alignment. It has been shown that despite
primary sequence diversity, protein structures of
related sequences possess a structural core of a -
helices and 3 -sheets and vary in the loop regions.
To determine the characteristic properties for each
target sequence from a protein family, we have
developed a fast algorithm for structure alignment
based on the combination of primary sequences and
three-dimensional  structures. The sequence-based
comparison utilizes the labeled consensus motifs to
provide combinatorial features for multiple sequence
alignment, and the spatia positions of the key amino
acids in each of the combinational segments are
assigned for the proposed constrained multiple
structure feature alignment (CMSFA). The 3D co-
ordinates of aligned amino acids provide data for
calculating the root-mean-square deviation (RMSD)
values which build the references for the detection of
structurally distinct regions. In this study, RNase A
P450, and ricin A protein families were employed to
demonstrate the outstanding performance of the
structure alignment algorithms, and the comparisons
between our proposed CMSFA and severa existing
structural alignment tools are also described in this

paper.
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1 Introduction

The analysis of tertiary structure of proteins
provides precious information on their biological
functions. Therefore, development of an efficient and
accurate bioinformatics tool for protein comparison
becomes an important research topic. Currently, if
the three-dimensional structure of a target protein
sequence is not resolved, the homology modeling
methodology is considered as one of the most reliable
structure prediction methods. It is applicable, when
at least one of homologous structures of the target
protein is resolved, to predict 3D coordinates by
aligning the target sequence and the template
structure. It can be observed that the accuracy of
homology model strongly depends on the precision
of alignment between target and template. Generally
speaking, the accuracy of conventional alignment
algorithms declines sharply when the sequence
identity between the target and the template proteins
islower than 45% [1]. On the other hand, if the three-
dimensional structure of a target sequence is aready

b ekinaavn, then users would like to perform structure

comparison in order to predict structure-function
relationship from its related family sequences.
Previous prediction methods focused on
distinguishing possible candidates by examining the
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presence of the appropriate primary/secondary
anchor residues [2] [3]. Lately, the strategies give
emphasis on pattern matching technologies including
statistical, machine learning methodologies and
structural information [4][5][6][7]. However, pure
sequence based methods have inherent statistical
limits, and the use of structural information have
been shown to increase both the sensitivity in
detection and accuracy in alignment. The Protein
Data Bank (PDB) currently holds more than 32,400.
Since the ultimate goal is to unveil the function of all
proteins, it is obvious that 3D structure comparison
becomes a significant task and it may reveal
biologically interesting similarities which are not
detectable by direct sequence alignment. Severa
protein structure comparison tools and many of the
methodologies focus on the superposition of protein
structures to alignment results. Structural comparison
results lead to understanding of the evolutionary
relationships and physico-chemical interactions
among protein sequences. At this moment, only afew
public web services are available to perform multiple
protein structure alignment, such as MultiProt [8]
(http://bicinfo3d.cs.tau.ac.il/ MultiProt/) which finds
the common geometrical cores between the input
molecules and detects high scoring partial multiple
alignments for all possible number of molecules from
the input; CE [9] (http://cl.sdsc.edu/ce.html) which
employs the combinatorial method on aligned
fragment pairs of a given length; JOY[10]
(http://www-cryst.bioc.cam.ac.uk/joy/) which
displays 3D structural information in a sequence
aignment and helps identification of the
conservation of amino acids in their specific local
environments, COMPARER[11] (http://www-cryst.
bioc.cam.ac.uk/COMPARER/)  utilizes the DiCE
structural alignment program to superimpose selected
structures and provide output filein the JOY format.
In general, after multiple structures have been
superimposed by three-dimensional rigid body
rotation, a common measurement of structural
similarity is evaluated by the RMSD between the
positions of the corresponding amino acid pairs on
the aligned protein structures. However, it has been
argued that the RMSD measurements are ambiguous
with respect to distantly related proteins [12]. One of
the reasons is that portions of mismatched
substructure tend to dominate the RMSD values for
remotely related sequences. To avoid such a
dilemma, we select the RMSD as a measuring
parameter of the proposed system, and at least 30%
sequence identity among protein sequences was set
as the basic requirement prior to our CMSFA. This

assumption is reasonable when our main goals are to
perform structure alignment for a set of family
protein sequences based on their sequence and
tertiary structure information.

