
A Rate Control Mechanism Based on Client Feedback for
Transporting MPEG-4 Video over the Internet

Suh-Yin Lee and Jun-Wen Chen

Department of Computer Science and Information Engineering,
National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, Taiwan, ROC

{sylee,junwen}@csie.nctu.edu.tw

ABSTRACT
With the popularity of the Internet and the

flexibility of MPEG-4 encoding, transporting
MPEG-4 video in the Internet will be an
important component of multimedia applications
in the near future. Unlike other applications,
video applications typically have limitations in
packet delay and packet loss, which cannot be
guaranteed by the current Internet. It is an
important issue to design a congestion control
mechanism of MPEG-4 delivery system that can
minimize delay and packet loss to maximize the
perceptual quality of service.

We present a congestion control mechanism
based on the client-server model. The video
server adjusts the data output rate depending on
the perceived network feedback from the video
client to avoid delay and loss. The client keeps
track of the video data received to estimate the
future output rate as the feedback for the server.
This mechanism is thus referred to as rate
control mechanism based on client feedback. It
can rapidly adjust the output data rate close to
the bandwidth available and utilize network
resources efficiently. The experimental results
obtained via simulation shows that the proposed
system is satisfactory.

1. INTRODUCTION
With the advance of computer technology and

digital storage, the potential of digital video is
growing rapidly. Many people watch a video
through digital devices instead of analog ones. In
recent years, the appearance of VOD (video on
demand) technologies provides people a
convenient way to watch a video at any time and
in any place.

With the flexibility and efficiency provided by
coding a new form of visual data called visual
object (VO), it is foreseen that MPEG-4 [7] will
be capable of addressing interactive
content-based video services, as well as
conventional storage and transmission of video.

Due to the growth of popularity and the
progress of technology of the Internet, it is
possible to watch a video through the network.
Like many multimedia applications, to transport
digital video data over the Internet needs much
bandwidth and has requirement in the limitations

of packet delay and loss, which cannot be
guaranteed by the current Internet. Furthermore,
the traffic load condition over the Internet varies
drastically over time, which is detrimental to
video transmission. It is an important issue to
design an efficient video delivery system that
can maximize users' perceived quality of service
(QoS) while achieving high resource utilization
in the Internet. The rate control mechanism is an
important component to help the system achieve
these goals.

In recent years, some video delivery systems
and rate control mechanisms are proposed. For
example, the additive increase and multiplicative
decrease (AIMD) [5] and the multiplicative
increase and multiplicative decrease (MIMD)
[12] algorithms are widely used by many
systems. However, they have a major
disadvantage that the increment of the server's
rate cannot be decreased when the rate getting
close to the link bandwidth available, and that
incurs oscillation and more packet loss. Another
mechanism called linear increase and
multiplicative decrease with history (LIMD/H)
algorithm [13] can achieve smooth variations of
server's rate when the available bandwidth is
invariant, but it cannot increase the server's rate
adaptively when the rate is far below the
available link bandwidth.

In this paper, we present a rate control
mechanism applied on transporting MPEG-4
video data over the Internet. This mechanism is
based on client feedback that adjusts data output
rate of the server depending on the perceived
network status, and the client keeps track of the
data received to dictate the future output rate. In
the experiment we will prove that it can recover
the server's rate adaptively when the available
bandwidth is still large, and smooth the
variations of the rate when the rate is close to the
link bandwidth.

2. BACKGROUND
2.1 Concepts of Internet Video Streaming

The major difference between Internet
streaming video and local storage video is that
people are able to watch the video while
downloading is still in progress. In other words,
people can watch the video at the time when

they want to watch without waiting for the
completion of downloading, and there is no need
preparing storage device with enough capacity in
the client.

The current Internet is a best effort service
network and interconnects sites with widely
varying bandwidth capabilities. It is simple to
reconnect and to retransmit the lost data when
congestion or disconnection occurs during
downloading a discrete file. However, it is not
desirable when downloading continuous data.
That is, display will be interrupted if
reconnection or retransmission is to be
proceeded. The most challenging issue is how to
keep the data transmission continuous and to
achieve the best perceptual quality when
continuous media data is transmitted over the
Internet.

