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Abstract

In this paper, we study some hamiltonian properties of bipartite graphs. Ev-
ery hamiltonian bipartite graph G = (V0 ∪ V1, E) satisfies |V0| = |V1|. Since the
colors of a path in bipartite graphs alternate, any hamiltonian bipartite graphs
cannot be hamiltonian connected. Thus, the concepts of hamiltonian laceability,
strongly hamiltonian laceability, hyper-hamiltonian laceability, bipancyclicity, and
edge-bipancyclicity for hamiltonian bipartite graphs are attractive topics in inter-
connection networks. In this paper, we propose several methods, which extend the
result in [7], to construct hamiltonian laceable, strongly hamiltonian laceable, and
hyper-hamiltonian laceable graphs. We also show that our construction schemes
preserve bipancyclic and edge-bipancyclic properties.

Keywords–Hamiltonian laceable, Strongly hamiltonian laceable, Hyper-hamiltonian lace-

able, Bipancyclic, Edge-bipancyclic.

1 Introduction

For the graph definitions and notations we follow [2]. G = (V, E) is a graph if V is a

finite set and E is a subset of {(a, b) | (a, b) is an unordered pair of V }. We say that V

is the node set and E is the edge set. Two nodes a and b are adjacent if (a, b) ∈ E. A
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path is a sequence of adjacent nodes, written as 〈v0, v1, v2, · · · , vm〉, in which all the nodes

v0, v1, v2, · · · , vm are distinct except possibly v0 = vm. We also write the path 〈v0, P, vm〉
where P = 〈v0, v1, v2, · · · , vm〉. A path is a hamiltonian path if its nodes are distinct and

they span V . A cycle is a hamiltonian cycle if it traverses every node of G exactly once.

A graph G is hamiltonian if it has a hamiltonian cycle; and G is hamiltonian connected if

for any two nodes of G, there exists a hamiltonian path joining these two.

A graph G = (V0 ∪ V1, E) is bipartite if V (G) is the union of two disjoint sets V0

and V1 such that each edge consists of one node from each set. We say that V0 and V1

are two different colored node sets. Any hamiltonian bipartite graph G = (V0 ∪ V1, E)

satisfies |V0| = |V1|. We observe that the colors of a path in bipartite graphs alternate,

any hamiltonian bipartite graph is not hamiltonian connected.

Simmons [15] introduced the concept of hamiltonian laceability for hamiltonian bipar-

tite graphs. A bipartite graph is equitable if it has the same number of nodes in each of

its two colors. If the number of nodes in each of its two color sets differ by exactly one,

it is called nearly equitable. A bipartite graph is defined [15] to be hamiltonian laceable

if (a) it is equitable and whenever x and y are nodes of opposite colors, there exists an

x-y hamiltonian path; or else (b) it is nearly equitable and whenever x and y are nodes of

the larger color set, there exists an x-y hamiltonian path. Hsieh et al. [8] extended this

concept into strongly hamiltonian laceability. A hamiltonian laceable graph G is strongly

hamiltonian laceable if (a) G is equitable and there is a simple path of length |V (G)| − 2

between any two nodes of the same color; or else (b) G is nearly equitable and there is

a simple path of length |V (G)| − 2 between any two nodes of opposite colors. Lewinter

et al. [11] further introduced the concept of hyper-hamiltonian laceability. A hamiltonian

laceable graph G is hyper-hamiltonian laceable if (a) G is equitable and if v is any node

of G, G− v is hamiltonian laceable; or else (b) G is nearly equitable and if v is any node

in the large color set, G − v is hamiltonian laceable.

