
Fuzzy Classification Using Hierarchical Genetic Algorithm with

Multiple Rule Gene Tables

Wen-Gong Chen and Shie-Jue Lee

Department of Electrical Engineering

National Sun Yat-Sen University

Kaohsiung 804, Taiwan

E-mail: wgc@water.ee.nsysu.edu.tw

Abstract

Building a rule-based classification system
from a training data set is an important re-
search topic in the area of data mining, knowl-
edge discovery, and expert systems. In this pa-
per, a new method, using hierarchical genetic al-
gorithms with multiple rule gene tables, is pre-
sented. By using multiple rule gene tables, a
higher recognition rate can be achieved.

Keywords: Hierarchical genetic algorithm,
rule gene tables, fuzzy rules, data mining.

1 Introduction

Knowledge engineering plays a very important
role in expert systems. It involves knowledge
discovery, knowledge representation, and human-
machine interaction. Knowledge discovery can be
supplied by experts but it is usually difficult. The
better way for knowledge discovery is by extract-
ing knowledge from data directly. However, there
are much uncertainty and vagueness exists in the
real world data. Fuzzy set theory proposed by
L. A. Zadeh [1] can deal with the uncertainty
and vagueness of real world data. Furthermore,
the fuzzy systems are capable of handling com-
plex, nonlinear, and mathematically intangible
dynamic system using simple solutions. However,
it is difficult to determine the shape of member-
ship functions and fuzzy rules for more complex
systems. Therefore, to obtain optimal member-
ship functions and fuzzy rules is a difficult task.

Many approaches have been developed to ex-
tract knowledge from data directly. Some of them
are based on neural networks and fuzzy set theory
[2, 3, 4]. In [4], Wu and Chen proposed a fuzzy
learning algorithm based on the α-cuts of fuzzy
sets to divide numerical data into different par-
titions and to automatically derive membership
functions for each partition. However, there are
two problems exist in their method. One is that
the cost of time and space for the matrix opera-
tion becomes high when the number of training

data is large, and the other one is that the recog-
nition rate for special data structure,such as spi-
ral data, is too low.

Genetic Algorithm(GA) have been proved as
a powerful method for solving the optimization
problems for complex solution space [5, 6]. GA
are stochastic search techniques based on the
mechanism of natural selection and genetic op-
erations. It simulates the evolutionary process
in nature by creating a population of individuals
represented by chromosomes. Therefore, the GA
can perform machine learning well [7]. In recent
years, many researchers proposed hybrid systems
by combining fuzzy theory, neural networks, and
genetic algorithms to effectively solve fuzzy clas-
sification problems [8, 9].

In this paper, we propose a new method for
designing an efficient fuzzy classifier using the hi-
erarchical genetic algorithm(HGA) with multiple
rule gene tables. A precise hierarchical genetic
structure is formed for the purpose of optimiz-
ing the fuzzy membership functions and rules. A
similar idea has been proposed in [10] for fuzzy
rule optimization and applied to fuzzy controller
by [11]. In order to improve the classification per-
formance, we use a rule gene table for each class
in the hierarchical genetic algorithms.

The rest of this paper is organized as follows:
The overview of HGA is introduced in Section 2.
Our fuzzy classifier is described in Section 3. The
algorithm of our method is described in Section 4.
The simulation and experimental results are pre-
sented in Section 5. Finally, concluding remarks
are given in Section 6.

2 Overview of HGA

Compared with conventional GA, the struc-
ture of HGA is hierarchical [10, 11, 12]. A chro-
mosome consists of two types of genes—the con-
trol genes and the parametric genes. The control
genes are used for pattern features selection while
the parametric genes are usually used to represent
the parameters of membership functions of fuzzy

Figure 1: A hierarchical chromsome structure of
HGA.

