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Abstract 
 

In this paper, we propose a grey-based nearest neighbor 
approach to predict missing attribute values in an 
accurate manner.  First, the nearest neighbors of an 
instance with missing attribute values are found through 
grey relational analysis.  Accordingly, the known 
attribute values derived from these nearest neighbors are 
chosen to infer those missing.  The Iris flower dataset 
was used to demonstrate the performance of the proposed 
approach.  Experimental results show that our method 
performs better than both multiple imputation and mean 
substitution.  
 
Keywords: missing attribute values, grey-based nearest 
neighbor approach, grey relational analysis, the nearest 
neighbor concept.  
 

1. Introduction 
 

Various learning algorithms have been developed for 
pattern classification.  These methods are usually 
designed to handle perfect data.  However, real-world 
classification tasks often involve incomplete data, i.e., 
data contain some missing attribute values (or blanks).  
In fact, incomplete information can be caused by error, 
equipment failure, change of plans, etc [6].  Owing to 
the difficulty with missing attribute values, most 
learning algorithms are not well adapted to some 
application domains (e.g., Web applications containing 
a lot of blanks).  

In supervised learning, a learning system is given a 
training set of labeled instances, where each instance 
consists of a feature vector and an output value.  

Different issues related to missing attribute values can 
then be briefly described as follows.  First, missing 
attribute values usually appear in the training set.  
This seems to imply that, in the training phase, a 
reliable method for dealing with those missing is 
frequently necessary.  Another major concern is how 
to classify a new, unseen instance that has an 
incomplete feature vector [13].  Furthermore, in order 
to resolve the usefulness of data containing blanks and 
reduce the classification errors in the learning system, 
the system developer has to concentrate on estimating 
missing attribute values as accurately as possible.  

In general, incomplete data greatly affect the 
performance of classification algorithms.  That is, a 
robust and effective approach for handling incomplete 
data in classification tasks is very important.  Both 
Friedman [9] and Quinlan [12] adopted a common 
strategy, ignoring blanks, to tackle problems with 
unknown attribute values during training.  
Nevertheless, this method is not applicable when 
numerous training instances contain blanks and may 
yield inferior performance [13].  An alternative way is 
throwing away instances with missing attribute values 
in the training phase, but it probably results in the loss 
of valuable information.  In the machine learning 
literature, several techniques for estimating missing 
attribute values have been proposed, including 
Expectation-Maximization (EM) principle [4], decision 
tree induction [12], Bayesian approach [2], and 
multiple imputation [10,14].  Most of these methods 
are quite complicated and time consuming, even 
though they have been used to deal with different 
incomplete-data problems.  



 

In this paper, we propose a grey-based nearest 
neighbor method to predict missing attribute values in 
an easy and accurate manner.  The nearest neighbor 
concept [3,8] and grey relational analysis [5] play 
principal roles in method development.  Given a set of 
instances, the difference between an instance and its 
nearest neighbor is certainly minimal.  Thus, it is 
reasonable to assume that an instance containing blanks 
and its nearest neighbor would have the same (or 
nearly the same) attribute values.  Here, the known 
attribute values, derived from the nearest neighbors of 
an instance with missing attribute values, are chosen to 
infer those missing.  Generally, similarity functions 
such as Euclidean distance are used to determine the 
‘nearness’ (or relationship) between two instances.  
However, Euclidean-like distances are mainly suitable 
for domains with numeric attributes.  In order to 
overcome this shortcoming, the above nearest 
neighbors are found through grey relational analysis, 
which is appropriate for both symbolic and numeric 
attributes and provides whole relational orders 
(wholeness [16]) for the entire relational space.  The 
Iris flower dataset was used to demonstrate the 
performance of the proposed method.  Experimental 
results show that our approach reveals its superiority.  

The rest of this paper is organized as follows.  We 
review the nearest neighbor concept and grey relational 
analysis in Sections 2 and 3, respectively.  In Section 
4 we propose a grey-based nearest neighbor algorithm 
for predicting missing attribute values.  In Section 5 
an example is given to illustrate the proposed 
predicting approach.  In Section 6 experiments on the 
Iris flower dataset are reported.  Finally, we conclude 
in Section 7.  
 

2. The nearest neighbor concept 
 
  In this section, the nearest neighbor concept we 
adopt for predicting missing attribute values is 
reviewed.  

In learning from examples, proper decisions (e.g., 
classification, prediction) for a new instance i can be 
made by using information extracted from a set of 
training instances, in particular from the nearest 
instances of i.  For example, we might estimate a new 
employee’s salary by using that of another employee 
who has similar educations, work experiences, etc.  
Generally the ‘nearness’ between two instances is 
determined by some similarity functions, e.g., 
Euclidean metric.  Based on the concept of ‘nearest 
neighbor’, many learning algorithms have been 
investigated, such as instance-based learning [1] and 
memory-based reasoning [15].  