Here we present a new method that applies
multiple combinatorial features for multiple structure
alignments. This combinatorial features enhances
both sensitivity of sequence search and quality of
structural alignment. In our approach, combinatorial
features of related family sequences are aligned by
applying dynamic programming on labeled local
consensus motifs which are searched by interval
jumping approximate searching algorithms (L1JSA)
[13]. These combinatorial sub-segments represent
common characteristics of a protein family and
positions of the corresponding key amino acids are
selected for efficient and effective three-dimensional
multiple structure alignment processes. Therefore,
the aligned structures provide prompt identification
of residues comprising substructures or surface
regions that are conserved with respect to the target
protein.  More details of the proposed algorithms
are introduced in the following sections.

2 Materialsand Methods

2.1 Problem Definitions

The protein sequences retrieved from the C-
alpha atom in the PDB files are represented as strings
over the 20 amino acid set. Each residue is assigned
its own three-dimensional rectangular coordinates.
Let W be the set of input protein sequences in this
paper. Thei™ protein sequence in W will be denoted
by W, and the total number will be indicated by
N=|W. More specifically, the W set is constructed as
W={ W, W,,... Wi, Wi} In this paper, a target
protein is defined by W,e W and W(j) means the j"
residue in Wi X(j),Y(j), and Z(j) stands for the
orthogonal coordinates of the | residue X, Y and Z in
the unit of Angstroms. Based on the properties of
hydrophobicity, hydrophilicity, and charge, this
paper defines the set of amino acids with charge as
follows, CH[AA=1 AA<{D,E,H,K,R ; otherwise
CH[AA]=0, and AA represents one of the 20
amino acids. For example, CH[R] =1,CH[G] =0.
Asfor the hydrophilic characteristic, it is specified as
HYAA=1 AA<{D,EHK,R,GCY,N,QST} ;
otherwise  HY[AA]=0 and for instance,
HY[D]=LHY[A]=0. Furthermore, the paper
defines the homology characteristics of the amino
acids based on the aligned sequence similarities in W
and indicated by HO[-] , i.ee HO[AA] =1 if AA
belongs to the homology set. According to the above



formulated properties, the j residue in W, (I, k) can
be assigned with a score,C, (] , that stands for the
degree of significance of chemical properties. In the

later section, the program groups the amino acids and
specifies the key residues which hold the highest

C,(i from the specified Set,
KR{} ={W(j) eW,(l,k),l < j<k}. Besides, in order to
evaluate degree between two aligned proteins in this

research, the measurement utilizes the RMSD values.
If one subgroup sequences, {W,,.W,,} , is aligned

tow,, the RMSD vaue of each residue in W, is
represented as R (j)1<k<M,0< j< W[ k=t .
Finally, a genera threshold function,

F(x) = {LX 22 s applied, where x is the variable
a 0,x<a

of RMSD values or the number of identical residues

in this proposed system, and a is the thresholding

values with respect to x.

2.2 System Description

Figure 1 depicts the system configuration. The
system requires importing protein sequences of a
family in PDB format. There are two main phases in
the proposed Constrained Multiple Structure Feature
Alignment. The first phase focuses on sequence
analysis which provides both clustering and
combinatorial feature extraction operations.

The consensus motifs among sequences are
searched prior to hierarchical clustering operations. If
the sequences under analysis comprise the near
neighboring proteins in addition to target protein
family, the system will suggest to perform clustering
operations to divide the near neighboring proteins
into several subgroups for better performance in
terms of combinatorial feature analysis. On the other
hand, the performance of extraction of combinatorial
features will be obtained with better results if the
imported sequences are clustered with higher
similarity in each subgroup. Once the imported
sequences are clustered, the combinatorial features of
each subgroup are aligned employing traditional
Dynamic Programming techniques. In the next step,
the key residue analysis, constrained multiple
structure feature alignment (CMSFA) and related
biological applications are categorized in the second
phase. The key residue will be retrieved based on the
characteristics of homologous, charged, and
hydrophilic degree from the aligned consensus
segments. Afterwards, all protein structures will be
superimposed together rapidly by the geometry
centers of those key residues. By means of the
RMSD values between the target protein and the
others, related biological applications can be
performed. For example, the unique peptide motifs
are acknowledged as one of the greatest interests to
define sequences that antibodies may recognize with

high degree of uniqueness. The above system will be
described in the following section in detail.
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Figure 1. System Configuration