Hamiltonian laceability, which deals with embedding a hamiltonian path in a given
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graph, is an important topic in interconnection networks. The ring embedding problem,

which deals with all the possible lengths of cycles in a given graph, is investigated in

the interconnection networks [4, 1, 6, 9, 5]. A graph is called pancyclic if it contains a

cycle of every length from 3 to |V (G)| inclusive [3]. The concept of pancyclicity has been

extended to bipancyclicity [13]. Bipancyclicity is essentially a restriction of the concept of

pancyclicity to bipartite graphs whose cycles are necessarily of even length. A bipartite

graph is edge-bipancyclic [13] if every edge lies on a cycle of every even length from 4 to

|V (G)| inclusive.

Recent studies have proposed several operations performing on hamiltonian laceable

graphs to yield several attractive properties. In [7], Harary and Lewinter proposed some

recursively defined hamiltonian laceable graphs, denoted by J(G), and asked that whether

there are additional operations performing on hamiltonian laceable graphs to yield hamil-

tonian laceability. In 1993, Lewinter [11] proposed an operation performing on hamilto-

nian laceable graphs to yield hyper-hamiltonian laceability. In 1996, Liu [12] proposed

another recursively construction scheme to construct hamiltonian-type graphs. In Section

2, we show that the construction scheme proposed in [7] for J(G) will make hamiltonian

laceable graphs to be both hamiltonian laceability and strongly hamiltonian laceability.

We also propose some recursively construction schemes to construct hamiltonian-type

graphs. On the other hand, bipancyclic property is also an attractive topic in intercon-

nection networks. In 1988, Saad and Schultz [14] proved that hypercube, Qn, is bipancyclic

if and only if n ≥ 2. In 1991, Jwo et al. [10] also showed that all the even cycles with

length l such that 6 ≤ l ≤ n! can be embedded in star graph Sn. Hence, in Section 3,

we show that these recursively construction schemes performing on bipancyclic and edge-

bipancyclic graphs can yield bipancyclicity and edge-bipancyclicity, respectively. Section

4 provides some concluding remarks.
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2 Hamiltonian Laceability, Strongly Hamiltonian Lace-

ability, and Hyper-Hamiltonian Laceability

Given a hamiltonian laceable graph G, Harary and Lewinter [7] proposed a construc-

tion scheme to extend G to a larger graph J(G), while maintaining the hamiltonian

laceable property as follows. Let G be a bipartite graph with white and black node sets

{x1, x2, · · · , xm} and {y1, y2, · · · , yn}, respectively. Let J(G) be the graph obtained from

G by adding a white node w, a black node b, and all the edges (b, xi) and (w, yj) for

1 ≤ i ≤ m and 1 ≤ j ≤ n. See Figure 1.

wx1

b

x2 x3 xm

y1 y2 y3 yn

graph G

Figure 1: Graph J(G).

In [7], Harary and Lewinter showed that if G is an equitable hamiltonian laceable graph

with at least four nodes, then J(G) is hamiltonian laceable. In the following, we have a

further result that J(G) is not only hamiltonian laceable, but also strongly hamiltonian

laceable.

Theorem 1 Let G be an equitable hamiltonian laceable graph with at least four nodes.

Then J(G) is strongly hamiltonian laceable. Moreover, J(G) − b and J(G) − w are both

hamiltonian laceable.

Proof. By [7], J(G) is hamiltonian laceable. To show that J(G) is strongly hamiltonian

laceable, it is sufficient to prove that both J(G)−b and J(G)−w are hamiltonian laceable.

We shall prove the case for J(G) − b. As for J(G) − w, the case is similar.
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Case 1: For any xk, find a hamiltonian path of J(G) − b joining w and xk. (See Figure

2(a).)

Since G is hamiltonian laceable, G has a hamiltonian path joining xk and yi for any i.

We arbitrarily choose a yi and let 〈xk, P, yi〉 be a hamiltonian path of G. By definition,

(w, yi) ∈ E(J(G)). Thus, J(G) − b has a hamiltonian path 〈xk, P, yi, w〉.

Case 2: For any xk �= xk′, find a hamiltonian path of J(G) − b joining xk and xk′ . (See

Figure 2(b).)