Since its inception in 1957 [8], the nearest neighbor 

(NN) rule [3] built from the above concept has been 
successfully applied to a wide variety of application 
domains.  This simple principle can be stated as 
follows.  Given a set of training instances, an unseen 
instance is classified according to the training instance 
which is the nearest.  An extended version, called 
majority voting or k-NN rule, classifies the unseen 
instance in the majority classification of its k nearest 
neighbors.  

The NN rule has many advantages over other 
classification methods.  For example, it is fairly 
straightforward to understand and easy to implement.  
In addition, Cover and Hart [3] have shown that, for 
any number of classifications, the probability of error 
of the NN rule is bounded between R* and 2R*, where 
R* denotes the Bayes probability of error.  
 

3. Grey relational analysis 
 

In 1984, Deng [5] proposed a measurement method, 
called grey relational analysis (GRA), to determine the 
relationships among a referential observation and the 
compared observations by calculating the grey 
relational coefficient (GRC) and the grey relational 
grade (GRG).  Assume that we have a set of 
observations {x0, x1, x2, …, xm}, where x0 is the 
referential observation and x1, x2, …, xm are the 
compared observations.  Each observation xe has n 
attributes and is denoted as xe = (xe(1), xe(2), …, xe(n)).  
The grey relational coefficient can then be obtained as 
follows.  
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where ζ∈ [0,1] (Usually, let 5.0=ζ ), i = 1, 2, …, m, 
j = 1, 2, …, m , k = 1, 2, …, n and p = 1, 2, …, n.  
 

From above, the grey relational grade is expressed as 
follows. 
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where i = 1, 2, …, m. 
 

Obviously, the GRG takes values ranging from 0 to 1.  
The significant effect of grey relational analysis can be 
described as follows.  



 

 
If ( )10 , xxGRG

 
is larger than ( )20 , xxGRG , for 

example, then the difference between x0 and x1 is 
smaller than that between x0 and x2; otherwise 
the former is larger than the latter.  

 
Despite its simplicity, grey relational analysis meets 

four principal axioms [16], including 
 

1) Normality 
( ) ixxGRG i ∀≤< ,1,0 0  

2) Dual Symmetry 
If there are only two observations (i.e., x0 
and x1) in the relational space, then 

( ) ( )0110 ,, xxGRGxxGRG =  
3) Wholeness 

If there are three or more observations in the 
relational space, then 

( ) ( ) ixxGRG
often

xxGRG ii ∀≠ ,,, 00  
4) Approachability 

( )ixxGRG ,0  decreases along with  
)()(0 pxpx i−  increasing.  

 
Based on these axioms, grey relational analysis has 

some benefits.  For example, it provides a normalized 
measuring function (Normality) to analyze the 
relational structure.  Also, it yields whole relational 
orders (wholeness) for the entire relational space and is 
appropriate for both symbolic and numeric attributes. 

 
Before calculating the grey relational coefficient and 

the grey relational grade, one of the following methods 
should be used for data preprocessing [11]: 
 
1) Upper-bound effectiveness measuring (i.e. 

large-the-better) 
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where )( jxi  is the value of attribute j 

associated with instance xi, )( jx p
′  is the output 

value obtained after the preprocessing phase, m 
is the number of instances, n is the number of 
attributes, i = 1, 2, …, m, j = 1, 2, …, n, and p = 
1, 2, …, m.  

 
2) Lower-bound effectiveness measuring (i.e. 

small-the-better) 
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where )( jxi  is the value of attribute j 

associated with instance xi, )( jx p
′  is the output 

value obtained after the preprocessing phase, m 
is the number of instances, n is the number of 
attributes, i = 1, 2, …, m, j = 1, 2, …, n, and p = 
1, 2, …, m.  

 
3) Moderate effectiveness measuring (i.e. 

normal-the-better) 
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where )( jxi  is the value of attribute j 
associated with instance xi, specifiedx  is the value 

specified by the system developer, )( jx p
′  is the 

output value obtained after the preprocessing 
phase, m is the number of instances, n is the 
number of attributes, i = 1, 2, …, m, j = 1, 2, …, 
n, and p = 1, 2, …, m.  

 
Usually, upper-bound effectiveness measurement and 

lower-bound effectiveness measurement would achieve 
similar effects.  As for moderate effectiveness 
measurement, the system developer has to specify a 
new value.  In this paper, upper-bound effectiveness 
measurement was adopted for data preprocessing. 