2.3 Clustering and Combinatorial Feature
Finding

In the first phase, there are three modules which
include consensus motif searching, hierarchical
clustering, and combinatorial feature analysis. The
first module searches consensus motifs by Ladderlike
Interval Jumping Searching Algorithms (LIJSA) [13].
It is an efficient algorithm for matching variable-
length and tolerant strings with linear time
complexity. Users are able to determine whether
clustering functions should be performed or not. If
the input protein sequences are known for the
homologous family that are expected to hold high
structure similarity in advance, users can ignore the
clustering processes and continue to execute the
combinatorial feature analysis. On the other hand,
when the input protein sequences comprise related
neighboring proteins barring the target protein family,
users are suggested to execute the clustering
operations prior to combinatorial feature extraction
procedures. The clustering agorithms utilize the
searched consensus segments from the previous
module and their respective clustering scoring



matrices are calculated for grouping procedures. The
agglomerative clustering algorithms are employed to
cluster sequences into several subgroups, and our
system takes the simple linkage, a kind of
hierarchicall measurement to determine which
sequences should be grouped together. After the
clustering operations for all of the imported protein
sequences, each clustered subgroup is then
individually performing consensus motif searching
operations with target protein sequence followed by
the combinatorial feature analysis. The combinatorial
feature analysis module performs indexed multiple

sequence alignment based on Dynamic Programming
(DP) agorithms. The fundamental elements in DP
algorithms are labeled consensus motifs instead of
individual residues. The output results from this
module provide combinatorial features sequentially
for each subgroup family, and those features are
composed of merged local consensus motifs and will
enhance the important characteristics of each
subgroup. Two examples of RNase A and P450
protein families are shown in Figure 2(A) and 2(B),
and their combinatorial features are represented in
large and uppercase amino acids.
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Figure 2(A) . Sequential combinatorial features of human RNase A superfamily

1po5:A

MAKKTSSKGKLP

1dt6:A

MAKKTSSKGKLP

1pq2:A

MAKKTSSKGKLP

1095:A

MAKKTSSKGRP
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Figure2(B). Sequential combinatorial features of human P450 superfamily.
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The modules in the second phase include key
residue analysis, constrained 3D feature alignment,
and related biological applications. According to the
combinatorial features, the module of key residue

anaysis evaluates priority score, C,(j) , of each

residue for further identification. The priority scoreis
determined by protein properties including homology
(HJQ]), charge (CH[-]) and hydrophilicity (HY[]).
In this procedure, identical amino acids from aligned
segments are referred as candidates of key amino
acids and assigned into the homologous set HO[] . If
an amino acid in HQ[] is charged and possesses
hydrophilicity, it is assigned with the highest score of
3. Assume the amino acid possessing charged feature
only, it obtains a score of 2. The amino acid will be
assigned a score of 1 when it holds hydrophilic
feature only. All other amino acids without charged
and hydrophilic features will not be assigned with any
score by the system. Conseguently, if W, (j) belongs

to one consensus segment, the priority score
represents its functional properties in the protein, and
is formulated as

Cp () = HOW, ())]+CHW, (I +HY[W (})] . For
proteins possessing enzyme activities, the system will
regard the set of residues, KR{} possessing the
highest scores in each combinatorial feature segment,

as the potential key residues for further constrained
multiple structure feature alignment.

Afterwards, the geometric centers of the selected
key sites in each aligned consensus motif are
XM 2V X Z0)
caculated as (MUSKRD  W()KRG  W()KRE)
[KR{3| " [KR{3| KR}
in each subgroup sequence, and these centers are
utilized to perform constrained multiple structure
feature aignment. With these centers, the module
will randomly choose three candidates for multiple
alignments, since three spatial positions can determine
a surface plane and then confirm the orientation of
each structure. Based on the structure alignment, all
other proteins in each subgroup family will be aligned
rapidly with their fixed plane in 3D space constructed
from the selected points.