Since G is hamiltonian laceable, for any yi, G has a hamiltonian path joining xk and

yi. We arbitrarily choose a yi and let yr,ys be the two nodes adjacent to xk′ on this

hamiltonian path. Hence, we may label this path as〈xk, P1, yr, xk′, ys, P2, yi〉 without loss

of generality. By definition, (w, yr), (w, yi) ∈ E(J(G)). So 〈xk, P1, yr, w, yi, P2, ys, xk′〉 is a

hamiltonian path in J(G) − b joining xk and xk′ . Therefore, the proof of this theorem is

complete. �

wxk

byi

graph G

wxk

byi

graph G

xk’

yr ys

P
P2

P1

(a) (b)

Figure 2: (a) Case 1: For any xk, find a hamiltonian path of J(G) − b joining w and xk.
(b) Case 2: For any xk �= xk′ , find a hamiltonian path of J(G) − b joining xk and xk′.

With a similar argument as above, we have the following result.

Theorem 2 Let G be a nearly equitable hamiltonian laceable graph with at least five

nodes. Then, J(G) is strongly hamiltonian laceable.
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Now, we define a new graph J ′(G) with V (J ′(G)) = V (J(G)) and E(J ′(G)) =

E(J(G))∪{(w, b)}. With this additional edge (w, b) in J ′(G), we have another stronger re-

sult that J ′(G) is hyper-hamiltonian laceable if G is hamiltonian laceable with at least four

nodes. We note, however, that J(G) is not necessarily hyper-hamiltonian laceable. For

example, let G be the complete bipartite graph K2,2, J(G) is strongly hamiltonian laceable

but not hyper-hamiltonian laceable. In order to prove that J ′(G) is hyper-hamiltonian

laceable, we show a lemma first.

Lemma 1 Let G be a bipartite graph. Suppose that G − v is hamiltonian laceable for

every v ∈ V (G) if G is equitable or else G− v is hamiltonian laceable for every node v in

the larger color set if G is nearly equitable, then G is hamiltonian laceable.

Proof. We shall prove that G is hamiltonian laceable by finding a hamiltonian path (1)

joining any two distinct nodes x and y with different colors if G is equitable, or else (2)

joining any two distinct nodes x and y in the larger color set if G is nearly equitable. Let

a be a node adjacent to y. Since G − y is hamiltonian laceable, G − y has a hamiltonian

path joining x and a. Thus, there is a hamiltonian path of G joining x and y since

(a, y) ∈ E(G). So G is hamiltonian laceable. �

Theorem 3 If G is an equitable hamiltonian laceable graph with at least four nodes, then

J ′(G) is hyper-hamiltonian laceable.

Proof. We shall prove the following two statements: (1) J ′(G) is hamiltonian laceable;

and (2) J ′(G) − f is hamiltonian laceable for any f ∈ V (J ′(G)). By Lemma 1, (1) is

correct if (2) is. Thus, we need only to check whether (2) holds.

By Theorem 1, J ′(G) − f is hamiltonian laceable, if f = w or f = b. Now, consider

the case that f �= w and f �= b, we may without loss of generality assume that f = ym

for some m. Then, J ′(G) − ym contains a subgraph isomorphic to J ′(G) − b, where node

b replaces the node ym. J ′(G) − b is hamiltonian laceable, so is J ′(G) − ym. Thus, the

theorem follows. �
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In a like manner as above, we have the following result.

Theorem 4 If G is a nearly equitable hamiltonian laceable graph with at least five nodes,

then J ′(G) is hyper-hamiltonian laceable.

Therefore, we may use the above two operations, J and J ′, to recursively construct

infinitely many hamiltonian-type graphs. In the following, we have yet another construc-

tion scheme for X(G), to construct hamiltonian laceable graphs. With operation X, we

can recursively construct hamiltonian laceable graphs by adding less edges to G than J .