To avoid the influences of congestion, the
server has to control the data output rate
according to the perceived network status.
Packet loss or disconnection may occur if the
server dose not lower its output rate during the
congestion. A video server may serve more than
one client, and buffer has to be reserved in each
connection to smooth the data output rate. Fig. 1
shows the concepts of Internet video streaming.

Fig. 1 Concepts of Internet video streaming

To minimize the influence of packet delay or

disorder, buffer has to be reserved in the client,
too. Besides, the client has to monitor network
conditions to provide some information for the
server. Although the server has controlled the
data output rate to prevent packet loss, packet
loss is unavoidable in the Internet and may have
a significant impact on perceptual quality. The
client has to deal with the incomplete data when
packet loss occurs: for instance, to discard or to
repair the incomplete video frames.
2.2 Overview of the MPEG-4 Encoding

MPEG-4 is an ISO/IEC standard developed
by MPEG (Moving Picture Experts Group), the
committee that also developed the standards
MPEG-1 and MPEG-2. These standards made
interactive video on CD-ROM and Digital
Television possible [1].

MPEG-4 is built on the proven success of
three fields:

• Digital television
• Interactive graphics applications (synthetic

content)
• Interactive multimedia (World Wide Web,

distribution of and access to content)
MPEG-4 provides the standardized
technological elements enabling the integration
of the production, distribution and content access
paradigms of the above three fields [1].

The most important goal of both the MPEG-1
and MPEG-2 standards was to make the storage
and transmission of digital audiovisual material
more efficient through compression techniques.
Because the video encoding of the MPEG-1 and
MPEG-2 is frame-based, to interact with the
frame-based video content is limited to the video
frame level [2].

MPEG-4 includes the concepts of video object
(VO) and video object plane (VOP). A video
object in a scene is an entity that a user may
access and manipulate. The instances of video
objects at a given time are called video object
planes (VOPs) [2]. Those VOPs can be
separately encoded, stored, or transmitted. The
MPEG-4 based multimedia systems can
reassemble, delete, or replace some VOPs of the
video stream as necessary for providing
human-machine interaction.

In Fig. 2, the scene consists of one
background and two foreground objects, which
can be encoded separately, and the receiver can
decode any single object and manipulate it at
presentation time. For example, one foreground
object can be mixed with other background
object to make a new scene.

Fig. 2 Content-based image coding [4]

MPEG-4 video encoding supports all

functionalities already in MPEG-1 and MPEG-2,
in particular the compression efficiency. Fig. 3
shows a detailed block diagram of the MPEG-4
video encoder. This is a conventional hybrid
DCT structure, but augmented by further blocks.
There is a block for contour coding and a
number of prediction modes are also supported:
• conventional motion compensated and

block-based (8×8 and 16×16 blocks)
prediction

• global motion compensation using affine
motion parameters

• static and dynamic sprite prediction for the

background

Fig. 3 Block diagram of the MPEG-4 video
encoder [3]

The improved compression efficiency is
mainly achieved by the following measures:
• improved slice layer and macroblock layer

syntax
• switched 8×8 and 16×16 motion

compression, which allows for more precise
prediction

• block-overlapping motion compensation,
which reduces block artifacts at low data
rates

• global motion compensation for scenes with
global camera motion

• post-filtering avoid ringing and block
artifacts

Although increased compression efficiency is
not the main target of the MPEG-4
standardization, MPEG-4 will offer efficient
coding at bit rates between 5 kbit/s and 15
Mbit/s or higher, so that a significantly larger
range than that of MPEG-1 and MPEG-2 will be
covered. At low data rates between 5 kbit/s and
100 kbit/s the quality will be better than that of
H.263, while at high data ranges, between 1
Mbit/s and 15 Mbit/s, a quality better than that
of MPEG-2 is targeted [3].
2.3 RTP and RTCP Protocols (RFC 1889)

Although TCP protocol gives reliability on
transmission of data over the Internet, the delays
of retransmission is not acceptable for MPEG-4
video applications. It is better to employ UDP
protocol as the transport protocol for the
transmission of MPEG-4 video data. Since UDP
does not provide reliability that TCP does, a
layer to detect packet loss need to be added [6].