3. Reaults

3.1 Clustering and Sequential Combinatorial
Features

In this paper, we use different sets of structural
seguences to emphasize the important features of
each system module. Some of them have been
enumerated in other published papers and annotated
with their references. One of the mgjor reasons we
reuse those data is to compare the performance
between our proposed system and others. To
demonstrate the performance of clustering module
and combinatorial feature for structure alignment, we
use a complete list of structure al related to the
reference ricin A chain, there are 31 structureq7]
from PDB that possess a certain similarity to the
target structure 1br6 [14]. These sequences are
suggested to perform clustering operations and
resulting in 6 subgroups as following. Groupl:
1p8:A, 1qi7:A, 1rl0:A; Group2: lapa, 1gik:A,
logl:A 1qci:A; Group3: labr:A, 1cer:A, 1ggp:A,
Im2t:A, 1onk:A, 1pum:A, 1sz6:A, 1tfm:A, 2mil_A;
Group4: lahc, 1bry:Y, 1cf5:A, 1d8v:A, lhwniA,
1j4g:A, Imom, 1mrg, 1mrh, 1mrj, 1nio_A; Group5:
1dmO:A, 1rdp:A, 1rdq:L; and Group6: 1lin:A. Each
of the subgroup is structurally aligned with the target
structure and their RM SD values will be shown in the
later section.

To describe the combinatorial features of afamily
sequence, we select the human ribonuclease A
(RNase A) and P450 superfamily as examples. The
structural information of 5 human RNase sequences
and P450 sequences can be extracted from PDB.
Their sequence identity and similarity percentages are
listed in Tablel(A) and (B) for reference. From the
Tablel(A), the RNase A superfamily currently
contain 5 different structures with high similarity, in
which RNase2 (1ggv:A) and RNase3 (1dyt:A) share
65.67% identity and 82.09% similarity. To distinguish
the characteristics of each RNase, the combinatorial
features are extracted rapidly to aign their structures.
In Figure 2(A), the sequential combinatorial feature
segments are highlighted in various colors and amino
acids in red colors show the key residues for 3D
aignment. Interestingly, the first three amino acids
labeled in red, H, K, and H, matched perfectly with
the key catalytic residues in the active site. Similarly,
Tablel(B) describes the identity and similarity
among member of human P450 protein family, and
its sequential combinatorial feature segments are
highlighted in various colors and shown in Figure
2(B).



Table 1(A). Identity/Similarity percentages (%) among members of RNase A superfamily.
(B) Identity/Similarity percentages (%) among members of Human P450 family.

Portein 1e21:A 1ggv:A ldyt:A 1rnf:A 1bli:A

1e21:A - 33.08/56.15 32.09/56.72 45.61/75.44 36.80/65.60
lgqv:A 33.08/56.15 - 65.67/82.09 28.13/50.00 28.68/45.74

ldyt:A 32.09/56.72 65.67/82.09 - 28.70/56.48 29.41/47.06

Irnf:A 45.61/75.44 28.13/50.00 28.70/56.48 - 40.35/65.79

1bli:A 36.80/65.60 28.68/45.74 29.41/47.06 40.35/65.79 -

)

Portein 1po5:A 1dt6:A 1pg2:A 1log5:A 1wOf:A
1po5:A - 53.15/81.72 55.25/80.67 52.10/80.46 28.60/56.21
1dt6:A 53.15/81.72 - 74.37/92.02 77.52/93.70 26.84/56.26
1pg2:A 55.25/80.67 74.37/92.02 - 79.00/93.49 28.43/56.86
log5:A 52.10/80.46 77.52/93.70 79.00/93.49 - 28.70/57.18
1wof:A 28.60/56.21 26.84/56.26 28.43/56.86 28.70/57.18 -

(B

3.2 Quality of Constrained 3D Multiple
Structure Feature Alignment

The proposed CMSFA performs efficient and
effective structure matching when the combinatorial
features are available. The combinatorial features can
exist due to sequences possessing similarity at a certain
level. In facts, the fundamental consensus segments of
combinatorial features hold tolerant characteristics in
our system which guarantees the realization of
combinatorial feature extraction if basic requirements of
more than 30% identity are satisfied. However, if the
imported sequences indeed possess diversely distributed
residues, the combinatorial features may not exist and
therefore CMSFA can not provide appropriate solutions.
So far, under wide range of testing cases, our proposed
algorithms provide superior performance in terms of
accuracy and efficiency. Here, we compare the
performance of CMSFA with that of well-known
structural alignment systems such as DALI [15], CE [8],
LGA [16), and FAST [17]. The test cases were
performed on the following pairs of known protein
structures [16][17]: (1df4:A, 1qce:A), (Lhx8:A, 1hg5:A),
(loyc:. , 2tmd:A), (laf6:A, 1a0t: ), and (2sim:_,
1nsb:A). [Four character PDB codes followed by a
colon and the chain identifier identify the protein
polypeptide chains whereas proteins with unassigned
polypeptide chains are symbolized by an underscore ().]
The comparison results are shown in Table 2. All the
RMSD values for our CMSFA are less than or equal to
those of the existing programs and the number of
matched residues successfully identified are greater than
or equal to those of the best conditions of other
algorithms. In multiple alignment circumstances, we
took human ribonuclease A (RNaseA) superfamily,
P450, and ricin A chain as examples to compare with
the public COMPARER system. In Figure 3 (A), the
original 3D structures of five RNaseA protein
sequences are revealed whereas the aligned results of

