A New Prediction Method for Short-Term Forecast

Bao Rong Chang
Dept. of Electrical Engineering, Cheng Shiu
Institute of Technology, 840 Cheng-Ching Rd.,

Neau-Song Hsiang, Kaoshiung, Taiwan

e-mail: er‘hqnnf/ﬂr‘{‘ csit.edu hxll

ABSTRACT

This study introduced a new method for the
short-term forecast that actually is a hybrid
model, combing the grey model and the
cumulative least squared linear model, with the
special feature of automatically adjusting the
overestimated or underestimated predicted value
around the points having extreme value. The
tested

verification of this study is also

successfully in two experiments. This
demonstrated that the proposed method has the
best accuracy of predicted value among four
short-term forecasting models discussed in this
study.

Cumulative least
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squared linear model

1. Introduction

The methods of regression, moving average, and
exponential smoothing [1] in statistics are
traditionally employed for the long-term data
fitting or the future trend forecasting. However,
in order to fit the sampled data, some of
restrictions are required to get the quite many
data and to assume sampled data distributed
normally for establishing the models just

mentioned above. In contrast for the short-term
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forecasting applications, the GM(L1| a )
model ,Simple exponential, Holt’s exponential,
Winter’s exponential, Causal regression, Time
series depression, and Box Jenkins. [2] are of
popular models for being widely applicable to
the variety of forecasting topics, but they still
about the

encountered some shortcomings

predictive generalization [8]. However, the
GM(1,1] @) model [3] just need a few data to
construct a forecasting model, and the output to
the model clearly is a simple exponential
function. This implies that this kind of grey
prediction model meets the conditions — (i)
simple and (ii) more accurate in the predicted
results. Thus, the GM(1,1| @) model is often
employed to the short-term forecast for many
applications in recent years. Although the
GM(1,1] a ) model equipped the advantage of
simple and fast to predict the future output, the
precision limitation is also still arguable in many
papers [4][5] since it get a drawback about the
predicted output with overshooting at turning
points. Another 3 points cumulative least
squared linear model introduced in this study can
achieved the pretty good results on the predicted
values. Unfortunately, this model does also run
into an undershooting situation around the
predicted output with the extreme value.
Therefore, a new method for the short-term

prediction proposed in this study introduces a
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compromise algorithm to offset the problem of
overshooting and undershooting predicted
results to improve the prediction accuracy. A
data preprocess, called accumulated generating
operation (AGO) [3], works into the grey
prediction model and the cumulative least
squared linear model. The aim of this AGO is try
to smooth the original given data to analogue an
exponential data distribution for easily matching
exponential or linear form under the few input
data provided. In this study, the most recent four
actual values is considered as a set of input data
used to predict the next desired value. As the
next desired value is observed, the first value of
the current input data set is discarded and joins
this latest desired value into the input data set at
the last place in the order of a update data
sequence for keeping four input value in a data

set to ready for next prediction procedure.

2. Prediction Models

2.1 Grey Prediction Model

A prototype of grey prediction model
GM(L,1]a) is introduced in the grey system
theory 1982 [3].

Step 1: accumulated generating operation once

(1-AGO)
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Ok : the original sampled data that is a
nonnegative sequence
Step 2: finding developing coefficient and
control coefficient by using grey difference
equation
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Step 3: solving the predicted value through the

grey differential equation
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2.2 Least Squared Polynomial Model

The least squared polynomial [6] is applied
to study the statistic relation between a set of
independent variables and a dependent variable.
This model can be utilized for estimating or
predicting the future output. Some of phenomena
in the real world can be realized to be a
multivariate model so that the accuracy of
estimated (or predicted) would be improved.
Step 1: Building least squared polynomial
model generally in the following way:

50) = by + (i) +5x @y + - 5@y (8)

In order to solve the coefficients #y,5,0MMp; in
Eq. (8), the least square method [6] is employed
so as to minimize the sum of square of the

residual error in Eq. (9) expressed below:
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The least square method [6] is again used to

solve the best approximation solution for x to the



equation of

X,B=Y. (10)

According to the definition of the following
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Step 2: Derived the normal equation to find
pseudo inverse matrix
Solving for Eq. (10) typically turns out to be a
normal equation [7],
xIx,B=xTy (11)

, in which matrix B is a coefficient vector for
by, by, e, in Eq. (8) and Y is observed values
given by in Eq. (8).
Step 3: Solving the appropriate coefficients and
Predicting the next output
The solution to B in the normal equation is
equal to Xy where X, is a pseudo inverse
[7] of matrix x, definedas (xIx,)'xI.