 
As mentioned in Section 2, the ‘nearness’ between 

two instances can be determined by some appropriate 
similarity functions.  In this paper, the nearest 
neighbors of an instance with missing attribute values 
are found by using grey relational analysis, instead of 
calculating the Euclidean distance, which is mainly 
suitable for domains with numeric attributes.  
Consequently, the valid attribute values derived from 
these nearest neighbors are used to infer those missing.  
In the next section, we will discuss this idea in more 
detail.  
 

4. A grey-based nearest neighbor approach  
 

Given a set of instances, the difference between an 
instance and its nearest neighbor is certainly minimal.  
Thus, it is reasonable to assume that an instance 



 

containing blanks and its nearest neighbor would have 
the same (or nearly the same) attribute values.  In 
other words, the value of missing attribute of instance i 
could be accurately estimated by finding the known 
attribute value of the nearest instance of i.  However, 
in order to avoid sacrificing valuable information, more 
nearest neighbors (k-NN) should also be taken into 
consideration during the estimation period.  

Next we detail a grey-based nearest neighbor 
algorithm for predicting unknown attribute values.  
Restated, the nearest neighbors of an instance, which 
are chosen to infer missing attribute values, are found 
through grey relational analysis.  

Assume that we have a set T of m+1 instances, 
denoted by T = {x0, x1, x2, …, xm}, where x0 is an 
instance with h missing attribute values and x1, x2, …, 
xm are all other known instances.  Each instance xe has 
n attributes and is denoted as xe = (xe(1), xe(2), …, 
xe(n)).  Without loss of generality we may assume that 
the values of numeric attributes r, r+1, …, r+h-1 of x0 
(i.e., x0(r), x0(r+1), …, x0(r+h-1)) are unknown, where 
1≦r≦r+h-1≦n.  The proposed predicting algorithm 
can then be stated below.  
 
Step1. Calculate the grey relational coefficient (GRC) 

and the grey relational grade (GRG) between 
x0 and xi, for i = 1, 2, …, m.  Notice that all 
attributes are available here except attributes r, 
r+1, …, r+h-1.  

 
Step2. Find k nearest instances of x0 based on the 

magnitude of GRG(x0, xi), where i = 1, 2, …, 
m and k≦m.  

 
Step3. Derive k values associated with attribute d (r 

≦d≦r+h-1), respectively, from the above k 
nearest instances, i.e., k attribute values, say 
vd1, vd2, …, vdk, can be obtained.  

 
Step4. Predict the value of missing attribute d of x0 

(i.e., x0(d)) based on k estimated values, pd1, 
pd2, …, pdk. That is, 
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By using the majority voting method with tiebreak 

rule [3], the proposed algorithm is also suitable for 
application domains in which the missing attributes are 
symbolic.  Thus, the proposed approach yields a 
so-called k-NN method (k estimations are generated) to 

cope with imperfect-data problems.  
Let m denote the number of compared instances and 

n denote the number of attributes.  The time 
complexity of calculating the GRC and the GRG is 
O(mn).  Furthermore, the total processing time also 
includes sorting all the grey relational grades among 
the referential instance and other compared instances, 
which in general is bounded above by mm log× .  
 

5. An example 
 

In this section, an example is given to illustrate the 
proposed predicting approach.  Assume that we have 
a small set {x0, x1, x2, …, x7} of eight instances, as 
shown in Table 1.  Each instance xe is represented by 
five attributes (A, B, C, D, E) and has already been 
preprocessed.  Each attribute has an associated value 
ranging from 0 to 1.  
 
 

Table 1 
Set of eight instances 
Instance Attributes 

 A B C D E 
x0 0.92 0.94 0.25 0.07 0.84 
x1 0 0.17 0.81 1 0.15 
x2 0.86 1 0 0.23 1 
x3 0.23 0.21 1 0.99 0 
x4 0.85 0.82 0.21 0 0.93 
x5 1 0.88 0.14 0.14 0.87 
x6 0.96 0.95 0.09 0.13 0.85 
x7 0.18 0 0.91 0.98 0.09 

 
 

If the value of attribute A associated with instance x0 
in Table 1 (i.e., 0.92) is missing, then the proposed 
predicting procedure can be performed as below.  

 
First, the grey relational coefficient (GRC) and the 

grey relational grade (GRG) between x0 and xi, for i = 1, 
2, …, 7, are calculated as follows.  
 

Here, we have 
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where j = 1, 2, …, 7 and k = 1, 2, …, 4.  
 



 

Thus, the expression of the grey relational coefficient 
(GRC) is 
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where i = 1, 2, …, 7, j = 1, 2, …, 7 , k = 1, 2, …, 4 and 
p = 1, 2, …, 4. 
 

And the expression of grey relational grade (GRG) is 
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where i = 1, 2, …, 7. 
 