3D structures calculated by CMSFA and COMPARER
are shown in Figure 3 (B) and 3 (C) respectively. In
Figure 4 (A), the original 3D structures of five P450
protein sequences are revealed whereas the aligned
results of 3D structures calculated by CMSFA are
shown in Figure 4(B). Similarly, the system performs
clustering operation prior to structure alignment, and
here shown the original and aligned structures of the
first group of the ricin A chain family in Figure 5(A)
and (B). To display the precision of aligned results, the
number of alignment residues and corresponding
distance measurements are calculated and shown. Here
we take RNase A superfamily as an example. In Table 3
and Table 4, the average RMSD values, matched
residues, and standard deviations for each pair of
sequences of RNase A superfamily are displayed. Each
column represents different target sequences and each
row denotes the aligned results with respect to the other
members of the RNase A superfamily. In the last, ricin
A chain related sequences was used as another example.
As mentioned above, 31 ricin related sequences were
clustered into 6 subgroups, and the target sequence was
aligned by CMSFA with respect to each subgroup. The
compared results with each subgroup are shown in
Table 5 which contains the information including: M/N
(the numbers of matched residues out of the tota
residues of target sequence): RMSD (average RMSD
values), SD. (Standard deviations of RMSD), and
Similarity  (Sequence identity and  similarity
percentages). In this example, there are three protein
seguences clustered in the first group, and performed by
CMSFA with aricin A target sequnce. The number of
matched residues ranges from 243 to 246, if selected the
1br6:A sequences as the target sequence. The average
RMSD values, standard deviation, and pairwise
sequence similarity range from 2.24 to 2.49, 1.08 to
1.11, and 59.29 to 61.33 respectively. The aligned
structure of the groupl is shown in Figure 5.



Table 2. Comprasion of structure alignments for 5 pairs of proteins. Proteinl is fixed as the target structure,
and the protein2 is allowed to rotate. Each aligned protein pair is represented by N/RMSD, where N is the
matched numbers of equivalent residues and RMSD represents average values of RMSD for matched
residues. The last column provides the sequence similarity derived from FASTA.

Porteinl Protein2 DALI FAST CE LGA CMSFA Similarity
1df4:A lqceA 57/1.5 57/1.2 57/1.6 57/0.9 57/1.0 52.83%
1hx8:A 1hg5:A 258/1.1 255/1.1 249/0.8 256/1.0 263/1.0 89.23%
loyc:_ 2tmd:A 323/2.6 284/2.3 354/3.0 324/2.1 354/2.9 52.14%
1af6:A 1a0t:_ 367/2.5 323/1.8 355/1.9 344/2.3 378/2.5 55.03%
2sim:_ Insb A 289/3.2 236/3.0 275/3.0 269/2.6 289/3.0 54.55%

(A) (B) (€
Figure 3. Five human ribonuclease A (RNaseA) superfamily proteins are depicted by CMSFA system. (A)
The original RNaseA protein structures are displayed in different colors. (B) and (C) show the proteins
aligned by the CMSFA and COMPARER system respectively. The five proteins (1e21:A, 1ggv:A, 1dyt:A,
1rnf,:A ,.and 1bli:A) areindividually displayed in red, green, blue, yellow, and cyan.

Figure 4. Five human P450 superfamily proteins are depicted by CMSFA system. (A) The original P450
protein structures are displayed in different colors. (B) The five proteins (1po5:A, 1dt6:A, 1pg2:A, 1og5,:A ,

and 1wOf:A) are aligned by the CMSFA system and displayed in red, green, blue, yellow, and cyan
respectively.

(A) (B)
Figure 5. The combination of target sequence (1br6:A) and the first grouped sequence of ricin A related
proteins (1Ip8:A, 1qi7:A, and 1rl0:A) are depicted by CMSFA system. (A) The original Group 1 ricin A chain
protein structures are displayed in different colors. (B) The five proteins of Group 1 are aligned by the CMSFA
system and displayed in red, blue, green, and yellow respectively.