Definition 1 Let G be a hamiltonian laceable graph with white node set {x1, x2, · · · , xm}
and black node set {y1, y2, · · · , yn}. Let X(G) be the graph resulting from adding a

white node w and a black node b. And E(X(G)) = E(G) ∪ (w, b) ∪ (w, yn) ∪ (b, xm)∪
⋃

(xm,yi)∈E(G)

(w, yi) ∪
⋃

(yn,xi)∈E(G)

(b, xi). In other words, we arbitrarily choose a white node

xm and a black node yn, make a new copy for each, say w and b, and add necessarily

edges together with three more edges (w, b), (w, yn), and (b, xm). See Figure 3.

wxm

byn

x1 x2 x3 xm-1

y1 y2 y3 yn-1

Figure 3: Graph X(G).

By the definition of X(G), we have the following result.

Theorem 5 If G is an equitable hamiltonian laceable graph with at least four nodes, then

X(G) is also hamiltonian laceable.
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Proof. Let V (G) be the union of white node set {x1, x2, · · · , xn} and black node set

{y1, y2, · · · , yn}. To prove that X(G) is hamiltonian laceable, for any two nodes with

different colors, we need to find a hamiltonian path joining these two. We divide the

proof into three cases.

Case 1: Find a hamiltonian path of X(G) joining w and b. (See Figure 4(a).)

Since G is hamiltonian laceable, G has a hamiltonian path 〈xn, P1, yn〉. (b, xn), (w, yn) ∈
E(X(G)) by definition. Thus, we have a hamiltonian path 〈b, xn, P1, yn, w〉 of X(G).

Case 2: For any yi and xi, find a hamiltonian path of X(G) joining w and yi, and a

hamiltonian path joining b and xi. (See Figure 4(b).)

We shall show the case for w and yi, the other case is similar. Since G is hamiltonian

laceable, we have a hamiltonian path of G joining xn and yi, say 〈xn, P2, yi〉. By definition,

(b, xn), (w, b) ∈ E(X(G)). Hence, 〈w, b, xn, P2, yi〉 forms a hamiltonian path of X(G).

Case 3: For any xi and yj, find a hamiltonian path of X(G) joining xi and yj. (See

Figure 4(c).)

Since G is hamiltonian laceable, we have a hamiltonian path of G joining xi and

yj, say 〈xi, P3, yn, P4, yj〉. Let xk be the node adjacent to yn on path P3. We remark

that if yj = yn, then P4 is an empty path. Thus, we may relabel 〈xi, P3, yn, P4, yj〉 as

〈xi, P
′
3, xk, yn, P4, yj〉. By definition, edges (xk, b), (b, w), and (w, yn) belong to E(X(G)).

Therefore, 〈xi, P
′
3, xk, b, w, yn, P4, yj〉 is a hamiltonian path of X(G). Therefore, the proof

of this theorem is complete. �

With a similar argument as above, we have the following result.

Theorem 6 If G is a nearly equitable hamiltonian laceable graph with at least five nodes,

then X(G) is also hamiltonian laceable.
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xn

yn
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P1

w

b

graph G

xn

yi

P2

Figure 4: (a) Case 1: Find a hamiltonian path of X(G) joining w and b; (b) Case 2: For
any yi and xi, find a hamiltonian path of X(G) joining w and yi, and a hamiltonian path
joining b and xi; (c) Case 3: For any xi and yj, find a hamiltonian path of X(G) joining
xi and yj.

3 Bipancyclicity and Edge-Bipancyclicity

Theorem 7 Let G be an equitable bipartite graph with at least four nodes. If G is bipan-

cyclic, then J(G) is also bipancyclic.