Accordingly, we obtain GRG(x0, x1) ＝ 0.4024, 
GRG(x0, x2)＝0.7740, GRG(x0, x3)＝0.3763, GRG(x0, 
x4)＝0.8752, GRG(x0, x5)＝0.8955, GRG(x0, x6)＝
0.9169, and GRG(x0, x7)＝0.3766, respectively.  
 

Based on the following expression 
 
GRG(x0, x6) ＞ GRG(x0, x5) ＞ GRG(x0, x4) ＞
GRG(x0, x2) ＞ GRG(x0, x1) ＞ GRG(x0, x7) ＞
GRG(x0, x3), 

 
four nearest neighbors (NNs) of instance x0, for 
example, could be found.  As a result, instances x6, x5, 
x4, and x2 are, respectively, the 1-NN, 2-NN, 3-NN, and 
4-NN of instance x0.  
 

Here, we derive four attribute values, 0.96, 1, 0.85, 
and 0.86, respectively from instances x6, x5, x4, and x2.  

 
Eventually, we choose four estimated values 

(average values), 
 
0.96, 

(0.96+1)/2 = 0.98, 

(0.96+1+0.85)/3 = 0.9367, and 

(0.96+1+0.85+0.86)/4 = 0.9175 

to predict the value of the missing attribute of instance 
x0 (i.e., 0.92).  
 
As a result, the prediction errors are, respectively, 
 

0.96-0.92 = 0.04, 

0.98-0.92 = 0.06, 

0.9367-0.92 = 0.0167, and 

0.9175-0.92 = -0.0025.  

 
6. Experimental results 

 
To demonstrate the effectiveness of the proposed 

predicting approach, we evaluated it on Fisher’s Iris 
dataset [7], which contains 150 instances.  All 
instances are divided equally into three classes: Setosa, 
Versicolor, and Virginica.  Each instance is described 
by four attributes: Sepal Width (SW), Sepal Length 
(SL), Petal Width (PW), and Petal Length (PL).  In 
the experiments, each instance had already been 
preprocessed by upper-bound effectiveness 
measurement (see Section 3) and each attribute took 
values ranging from 0 to 1.  In addition, we assumed 
that the number of nearest neighbors, k chosen in Step 
2 varied from 1 to 50. 

For each experiment, a method called leave-one-out 
cross-validation was adopted.  That is, the value of 
missing attribute of instance i was predicted by all of 
the instances except instance i itself.  Therefore, for 
every missing value prediction, nearly all of the 
instances were selected as the compared instances.  In 
each run, the prediction accuracy was measured by 
using the Root Mean Square Error (RMSE), which is 
expressed as follows.  
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where  ie  is the original attribute value, ie~  is the 
estimated attribute value and m is the total number of 
predictions.  
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Fig. 1 Experimental results on the Iris dataset with four attributes 
 
 
Fig. 1 showed the experimental results for all four 

attributes.  The best choice of k (number of nearest 
neighbors) for attribute SW, SL, PW, and PL was 
respectively 6, 13, 5, and 10.  Although the 1-NN 
method was not quite ideal, it still yielded acceptable 
results.  

Table 2 compared the accuracy of the proposed 
predicting method with that of multiple imputation [10] 
and that of mean substitution.  In multiple imputation, 
a statistical model (imputation-posterior and EM 
algorithm) is required to compute five (default) 

imputations (estimated values) for each missing value 
in a dataset (i.e., to create predictions for the 
distributions of each missing value [10]).  In this 
approach, it should be assumed that the data are 
missing at random.  As for mean substitution, the 
missing attribute value is directly substituted by mean 
of known values.  It is easily seen that our approach 
leads to superior performance compared to both 
multiple imputation and mean substitution.  
 
 



 

Table 2 
A comparison with multiple imputation and mean 
substitution for the Iris domain 
Method Accuracy (RMSE) 

 SW SL PW PL 
Our approach 
(Minimum) 0.0994 0.1167 0.0491 0.0837 

Our approach 
(Average) 0.1137 0.1264 0.0595 0.0924 

Our approach 
(Maximum) 0.1301 0.1508 0.0723 0.1064 

Multiple imputation 
(Minimum) 0.1193 0.1649 0.0742 0.1027 

Multiple imputation 
(Average) 0.1261 0.1765 0.0795 0.1141 

Multiple imputation 
(Maximum) 0.1322 0.1858 0.0901 0.1211 

Mean substitution 0.2308 0.1813 0.3001 0.3190 

 
 

7. Conclusions 
 

In this paper, we propose a grey-based nearest 
neighbor approach to deal with incomplete-data 
problems.  The nearest neighbors of an instance with 
missing attribute values are found by using grey 
relational analysis.  Consequently, the valid attribute 
values derived from these nearest neighbors are used to 
predict those unknown.  Experimental results have 
shown that our proposed approach yields superior 
performance.  
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