rules. Generally, the control genes are coded
as binary digits, while the parametric genes are
coded as binary digits, real numbers, or symbols.
If the value of a control gene is 1, then the asso-
ciated parametric gene(s) are enabled, otherwise
the associated parametric gene(s) are disabled.
By means of hierarchical structure, not only the
basic genetic computations are maintained, but
also the flexibility, the robustness, and the com-
plexity of parametric modeling are improved. A
hierarchical chromosome structure is depicted in
Figure 1. Figure 1-(a) and 1-(b) show a two-level
gene structure in which the left part is control
genes, while the right part is parametric genes.
Each control gene is mapped to its corresponding
parametric gene(s). In figure 1-(a), each control
gene corresponds to one parametric gene, while in
figure 1-(b), each control gene corresponds to one
set of parametric gene(s)—singular gene or plural
genes for each set. In figure 1-(a), we can see that
the genes 3, 9, 1, and 4 are enabled, and genes 7,
2, and 6 are disabled. In figure 1-(b) the gene sets
(3, 9, 1), (6) and (7,4) are enabled, and gene sets
(5, 2, 1) and (8,4) are disabled. Figure 1-(c) is
a three-level gene structure, which contains two
levels of control genes. The upper level genes can
turn on or off the lower level genes. Thus, the
genes 3, 9, and 4 are enabled, and genes 1, 7, 2,
and 6 are all disabled.

3 Our Fuzzy Classifier

In this paper, a new method for designing an
efficient fuzzy classifier using the hierarchical ge-
netic algorithm with multiple rule gene tables is
proposed. Firstly, we use a feasible fuzzy par-
tition to construct a population of chromosomes
on the feature space and create a rule gene table
randomly for each class. Then, the population
is evolved by the HGA operations with multiple

rule gene tables. Finally, the optimal chromo-
some and rule gene tables are generated and used
to classify test data. The detail is described as
follows.

3.1 Chromosome Representation

As mentioned earlier, a chromosome consists of
two types of genes,i.e.,control genes and paramet-
ric genes. The control genes are coded as binary
numbers while the parametric genes are coded as
real numbers. The number of control genes is de-
cided by the total number of the fuzzy member-
ship functions of all feature dimensions and the
number of output classes. Further, the number of
parametric genes is decided by the parameters of
membership functions for all fuzzy membership
functions. For example, there are four feature
dimensions in the iris data set, i.e.,sepal length,
sepal width, petal length, and petal width. If we
define seven fuzzy triangular membership func-
tions for each feature such as specially short, very
short, short, medium, long, very long, and spe-
cially long. Note that each membership function
is defined with 3 parameters. Therefore, there
are 21 parametric genes needed for each feature.
Totally, a chromosome for iris data consists of 93
parametric genes. Each value of control genes is
randomly generated from 0,1 while each value of
parametric genes is flexibly determined as shown
in subsection 3.2.

3.2 Flexible Fuzzy Subsets

Suppose x is in the range of [Vl,Vr], a flexible
triangular fuzzy membership function shown in
figure 2 is defined as the following equation.

µ(x) =







0 if x ≤ a or x ≥ c
b−x

b−a
if x < b

c−x

c−b
if x > b

where a and c satisfy |a − c| ∼= (Vl − Vr)/N and
Vl ≤ a ≤ b ≤ c ≤ Vr, b is randomly decided
between a and c, N is the number of fuzzy mem-
bership functions of each feature space. Note that
the variables a, b, and c determine the shape of
membership function.

3.3 Multiple Rule Gene Tables

In order to increase the performance of classi-
fication, we create several rule gene tables. The
number of dimensions of a rule gene table is de-
cided by the number of input features. Every
entry of each table is initialized with a random
integer representing the class number. For the
example of three-classes spiral data, if we define
seven fuzzy membership functions for each input

Figure 2: A flexible membership function.

feature, then each table is a 7x7 array as shown
in Table 1.

Table 1: A Rule Gene Table for Spiral Data
3 2 1 2 2 1 2
1 2 3 1 3 2 1
2 1 2 1 2 3 2
1 3 3 1 1 3 3
2 1 1 1 3 1 1
1 2 2 1 3 2 2
3 1 3 1 2 1 3

3.4 Fitness Function

Two objectives for designing an efficient fuzzy
classificaton are as follows:

1. Maximize the recognition rate.

2. Minimize the number of fuzzy rules.

Considering these two objectives simultaneously,
we formulate an optimization fitness function as
follows:

f = c− wt1 × r + wt2 × n (1)

where c is a constant with value 3000, wtr and
wtn are weights and set as 20 and 5 respectively.
r represents the number of correctly recognized
patterns, and n represents the number of created
fuzzy rules.