Proof. We show this result by finding cycles of every even length from 4 to |V (G)| + 2

in J(G). Since G is bipancyclic, there are cycles of every even length from 4 to |V (G)|
in J(G). Hence, we need only to find a cycle of length |V (G)| + 2 in J(G). Let a1, a2,

a3, and a4 be four consecutive nodes in the hamiltonian cycle of G; the color of a1,a3 be

white, and a2,a4 be black. Thus, we may label this cycle as 〈a1, a2, a3, a4, P, a1〉. Then,

〈a1, b, a3, a2, w, a4, P, a1〉 forms a hamiltonian cycle of J(G) with length |V (G)| + 2. (See

Figure 5.) Consequently, this theorem is proved. �

Theorem 8 Let G be an equitable bipartite graph with at least four nodes. If G is edge-

bipancyclic, then J(G) is also edge-bipancyclic.

Proof. Let e be any edge in J(G). To prove that J(G) is edge-bipancyclic, we need to

find cycles containing edge e of every even length from 4 to |V (G)| + 2.

Case 1: e ∈ E(G).
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w

b

graph G

P

a1
a2

a3

a4

Figure 5: Pancyclicity of J(G).

Let e = (xi, yj) for some i, j. By the assumption that G is edge-bipancyclic, J(G) has

cycles containing edge (xi, yj) of every even length from 4 to |V (G)|. Let y, xi, yj, x be four

consecutive nodes in the hamiltonian cycle of G containing edge (xi, yj). By definition,

edges (w, y), (w, yj), (b, x), and (b, xi) belong to E(J(G)). Then, 〈y, w, yj, xi, b, x, P1, y〉
forms a hamiltonian cycle of J(G) with length |V (G)| + 2. (See Figure 6(a).)

Case 2: e ∈ E(J(G)) − E(G).

Without loss of generality, we may consider only the case that e = (b, xi) for any i.

Consequently, we will find a cycle containing edge (b, xi) of every even length from 4 to

|V (G)| + 2 in J(G). Since G is bipancyclic, there are cycles of every even length from 4

to |V (G)| in G. Let xi, a2, a3, a4 be four consecutive nodes in this cycle; and the color of

xi,a3 be white, and a2,a4 be black. Thus, we may label this cycle as 〈xi, a2, a3, a4, P2, xi〉.
Therefore, 〈xi, b, a3, a2, w, a4, P2, xi〉 form cycles containing edge (b, xi) of every even length

from 6 to |V (G)|+2 of J(G). (See Figure 6(b).) In addition, 〈xi, b, a3, a2, xi〉 forms a cycle

containing edge (b, xi) of length 4 of J(G). (See Figure 6(c).) This theorem is complete.

�

In the following two theorems, we establish that X is also a recursively construction

scheme for bipancyclic and edge-bipancyclic graphs.

Theorem 9 Let G be an equitable bipartite graph with at least four nodes. If G is bipan-
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w

b

graph G

P1
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xi
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(a)

Figure 6: Edge-bipancyclicity of J(G).

cyclic, then X(G) is also bipancyclic.

Proof. By the assumption that G is bipancyclic, to prove that X(G) is also bipancyclic,

we need to find a cycle of length |V (G)| + 2 in X(G). Since G is equitable and bipan-

cyclic, there will be a hamiltonian cycle in G. Let V (G) be the union of white nodes

{x1, x2, · · · , xn} and black nodes {y1, y2, · · · , yn}. Let xn and a be two consecutive nodes

on this hamiltonian cycle. Thus, we may label this cycle as 〈xn, a, P, xn〉. Therefore,

〈xn, b, w, a, P, xn〉 forms a hamiltonian cycle of length |V (G)| + 2 of X(G). (See Figure

7.) This completes the proof. �

w

b

graph G

P xn

a

Figure 7: Pancyclicity of X(G).

Theorem 10 Let G be an equitable bipartite graph with at least four nodes. If G is

edge-bipancyclic, then X(G) is also edge-bipancyclic.
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Proof. Let V (G) be the union of white node set {x1, x2, · · · , xn} and black node set

{y1, y2, · · · , yn}. Let e be any edge in X(G). We shall prove that X(G) is edge-bipancyclic

by finding cycles containing edge e of every even length from 4 to |V (G)| + 2 in X(G).