RTP (real-time transport protocol) is an
Internet standard protocol, which provides
end-to-end delivery services for data with
real-time characteristics, such as interactive
audio and video. RTCP (RTP control protocol)
monitors the quality of service and to convey
information about the participants in an on-going
session [6].

RTP provides some basic functionalities
which are common to almost all real-time
applications. A key feature supported by RTP is
the packet sequence number, which can be used
to detect packet loss and to reorder packets at the
receiver. RTCP provides QoS feedback through
the use of sender reports (SR) and receiver
reports (RR) at the source and destination [5].
2.4 An Architecture for Transporting
MPEG-4 Video

Fig. 4 shows the end-to-end architecture for
transporting MPEG-4 video over the Internet,
and it includes stages as the following:
• raw bit-stream is encoded by the MPEG-4

encoder
• the compressed video bit-stream is

packetized and then passed through the
RTP/UDP/IP module before entering the
Internet

For packets that are successfully delivered to the
client, the following are done by the client:
• packets first pass through the RTP/UDP/IP

module
• the compressed bit-stream is decoded by the

MPEG-4 decoder
A QoS monitor is kept at the client side to detect
network congestion status based on the behavior
of the arriving packets [5]. The information of
network congestion status is sent to the server by
the feedback control protocol. Based on this
information, the server estimates the available
network bandwidth and change the output rate of
the MPEG-4 video stream.

Fig. 4 An end-to-end architecture for
transporting MPEG-4 video [5]

Fig. 5 shows the protocol stack for
transporting MPEG-4 video. The visual
information is compressed at the compression
layer, and generates elemenary streams (ESs),
which contain the coded representation of the
VOs. The ESs are packetized at the SL
(synchronization layer), the SL-packetized
streams include information about timing and
synchronization, as well as fragmentation and
random access [5]. Streams are multiplexed into
a FlexMux stream at the TransMux Layer, which
is then passed through the RTP, UDP, and IP

layers. The resulting packets are sent into the
Internet. At the client side, the video stream is
processed in the reverse way.

Fig. 5 Data format in MPEG-4 in each
processing layer at an end system [5]

2.5 Rate Control

Internet video applications, which differ from
other applications, typically have the limitations
of packet delay and loss. The Internet today
support best-effort service only, and there is no
bandwidth-reservation mechanism or other QoS
guarantees. Therefore, a mechanism must be in
place for MPEG-4 transporting system to sense
network conditions, so that the server can adjust
the appropriate output rate [5].

Ideally, it is better to perform congestion
indication and feedback by switches or routers of
the Internet. Under such an environment, it is
possible to design powerful feedback control
mechanism that the server can calculate the
accurate available bandwidth. But in the current
Internet environment, switches or routers do not
report information about network conditions.
Under such an environment, we treat the Internet
as a black box where packet loss and delay are
beyond our control. The feedback control
mechanism will solely be placed on the end
points (server and client) without any additional
requirements on IP switches or routers [5].

At the beginning, the server gradually
increases data output rate and probe available
network bandwidth. The data output rate will
overshoot the available bandwidth and
congestion may occur. The client monitors
network condition all the time and sends
information back to the server. Once the server
receives the feedback, it continually increases or
decreases its output rate. In order to match the

TCP manner, normally the output rate is reduced
to 1/2.

At first, we describe the source-based rate
control based on additive increase and
multiplicative decrease (AIMD) algorithm [5].
The AIMD rate control algorithm is shown as
follows:

if (p ≦ Pth)
 r := min{(r + AIR), MaxR}
else
 r := max{(α × r), MinR} ,

where p is the packet loss ratio; Pth is the
threshold for the packet loss ratio; r is the
sending rate at the source; AIR is the additive
increase rate; MaxR and MinR are the maximum
rate and the minimum rate of the sender,
respectively; and α is the multiplicative decrease
factor.