We use an example to explain how to count
the r value as follows:

1. Assume the values of the control genes of a
chromosome for three-classes spiral data are
shown in the Figure 3 and three rule gene
tables are shown in the Table 2. In Fig-
ure 3, the first seven binary values represent
the seven defined fuzzy membership func-
tions for x-axis feature, the next seven bi-
nary values represent the seven defined fuzzy
subsets for y-axis feature, and the last three

binary values represent the seven fuzzy sub-
sets for output classes. Each entry in each
rule gene table is randomly coded as 1, 2, or
3.

1

 x-axis
 y-axis
 output class

1
 1
 1
 1
1
0
 0
 0
 0
 0
 0
 0
 0
 0
 0
1
0

Figure 3: Values of control genes in a chromosome
for spiral data.

Table 2: Three Rule Gene Tables for Three-classes Spiral
Data

3 2 1 2 2 2 2
1 2 3 1 3 2 1
2 1 2 1 2 3 2
1 3 3 1 1 3 3
2 1 1 1 3 1 1
1 2 2 1 3 2 2
3 1 3 1 2 1 3

1 2 3 2 1 3 2
2 1 1 3 2 2 3
3 2 1 3 1 2 1
3 1 2 3 1 2 3
1 3 2 2 1 3 1
2 3 3 1 2 2 1
2 2 1 3 3 1 2

3 2 1 2 2 1 2
3 1 2 2 1 3 2
1 3 1 3 1 1 1
2 2 1 3 3 2 1
3 2 3 2 1 3 2
3 1 1 3 2 1 3
2 3 1 2 3 2 1

2. From figure 3, we see that the first gene and
the fifth gene of x-axis are enabled. Also,
the third gene and the sixth gene of y-axis
are enabled. There are 4 combinations—
(1,3),(1,6),(5,3), and (5,6) between x-axis
and y-axis. Initially, let r and n be equal
to 0.

3. If an input pattern matches one of these
combinations, say (1,6), and it belongs to
class 1, we do defuzzification of Center Of
Area(COA) to get the output value by means
of the (1,6) entry value(2—bold) in the first
rule gene table(top in Table 2), and then
calculate the difference between the output
value(defuzzification result) and the target
value(1) of the input pattern.

4. If the difference is less than 0.5, count the r
value and check whether to count the n value
at the same time. Otherwise, we keep the
combination for rule gene tables adjustment
and try the same (1,6) entry from the sec-
ond rule gene table(middle in Table 2). Def-
initely, the difference got by the same (1,6)
entry value(3—bold) in the second rule gene
table will not be less than 0.5. Therefore, we
keep the combination and try the third rule
gene table(bottom in Table 2) again.

5. Repeat step 3 to step 4 for all input pat-
terns, we can get a chromosome’s fitness by
equation 1

The n value is counted when the r value in-
creases unless we check the same antecedents and
consequent as before.

3.5 Rule Gene Tables Adjustment

After fitness calculation of a population, adjust
each entry in rule gene tables whose difference
between defuzzification result and input target
never less than 0.5. The new entries values will
be assigned with another class number randomly
under a defined probability. The probability is
defined as 0.01.

3.6 Fuzzy Rule and Fuzzy Reasoning

The fuzzy rule i for the n-dimensional pattern
classification problem is expressed as follows:

Ri : If x1 is Ai1 and x2 is Ai2 . . . and xn is Ain

then Class Ci , i = 1, 2, . . . , N ,
where Ai1, . . . , Ain are antecedent fuzzy subsets,
Ci represents a consequent class, and N is the to-
tal number of fuzzy rules for the designed fuzzy
classifier. The way we classify pattern to some
class is almost same as counting the r value de-
scribed in Section 3.4.