B=xI'x )y 'xIy=x}y (12)
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2.3 Cumulative Least Squared Polynomial
Model

The cumulative least squared polynomial model
is constructed as follows:

Step 1: accumulated generating operation once

(1-AGO)

k
Dy = 0 -
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;

yO(k) : the original sampled data that is a
nonnegative sequence.
Step 2: Building least squared polynomial
model generally in the following way:

300 =ty + b0+ ® )+ I ) (15)
In order to solve the coefficients #y,5,0MMp; in
Eq. (15), the least square method [6] is
employed so as to minimize the sum of square of

the residual error in Eq. (16) expressed below:
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The least square method [6] is again used to
solve the best approximation solution for x to the
equation of

X,B=7Y. (17)

According to the definition of the following
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Step 3: Derived the normal equation to find
pseudo inverse matrix
Solving for Eq. (17) typically turns out to be a
normal equation [7],

xIx,B=xly (18)
, in which matrix B 1is a coefficient vector for
by,b kb, in Eq. (15) and Y 1is observed
values given by in Eq. (15).



Step 4: Solving the appropriate coefficients and
Predicting the next output

The solution to B in the normal equation is
equal to x)v where X, is a pseudo inverse

[7] of matrix x, definedas (xIx,)'xI.

B=(xIx)"xIv=x}y (19)
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3. A New Prediction Method

According to the analysis mentioned in [8][9],
decreasing the number of sampling points as
possible as we can, and lessening the effect of
the magnitude of original data can lower the
residual error of GM(1,1]| &) model. Thus, using
a few sampled points for GM(1,1]a ) prediction
would achieve the better prediction accuracy.
This imply that this kind of GM(1,1| & ) model is
therefore applicable for short-term forecasting
application. Next, how to alleviate the effect of
the magnitude of the original given data so as to
reduce the residual error of GM(1,1]| @ ) model is
another crucial issue [8][9]. Based on the
phenomena discovered in [8][9], the prediction
of GM(1,1| @) model is always to reveal an
overshooting around the turning points since the
extreme magnitude (too high or too low)
happens there as shown in Figure 2. Accordingly,
the predicted value from the grey prediction
model will turn out to be an overestimated (or
underestimated) result at the position of turning
points. However, a cumulative least squared
linear model using the most recent 3 sampled
points is introduced herein to compromise the
problem in GM(1,1|a) so as for lessening the
effect of the magnitude of the original given data.

This 3 points cumulative least squared linear

model can be set up in the following steps.
Step 1: accumulated generating operation once

(1-AGO)
k—4+i

X03), i=123 (22)
5F=3

Dy =

x () : three successive sampled data x(k-3),

O%-2) , and x@%-1) before the next
predicted point (k).
Step 2: finding a linear approximate polynomial
for fitting three successive sampled data xD),
x0@2),and xD3)
D@y=ck+e¢y, k=123 (23)

That is,
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Step 3: obtaining a predicted value from the
linear approximate polynomial

FOG+)=c(k+1)+¢y, k=3 25)
Step 4: inverse accumulated generating
operation once (1-IAGO)

FOU+1) =50k +1)-xOk), k=3 (26)

This cumulative least squared linear model have
the problem about the undershooting around
turning points, as shown in Figure 2, that is
conversely to the situation happened to GM(1,1|
a ) model. Therefore, we can apply this
characteristic to  offset the magnitude
overshooting such that alleviating the effect of
the magnitude of the original given data for
GM(1,1| &) prediction can be achieved. A 3
points cumulative least squared linear model
combining with GM(1,1| @ ) model thus is
exploited for the prediction as follows.

O =m0+ 1O, @7

w twy =1



In Eq. 27), :@%) and @) stand for the
predicted value of a grey model and the
predicted value of a 3 points cumulative least
squared linear model, respectively; moreover,
the w, and w, represent the weight of ® (k)
and ¥ @), respectively.

The value of w; or w, can be evaluated
by a weighting algorithm shown below where
O k) represents the predicted output from a
least squared linear model using 4 sampled data
without cumulative data preprocess.