Packet loss ratio p is measured by the receiver
and conveyed back to the sender. An example of
source rate behavior under the AIMD rate
control is illustrated in Fig. 6.

Fig. 6 Source rate behavior under the AIMD rate
control [11]

Another source-based rate control mechanism
is the multiplicative increase and multiplicative
decrease (MIMD) algorithm [12]. The MIMD
rate control algorithm is shown as follows:

if (med_loss > tol_loss)
 max_rate = max(max_rate / 2, min_rate);
else
 max_rate = gain × max_rate;

During a control action, the control algorithm
adjusts the maximum output rate of the coder
max_rate so that the median loss rate stays
below a tolerable loss rate. The median loss rate
is denoted by med_loss, and the tolerable loss
rate by med_loss. Specially, max_rate is
decreased by a factor of two if the median loss
rate is larger than tol_loss. Otherwise, it is
increased by a fixed fraction of its current value.
An example of source rate behavior under the
MIMD rate control is illustrated in Fig. 7, where

we set gain = 1.02.

Fig. 7 Source rate behavior under the MIMD
rate control

The source rate behaviors under the AIMD
and MIMD algorithms have a major
disadvantage: it cannot decrease the increment
of the server’s rate when the rate gets close to
the link bandwidth. That is, wide oscillation and
more packet losses will occur due to this
characteristic.

The third source-based rate control
mechanism is the linear increase and
multiplicative decrease with history (LIMD/H)
algorithm [13]. The LIMD algorithm is the same
with the AIMD algorithm. The LIMD/H rate
control algorithm is shown as follows:

if (f = 0)
 r ← r + α, and hi ← 1.
else if (f > 0)
 r ← r × (1 – β × hi+1), and hi+1 ← 2hi. ,

where r denotes the sending rate, f the loss
fraction, α the linear increase constant, β the
multiplicative decrease constant, h the history
parameter, and i the time step. The h variable,
initially set to 1, is doubled if there is a packet
loss in a time step, and reset to 1 if there is no
packet loss.

In case of LIMD/H, β is set to be a small
value (between 0.1 and 0.2) in order to achieve
smooth variations of server’s rate when the
available bandwidth is invariant. LIMD/H thus
throttles its transmission rate gently when there
was no packet loss in the previous time step, and
progressively more aggressively when previous
time step has also experienced packet loss. An
example of source rate behavior under the
LIMD/H rate control is illustrated in Fig. 8.

In order to design the algorithm to be
TCP-friendly, α needs to be adjusted by the
following rule:

β
βα
−

=
2
3 The rule is proved in

[13], and yields [α, β] pairs of [0.15, 0.1], [0.33,
0.2], [0.53, 0.3], [1, 0.5], etc.

Fig. 8 Source rate behavior under the LIMD/H
rate control [13]

Although the LIMD/H achieves smooth
variations of server’s rate when the available
bandwidth is invariant, it cannot increase the
server’s rate adaptively when the rate is far
below the link bandwidth.

In order to employ a rate control mechanism
that can increase the rate adaptively when the
unused bandwidth is large, and can smooth the
variations of rate when the rate getting close to
the link bandwidth, we present a rate control
mechanism based on client feedback applied on
transmission of MPEG-4 video. The detailed
mechanism will be described in Chapter 3.

3. SYSTEM ARCHITECTURE
3.1 Overview

In order to proceed out experiments on rate
control mechanism based on client feedback, we
have to build an end-to-end MPEG-4 delivery
system that transports encoded MPEG-4 video
data over the Internet. The system mainly
consists of two parts: server and client, and
follows the architecture described in Section 2.4.
The system architecture will be described in
Section 3.1.1 and 3.1.2.
3.1.1 Server

Fig. 9 shows the block diagram of the server.
The YUV raw video data is input into the
MPEG-4 encoder, MPEG-4 compressed data is
generated, and then the compressed data is
stored in the storage devices. We use Microsoft
Optimization Model Software 3.0-010315 to be
our MPEG-4 encoder, which is the reference
software of the MPEG-4 standardization process
[8]. In the output rate control module, some
video frames are discarded according to the
value of output rate limit, and the remaining
frames are packetized into several packets.
Finally, data packets pass through the network
module and to be sent into the Internet.