4 Algorithm of Our Method

4.1 Algorithm

Our algorithm is outlined as follows :

1. Initialization: Randomly initialize k individ-
uals for the population and several rule gene
tables. Crossover rate is set as 0.6 and the
mutation rate is set as 0.01 at first. During
the evolution, they will be randomly changed
according to the degree of convergence.

2. Recovery: To ensure that there are no unde-
fined regions for the fuzzy membership func-
tions of parameter genes, an adjustment is

operated [11]. There is an example shown
in Figure 4(a) if the control genes are 1 0 0
1 0. The result after recovery is shown in
Figure 4(b).

(a)

(b)

Figure 4: (a) The membership functions before
recovery ; (b) The membership functions after
recovery.

3. Fitness calculation: According to the defi-
nition of fitness function described in Sec-
tion 3.4, Calculate each individual’s fitness
using all training data. After that, sort all
chromosomes for selection operation after-
wards. During fitness calculation, keep the
entries’ indices(combinations) of rule gene
tables whose difference between defuzzifica-
tion result and input target always greater
than 0.5 for rule gene tables adjustment
later.

4. Selection: Choose the best half of ranked
chromosomes as part 1 for creating new pop-
ulation of next generation.

5. Crossover: For control genes, select k/2 pairs
of individuals from the sorted population
for crossover. One crossover point is used.

The position is decided by the crossover rate
which is set initially. The crossover rate is
kept as a constant(0.6) until no variation
happens over 20 generations. For the pa-
rameter genes, choose the point which cor-
responds to the crossover point of control
genes. Maintaining the parameter genes se-
quence has to been done after crossover op-
eration.

6. Mutation: Mutation rate is treated as the
same way as the crossover rate according the
variation of convergence. When no variation
happens over 20 generation, mutation rate
can be changed a little bit.

7. Rule gene tables adjustment: As described
in Section 3.5.

8. Fitness calculation again: After crossover
and mutation, we do the same fitness cal-
culation as step 3 to get another better half
as part 2 for creating new population of next
generation.

9. Next generation: Combine part 1 and part
2 to form a new generation population(still
30 individuals in all). By this way, we can
keep the best chromosomes and still have the
chance to get better chromosomes generation
to generation.

10. Termination checking: Every 10 generations,
we do classification testing by reading test
data. When the recognition rate is more
than some defined threshold, we stop the
program in advance. Otherwise, the pro-
gram terminates after 200 generations.

4.2 An Illustration

In the following, we use a simple data set
shown in Figure 5 and Table 3 to illustrate our
algorithm as follows:

Table 3: Training data

x-axis y-axis class

0.4 0.2 1

0.4 0.4 1

0.6 0.2 1

0.6 0.4 1

1.4 0.2 2

1.4 0.4 2

1.6 0.2 2

1.6 0.4 2

0.9 1.5 3

0.9 1.7 3

1.1 1.5 3

1.1 1.7 3

1. Create a population of size 4 whose control
genes are shown in Table 4 and parametric
genes are shown in Table 5. Note that the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x axis

y
ax

is

Figure 5: A simple data set—3 classes,12 points.

first five binary digits, the second five binary
digits, and the last three binary digits in Ta-
ble 4 represent the 5 fuzzy subsets of x-axis
feature, the 5 fuzzy subsets of y-axis feature,
and the 3 fuzzy subsets of output classes,
repectively, while the top, middle, and bot-
tom tables in Table 5 represent the 5 fuzzy
subsets of x-axis feature, the 5 fuzzy subsets
of y-axis feature, and the 3 fuzzy subsets of
output classes, repectively. We use these rule
gene tables as shown in Table 6.