Input Parameters:

e(D)=xO %k -3)-xO k-4
e(2)=xDk-2)-xO (k-3
e(3)=xDk-1-xO%-2

m2=(xO -1+ xOk -2))/2

m3= O % -1)+xO %k -2) +x@ (k -3))/3
ma= Ok -1)+xO G -2) + x Ok =3) + xO (k- 2)) /4
prdvaluel=x© ()

prdvalue2=5%© (%)

refvalue= 3 )

Output Data: w and w,
Algorithm:

if refvalue is very close to prdvalue2
t=(prdvaluel+prdvalue2)/2;
elseif refvalue is not located in validation region
ife(3)* e(2)>0 & e(2)*e(1)>0
t=m4;
else
t=m2;
end
else
if e(p-1)* e(p-2)<0 & e(p-2)*e(p-3)<0
t=(refvalue+m4)/2;
elseif e(p-1)* e(p-2)<0 & e(p-2)*e(p-3)>0
t=(refvalue+m4)/2;
elseif e(p-1)* e(p-2)>0 & e(p-2)*e(p-3)<0
t=(refvalue+m3f)/2;

else
t=(prdvaluel+prdvalue2)/2;

end

end

ql=abs(t-prdvaluel);

q2=abs(t-prdvalue2);

w =q2/(q1+q2);

wy =q1/(q1+q2);

#

4. Experimental Results

As shown in Figure 1 to Figure 8, the predicted
sequence 1 indicates the predicted results of the
new prediction method, the predicted sequence 2
represents the predicted results of the GM(1,1|a)
model, the predicted sequence 3 stands for the
predicted results of a 3 points least squared
linear model, and the predicted sequence 4 is
denoted by the predicted results of a 4 points

least squared linear model.

4.1 Indexes of stock price

The stock price index prediction for four
countries (U.S.A. New York Dow Jones, Taiwan
TAIEX, Japan Nikkei
Index) [10] have  been

Index, and South
Korea-Stock
experimented as shown in Figure 1 to Figure 4.
Their accuracy of four prediction methods,
which are a grey model, a 3 points cumulative
least squared linear model, a 4 points least
squared linear model without cumulative data
preprocess, the proposed method, is also
compared and the summary of this experiment is
listed in Table 1.
4.2 National Economy Growth Rate

The national economy growth rate prediction

for four countries (U.S.A., Taiwan, Japan, and

South Korea) [11] are also tested and their



results are demonstrated in Figure 5 to Figure 8.
The comparison of the accuracy for four
prediction methods, which are a grey model, a 3
points cumulative least squared linear model, a 4
points least squared linear model without

cumulative data preprocess, the proposed
method, is also made and the brief of this test is

listed in Table 2.

5. Conclusions

This study introduced a new method for the
short-term forecast that actually is a hybrid
model, combing the grey model and cumulative
least squared linear model, with the special
feature of automatically adjusting the
overestimated or underestimated predicted value
around the points having extreme value. We
summarized the following statements for this
study.

As shown in Figure 1 to Figure 8, The proposed
fact has the

method in advantage of

compromising the crucial problem of
overshooting occurred in the grey model and the
severe issue of undershooting happened to the 3

points cumulative least squared linear model.

According to Table 1 and Table 2, we can
conclude that the mean square error of the
predicted results in the proposed method is less
than that of the other three models. This implies
that the proposed method is the best choice for

the short-term forecasting application.
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Table 1. The MSE based on the relative errors of

predicted results on stock price index for four

countries.

SI GM 3CLSLM LSLM NM
NYDJ 0.0038 0,0019 0.0032 0.0019
TAIEX 0.0102 0.0136 0.0114 0.0090

NIKKEI 0.0051 0.0047 0.0042 0.0037
SKSI 0.0209 0.0166 0.0167 0.0129
0.0092 0.0089 0.0069

Average 0.0100

Table 2. The MSE based on the relative errors of
predicted results on economy growth rate for

four countries.

EGR GM 3CLSLM LSLM NM

Abbreviation:

SI-Stock index, GM-Grey Model, 3CLSLM- 3

Points Cumulative Least Squared Linear model,

LSLM-Least Squared Linear Model, and NM-

Proposed New Method

USA 1.0609 3.3859 1.9984 1.0582
TWAN  0.1986 0.0760 0.0936 0.0751
JAPAN  2.2282 3.8441 2.7228 1.6381
KOREA 0.5324 0.5278 0.6271 0.4750

Average 10050 19585 13605  0.8116

Abbreviation:

EGR-Economy Growth Rate, GM-Grey Model,
3CLSLM- 3 Points Cumulative Least Squared
Linear model, LSLM-Least Squared Linear
Model, and NM- Proposed New Method