7



Table 3(A).

Data are represented in K(M/N) format, where K is average RMSDs between two aligned

sequences (unit in A), M represents number of align ed residues, and N denotes the number of residues in

target protein (Rnase A).

Target proteins
RNase A 1e21:A 1ggv:A ldyt:A 1rnf:A 1bli:A
1e21:A - 1.96/(115/135) 2.07/(117/133) 1.58/(116/120 1.78/(113/123)
Compared 1gqv:A 1.87/(113/128) - 1.54/(133/133) 1.83/(117/120) 2.11/(113/123)
proteins 1dyt:A 1.97/(115/128) 1.44/(134/135) - 2.02/(120/120) 2.14/(116/123)
1mf:A 161/(117/128)  1.98/(121/135) 2.05/(122/133) - 1.76/(117/123)
1b1i:A 160/(113/128)  2.32/(122/135) 2.22/(123/133) 1.58/(116/120) -

Table 3(B). Data are represented in K(M/N) format, where K is average RMSDs between two aligned
sequences (unit in A), M represents number of align ed residues, and N denotes the number of residues in
target protein (P450).

Target proteins

P450 1po5:A 1dt6:A 1pg2:A log5:A 1wOf:A
1po5:A - 2.84/(387/473) 1.73/(418/476) 1.64/(411/475) 2.61/(411/485)
Compared 1dt6:A 2.79/(381/476) - 2.741(4271476) 2.73/(429/475) 2.96/(388/485)
proteins 1pg2:A 1.77/(419/476) 2.76/(427/473) - 1.05/(461/475) 2.41/(432/485)
log5:A 1.64/(409/476) 2.74/(429/473) 1.07/(463/476) - 2.45/(428/485)
1WOf:A 2.64/(411/476) 3.01/(403/473) 2.38/(430/476) 2.51/(433/475) -
Table 4(A). Standard deviations values of RMSD between two Rnase A proteins (unit in A).
Target proteins
RNase A 1e21:A 1gqv:A 1dyt:A irnf:A 1b1i:A
Compered 1e21:A - 115 111 1.58 112
proteins 1ggv:A 1.09 - 0.86 1.07 1.20
1dyt:A 1.02 0.72 - 1.06 118
1rnf:A 1.06 1.19 1.08 - 114
1b1i:A 1.03 1.33 1.19 1.96 -
Table 4(B). Standard deviations values of RMSD between two P450 proteins (unit in A).
Target proteins
P450 1po5:A 1dt6:A 1pg2:A 10g5:A 1wOf:A
1po5:A - 1.06 0.96 1.03 1.00
Compared
proteins 1dt6:A 1.03 - 0.98 1.03 1.03
1pg2:A 1.00 1.00 - 0.62 0.90
log5:A 1.03 1.03 0.65 - 0.90
1WOf:A 1.03 1.06 0.88 0.95 -




Table5. CMSFA anaysisof ricin A related family.

Groupl Group2 Group3 Group4 Group5 Group6
M/N [243,246)/267 [196,258]/267 [174,211]/267 [218,250]/267 [238,239]/267 139/267
RMSD(A) [2.24,2.49] [1.50,3.13] [3.07,3.20] [2.47,3.03] [2.45,2.60] 3.06
S.D.(A) [1.08,1.11] [0.88,1.09] [1.07,1.29] [0.93,1.07] [1.12,1.22] 11
Smilarity [59.29,61.33] [63.98,67.87] [65.04,67.84] [66.11,70.19] [52.94,55.20] 56.48

4. Conclusion

Combinatoria feature analysis of protein family
provides important characteristics from sequence
adignment. Key residues in combinatorial feature
segments can be selected by their chemical properties
and provide significant information for performing
constrained multiple structure feature alignment.
Although the quality of our alignment method could
be limited by the degree of sequence similarity, the
system involves hierarchical clustering agorithms to
enhance their similarity relationships. For thericin A
protein (1br6), related proteins are suggested to
cluster into six groups to be aligned with target
sequence seperately. Based on the clustering analysis,
we can successfully perform the structure alignment
as other programs. For the case of human RnaseA
and P450 protein families, our approaches also
correctly explores key residues information. From
these results, our proposed system is shown to be
able to yiedd a fine dignment with their
combinatorial features.
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