Table 4: Control genes of a population(size 4)

1 0 0 0 0 0 1 0 1 1 1 1 0
1 0 0 1 0 1 1 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 0 0 1 1
0 1 1 0 0 0 0 1 1 1 0 1 0

Table 6: Three Rule Gene Tables in illustration
2 1 2 3 2
1 1 1 1 3
2 3 2 3 2
1 1 2 3 2
3 1 1 1 1

1 3 1 3 2
1 1 3 1 2
3 2 1 3 1
1 3 3 2 3
1 2 1 3 2

1 2 2 1 3
2 3 3 3 3
3 2 2 2 1
3 3 3 3 3
2 1 3 2 2

2. Recover the parametric genes according to
the control genes. Table 7 shows the result.

3. Calculate the fitness of every chromosome as
follows:

(a) Chromosome 1 : From row 1 of table 4,
we see that only the first gene of x-axis
is enabled and the second gene , the
fourth gene , and the fifth gene of y-
axis are enabled . Therefore, there are
3 combinations—(1,2), (1,4), and (1,5)

Table 5: Parametric genes of a population(size 4)
0.00 0.03 0.42 0.40 0.63 0.82 0.80 0.89 1.22 1.20 1.53 1.62 1.60 1.81 2.02

0.00 0.23 0.42 0.40 0.56 0.82 0.80 0.82 1.22 1.20 1.21 1.62 1.60 1.67 2.02

0.00 0.38 0.42 0.40 0.68 0.82 0.80 0.81 1.22 1.20 1.41 1.62 1.60 1.90 2.02

0.00 0.06 0.42 0.40 0.57 0.82 0.80 1.04 1.22 1.20 1.44 1.62 1.60 1.90 2.02

0.00 0.31 0.42 0.40 0.44 0.82 0.80 0.99 1.22 1.20 1.51 1.62 1.60 1.94 2.02

0.00 0.10 0.42 0.40 0.71 0.82 0.80 0.91 1.22 1.20 1.56 1.62 1.60 1.69 2.02

0.00 0.16 0.42 0.40 0.61 0.82 0.80 0.84 1.22 1.20 1.33 1.62 1.60 1.69 2.02

0.00 0.38 0.42 0.40 0.51 0.82 0.80 1.18 1.22 1.20 1.34 1.62 1.60 1.63 2.02

0 1 2 1 2 3 2 3 4

0 1 2 1 2 3 2 3 4

0 1 2 1 2 3 2 3 4

0 1 2 1 2 3 2 3 4

Table 7: Recovered parametric genes of a population(size 4)
0.00 0.03 2.00 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0

0.00 0.23 1.22 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.40 1.21 2.00 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.00 0.57 0.82 0.80 1.04 2.00 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.00 0.44 1.22 -1.0 -1.0 -1.0 0.80 1.51 1.62 1.60 1.94 2.02

0.00 0.10 0.42 0.40 0.71 0.82 0.80 0.91 1.62 -1.0 -1.0 -1.0 1.20 1.69 2.02

0.00 0.16 0.82 -1.0 -1.0 -1.0 0.40 0.84 1.22 1.20 1.33 2.00 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.00 1.18 1.22 1.20 1.34 1.62 1.60 1.63 2.02

0 1 2 1 2 3 2 3 4

0 1 2 1 2 3 2 3 4

0 1 2 1 2 3 2 3 4

0 1 2 1 2 3 2 3 4

between x-axis’s fuzzy subsets and y-
axis’s fuzzy subsets. Initially, let r and
n be equal to 0. Then, input the train-
ing data and do the following calcula-
tions:

i. For the first pattern—(0.4,0.2,1),
it matches the combination(1,2).
From the (1,2)-entry value(1) in
the first rule gene table(upper left
in Table 6), the difference between
the defuzzification result and the
target value(1) is 0.24 which is less
than 0.5, Then, we increase the r
value and increase the n value at
the same time if there is a new rule
is created.

ii. For the second pattern—
(0.4,0.4,1), the third pattern—
(0.6,0.2,1), and the fourth
pattern—(0.6,0.4,1), they all
match the combination(1,2) and
have the same result as the first
pattern.

iii. For the fifth pattern—(1.4,0.2,2),
it also matches the combination—
(1,2), but the difference got from
the (1,2) entry value(1) in the first
rule gene table(upper left in Ta-
ble 6) is 1.13(>0.5), Therefore, try
the same (1,2) entry value(3) in the
second rule gene table(upper right
in Table 6) again. However, the
difference(1) is still greater than
0.5, therefore, continue to try the
same (1,2) entry value(2) in the
third rule gene table((bottom in
Table 6), we get a difference of 0
which is less than 0.5 finally, there-
fore, count the r value again and
check whether to count the n value

at the same time if there is a new
rule is created.