Case 1: e ∈ E(G).

Because G is edge-bipancyclic, we can find cycles of every even length from 4 to |V (G)|
in G. Let 〈yi, xn, yj, P1, yi〉 be a hamiltonian cycle of G containing edge e where yi, yj are

two nodes adjacent to xn. Of course, at least one of (xn, yi) and (yj, xn) is not edge e, say

(xn, yi) �= e. By definition, edges (w, b), (w, yi), and (b, xn) belong to E(X(G)). Thus,

〈b, xn, yj, P1, yi, w, b〉 forms a cycle containing edge e of length |V (G)| + 2 in X(G). (See

Figure 8(a).)

Case 2: e = (w, b).

Since G is edge-bipancyclic, we can find cycles of every even length from 4 to |V (G)|
in G. We may label this cycle of G as 〈xn, a, P2, xn〉 where a is a neighbor of xn. Thus,

〈xn, b, w, a, P2, xn〉 is a cycle containing edge (w, b), so there are cycles containing edge

(w, b) of every even length from 6 to |V (G)|+ 2, and 〈xn, b, w, a, xn〉 is a cycle containing

edge (w, b) of length 4. (See Figure 8(b).)

Case 3: e = (w, yn) or e = (b, xn).

The case holds for e = (b, xn) as shown in Case 2. For e = (w, yn), it can be proved

similarly.

Case 4: e ∈ ⋃

(xn,yi)∈E(G)

(w, yi) or e ∈ ⋃

(yn,xi)∈E(G)

(b, xi).

Without loss of generality, we may consider only e = (w, yi) for some i such that

(xn, yi) ∈ E(G). Of course, (xn, yi) ∈ E(G). Since G is edge-bipancyclic, there exist cycles

containing edge (xn, yi) of every even length from 4 to |V (G)| in G. Let 〈xn, yi, P3, xn〉
be one such cycle. Then, 〈xn, b, w, yi, P3, xn〉 is a cycle containing edge (w, yi) with two
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more edges. Thus, there are cycles containing edge (w, yi) of every even length from 6

to |V (G)|+ 2 in X(G); and 〈xn, b, w, yi, xn〉 is a cycle containing edge (w, yi) of length 4.

(See Figure 8(c).) Therefore, the proof of this theorem is complete. �

w

b

graph G

P2 xn

a

(b)

w

b

graph G

P3 xn

(c)

yi

w

b

graph G

P1
xn

yi

(a)

yj

Figure 8: Edge-bipancyclicity of X(G).

With a similar argument, we have the following two results.

Theorem 11 Let G be an equitable bipartite graph with at least four nodes. If G is

bipancyclic, then J ′(G) is also bipancyclic.

Theorem 12 Let G be an equitable bipartite graph with at least four nodes. If G is

edge-bipancyclic, then J ′(G) is also edge-bipancyclic.

4 Concluding Remarks

In this paper, we extend the result presented in [7] and we show that operation J per-

forming on hamiltonian laceable graphs is not only hamiltonian laceable, but also strongly

hamiltonian laceable. Furthermore, we show that by adding one more specific edge to

J(G), the resulting graph J ′(G) becomes both strongly hamiltonian laceable and hyper-

hamiltonian laceable. We observe that J(G) and J ′(G) are two graphs by adding as many

as O(|V (G)|) edges to G. Thus, we have another operation, X, adding considerably less

number of edges to G to recursively construct hamiltonian laceable graphs.

13



It is noticed that Hamiltonian laceability is an important topic which deals with em-

bedding a hamiltonian path in a given graph. On the other hand, bipancyclicity and

edge-bipancyclicity for bipartite graphs are important issues in interconnection networks.

We show that the three operations, J , J ′, and X, performing on bipancyclic and edge-

bipancyclic graphs can yield bipancyclicity and edge-bipancyclicity, respectively.
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