iv. For the sixth pattern—(1.4,0.4,2),
the seventh pattern—(1.6,0.2,2),
and the eightieth pattern—
(1.6,0.4,2), they match the
combination—(1,2) and have the
same result as the fifth pattern.

v. For the ninth pattern—(0.9,1.5,3),
it matches the combination—(1,4).
we get a difference of 0 from the
(1,4)-entry in the first rule gene ta-
ble.

vi. For the tenth pattern—(0.9,1.7,3),
it matches the combination—(1,5),
but we get a difference of 0 from the
(1,5)-entry in the third rule gene
table.

vii. For the eleventh pattern—
(1.1,1.5,3), it matches the
combination—(1,4), but we get a
difference of 0 from the (1,4)-entry
in the first rule gene table.

viii. For the twelfth pattern—
(1.1,1.7,3), it matches the
combination—(1,5), but we get a
difference of 0 from the (1,5)-entry
in the third rule gene table.

ix. The fitness of chromosome 1 is 75,
where r is 12,n is 3.

(b) Chromosome 2, chromosome 3, and
chromosome 4 are processed similarly
as above. The fitness values obtained
are 215, 300, and 115, respectively.

4. Select the best half of chromo-
somes(i.e.,chromosome 1 and chromosome
4) as part 1 for creating new population of
next generation.

5. Select two pairs—chromosome 1 and chro-
mosome 3, chromosome 2 and chromosome
4. Perform the operations of crossover and
mutation on the two pairs.

6. Adjust rule gene tables shown in Table 8.

Table 8: Three Rule Gene Tables after adjustment
2 1 2 3 2
1 1 1 1 3
2 3 2 3 1
1 1 2 3 2
3 1 1 1 1

1 3 1 3 2
1 1 3 1 2
3 2 1 3 2
1 3 3 2 3
1 2 1 3 2

1 2 2 2 3
2 3 3 3 3
3 2 2 2 1
3 3 3 3 3
2 1 3 2 2

7. Calculate fitness for the population after
crossover and mutation by the same way as
step 3. The fitness values of chromosome 1,
chromosome 2, chromosome 3 , and chromo-
some 4 are 115, 300, 70, and 125, respec-
tively.

8. Select the best half of chromo-
somes(i.e.,chromosome 1 and chromosome
3) as part 2 for creating new population of
next generation.

9. Create a new population for next generation
by combining part1 and part2, shown in ta-
ble 9.

Table 9: Control genes of a new population(size 4)
1 0 0 0 0 0 1 0 1 1 1 1 0
0 1 1 0 0 0 0 1 1 1 0 1 0
1 0 0 0 0 0 0 0 1 1 0 1 0
1 0 1 0 0 0 0 0 1 1 0 1 0

10. Check termination: read test data shown in
table 10 and use the best chromosome of the
last population to calculate the recognition
rate to decide whether the algorithm should
be terminated or not. Here, we use the best
chromosome of the population in generation
1 and get the result as follows:

(a) For the first test pattern—(0.4,0.4,1),
the difference between defuzzificaton
result and target value is 0.26

(b) For the second test pattern—
(0.6,0.4,1), the difference between
defuzzificaton result and target value
is 0.24

(c) For the third test pattern—(1.4,0.4,2),
the difference between defuzzificaton
result and target value is 0

(d) For the fourth test pattern—(1.6,0.4,2),
the difference between defuzzificaton
result and target value is 0

(e) For the fifth test pattern—(0.9,1.7,3),
the difference between defuzzificaton
result and target value is 0

(f) For the sixth test pattern—(1.1,1.7,3),
the difference between defuzzificaton
result and target value is 0

Therefore, the recognition rate is 100%

Table 10: test data
x-axis y-axis class

0.4 0.4 1

0.6 0.4 1

1.4 0.4 2

1.6 0.4 2

0.9 1.7 3

1.1 1.7 3

5 Experimental Results

We present two data sets to show the perfor-
mance of our classification algorithm.

5.1 The Iris Data Set

The iris data set consists of 150 patterns with
4 features and 3 classes. In our algorithm, the
control genes of each chromosome are randomly
coded as 31 binary numbers to correspond to the
fuzzy triangular membership functions of input
features and output classes. Therefore, the para-
metric genes are randomly coded as 93 real num-
bers to represent the membership functions of
fuzzy subsets of input features and output classes.
We use three rule gene tables whose entries are
randomly coded as integer numbers(1-3) to rep-
resent output classes. We use all of them to train
our algorithm and randomly choose half of them
to test. The population size is 30. All other pa-
rameters defined in our algorithm are described
in Section 3.6.

Figure 6(a) shows the fitness convergence ver-
sus generations with one rule gene table for iris
data set. Figure 6(b) shows the fitness conver-
gence versus generations with three rule gene ta-
bles for Iris data set. From these two figures, we
can see that the recognition rate of our algorithm
with three rule gene tables is faster than the one
with only one rule gene table.

The obtained fuzzy rules using 3 rule gene ta-
bles are shown as follows:

R1: IF sepal length is SL0 AND sepal width is
SW0 AND petal length is PL3 AND petal width
is PW1 THEN the flower is Setosa.

R2: IF sepal length is SL0 AND sepal width is
SW0 AND petal length is PL3 AND petal width
is PW3 THEN the flower is Virginica.

(a)

(b)

Figure 6: (a) The fitness convergence vs gener-
ations with one rule gene table; (b) The fitness
convergence vs generations with 3 rule gene ta-
bles.

R3: IF sepal length is SL0 AND sepal width is
SW0 AND petal length is PL5 AND petal width
is PW2 THEN the flower is Versicolor.

where SL0 denotes the recovered fuzzy sub-
set of sepal length feature. It is negligible.
SW0 denotes the recovered fuzzy subset of sepal
width feature. It is negligible too. PL3 de-
notes the third recovered fuzzy subset of petal
length feature. PL5 denotes the fifth recov-
ered fuzzy subset of petal length feature,...etc.
The recovery mechanism is derived from [11].
PL3,PL5,PW1,PW2, and PW3 are shown in Fig-
ure 7(a)and Figure 7(b).

A comparison between Hong’s algorithm [8],
Wu’s algorithm [4], and the proposed algorithm
is shown in Table 11. From this table, we can
see that the recognition rate of the proposed al-

(a)

(b)

Figure 7: (a) The recovered membership func-
tion of petal length fuzzy set.; (b) The recovered
membership function of petal width fuzzy set.

gorithm is better than those of Hong’s algorithm
and Wu’s algorithm.

5.2 The Spiral Data Sets

The second data set we select is a more com-
plicated spiral data set which is a union of K
subsets,s0,....,sK−1, with the data in subset sk,
0 ≤ k ≤ K− 1, belonging to class k. Each subset
sk consists of the following two-attribute points :

sk :

{

x = ρ cos(θ + 2kπ

K
)

y = ρ sin(θ + 2kπ

K
)

where ρ = αθ, α = 0.8, 0.25π ≤ θ ≤ 4π. We only
show a three classes spiral data in Figure 8.

The spiral data contains 2 features. We gen-
erate four spiral data sets—2,3,4, and 5 classes.

Table 11: A comparison of the recognition accuracy rate.

Hong and Lee’s Wu and Chen’s The proposed
algorithm [3] algorithm [4] algorithm

Average recognition rate 95.57% 96.21% 99.20%
Average Number of rules 6.21 3 3

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

x axis

y
ax

is

The spiral data : 3 classes, 102 points

Figure 8: The spiral data—3 classes,102 points

Each class has 34 points. Therefore, for three-
classes spiral data, the control genes of each chro-
mosome are randomly coded as 17 binary num-
bers to correspond to the fuzzy subsets of input
features and output classes and the parametric
genes are randomly coded as 51 real numbers to
represent the membership function of fuzzy sub-
sets of input features and output classes if we
define triangular fuzzy sets for each input feature
and output class. For the rule gene tables, their
entries are randomly coded as integer numbers(1-
3) to represent output classes. We use all of them
to train our algorithm and randomly choose half
of them to test our algorithm.

A comparison on fitness convergence between
the case with one rule gene table and the case
with three rule gene tables is shown in Figure 9.

Table 12: Comparison of two algorithms for spiral data.
The proposed Wu and Chen’s

Algorithm Algorithm

of # of # of # of # of Rec. # of # of Rec.

Feat. Class Pats Secs rules rate Secs rules rate

2 2 68 485 2 1.00 112 1 0.47

2 3 102 616 3 0.96 482 1 0.33

2 4 136 980 4 0.86 720 1 0.28

2 5 170 1320 4 0.82 830 1 0.22

In Table 12, # of Feat. denotes the number
of features of input patterns. # of Pats. denotes
the number of input patterns. # of secs. de-
notes the number of seconds for simulation time.
Rec. means Recognition. From this table, we can
find that the recognition rate derived from our al-
gorithm is higher than the one of Wu’s method
because of the recovery mechanism [11] and the
rule gene tables.

(a)

0 2 4 6 8 10 12 14
950

1000

1050

1100

1150

1200

1250

1300

1350

1400

Generation

Fi
tn

es
s

The Fitness convergence versus Generations

(b)

Figure 9: (a) The Fitness convergence vs gener-
ations with one rule gene table ; (b) The Fitness
convergence vs generations with 3 rule gene ta-
bles.

6 Conclusion

In this paper, we have presented a new algo-
rithm based on a hierarchical genetic algorithm
with rule gene tables to design an efficient fuzzy
classifier. Computer simulation results show that
our algorithm performs better than other meth-
ods. However, how to decrease the space needed
for rule gene tables will be researched in the fu-
ture.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and

Control, vol. 8, pp. 338–353, 1965.

[2] L. X. Wang and J. M. Mendel, “generat-
ing fuzzy rules by learning from examples,”
IEEE Trans. Syst., Man, Cybern, vol. 22,
no. 6, pp. 1421–1427, 1992.

[3] T. Hong and C. Lee, “Introduction of fuzzy
rules and membership functions from train-
ing examples,” Fuzzy Sets Syst, vol. 84,
pp. 33–47, 1996.

[4] T.-P. Wu and S.-M. Chen, “A new method
for constructing membership functions and
fuzzy rules from training examples,” IEEE

Trans. Syst., Man, Cybern.-PartB, vol. 29,
pp. 25–40, 1999.

[5] L. RenHou and Y. Zhang, “Fuzzy logic con-
troller based on genetic algorithms,” Fuzzy

Sets Syst., vol. 83, pp. 1–10, 1996.

[6] B. Carse, C. Terence, F. Munro, and Alis-
tair, “Evolving fuzzy rule based controllers
using genetic algorithms,” Fuzzy Sets Syst,
vol. 80, pp. 273–293, 1996.

[7] D. E. Goldberg, Genetic Algorithms in

Search, Optimization, and Machine Learn-

ing. Addison Wesley, 1989.

[8] H. Narazaki, I. Shigaki, and T. Watan-
abe, “A method for extracting appropriate
rules from neural networks,” in proc. FUZZ-

IEEE, Yokohama, Japan, pp. 1865–1870,
1995.

[9] N. K. Kasabov, “Learning fuzzy rules and
approximate reasoning in fuzzy neural net-
works and hybrid systems,” Fuzzy Sets Syst,
vol. 82, pp. 135–149, 1996.

[10] T. Yoshikawa, T. Furuhashi, and
Y. Uchikawa, “Emergence of effective
fuzzy rules for controlling mobile robots us-
ing dna coding method,” in Proc. ICEC’96,
(Nagoya Japan), pp. 581–586, May. 1996.

[11] K.-s. Tang, K. F. Man, Z.-f. Liu, and
S. Kwong, “Minimal fuzzy memberships and
rules using hierarchical genetic algorithms,”
IEEE Trans. Industrial Electronics, vol. 45,
no. 3, pp. 162–169, Aug.,1998.

[12] K. F. Man, K. S. Tang, and S. Kwong, Ge-

netic Algorithms. Addison Wesley, 1999.