Fig. 9 System architecture of the server in video
streaming

Fig. 10 Output rate control module in video
streaming

Fig. 11 Network module of the server

Fig. 10 shows the block diagram of the output

rate control module. Frame discarding module
periodically keeps the value of remaining output
size available in a time interval and determines
whether the next coming frame is to be
discarded. If the total available output size in a
time interval is not enough for all of the frames,
some frames have to be discarded. The order of
frame discarding is according to the importance
of I-frame, P-frame, and B-frame. The remaining
frames are input into buffer and are sent to the
client.

Fig. 11 shows the network module of the
server. The output rate control module generates
a packetized stream, which is turned into RTP
packets. On the other hand, the information from
feedback control module is transferred to the
RTCP generator. The resulting RTCP and RTP
packets go to the UDP/IP layer for transport over
the Internet.

3.1.2 Client
Fig. 12 shows the block diagram of a client. It

is similar to the one described in Section 2.4.
When the client receives a packet, the packet is
passed through the network module, and the
compressed MPEG-4 video data is input into the
buffer of the MPEG-4 decoder. Finally, data is
decoded and is displayed by the display device.
Simultaneously, the QoS monitor keeps track of
the congestion status of the network according to
the received packets. Information about previous
network condition is sent to the server by the
feedback control module.

Fig. 12 System architecture of the client

Fig. 13 shows the network module of the

client. The received IP packets are first
unpacked by UDP/IP layer, and are dispatched
by filter to RTP and RTCP analyzers. RTP
packets are unpacked by RTP analyzer and put
into the buffer of MPEG-4 decoder. At the same
time, QoS monitor detects and records the
packet loss and data-bits received for
information used to be feedback to the server.
On the other hand, the RTCP analyzer unpacks
RTCP packets and sends the information to the
feedback control module.

Fig. 13 Network module of the client

3.2 Packetization

In order to achieve the optimal transport of
MPEG-4 video over the Internet, an appropriate

packetization algorithm has to be employed. It is
clear that the use of large packet size will reduce
the total number of generated packets and
overhead. On the other hand, the packet size
cannot be larger than the path MTU (maximum
transmission unit). Path MTU is defined to be
the minimum of the MTUs along all the
traversing links from the source to the
destination. This is because any packet larger
than path MTU will result in IP fragmentation,
which brings overhead for each fragmented
packet. To make things worse, loss of one
fragmented packet will corrupt other fragmented
packets within the original packet. Furthermore,
for MPEG-4 video, it is also not advisable to
packetize the data that contain information
across two VOPs. With these considerations, the
packet size is chosen to be the minimum of the
current VOP size and the path MTU [14].

The packetization algorithm we use in this
experiment is shown as follows:

while (there is encoded data to be packetized) {

search for next VOP_start_code and
BitCount counts the number of bits;
if ((next VOP_start_code is found) and
(BitCount – length of VOP_start_code ≦
MaxPL)) {

 /* Packetize by VOP boundary */
packetize the bits before next
VOP_start_code;

 }
else if (BitCount – length of
VOP_start_code > MaxPL) {

Packetize as many bits as possible
without exceeding MaxPL and
without crossing into next VOP;

 }
 else {

/* Next VOP_start_code is not found
*/

 Packetize the remaining data;
 }
}

BitCount is a counter that registers the number
of bits read for current packetization process.
MaxPL is the maximum payload length and is
equals to (path MTU – length of headers).
VOP_start_code is a predefined code at the
beginning of a VOP and is regarded as the
boundary between two consecutive VOPs.

If a complete VOP fits into a packet, then
packetize such VOP with a single packet.
Otherwise, as many bits as possible will be
packetized into a packet without crossing over
into the next VOP even if space is available in
the last packet for the current VOP, i.e. data from
consecutive VOPs are never put into the same
packet. This packetization algorithm achieves

robustness to packet loss [14].
3.3 Rate Control Mechanism

In every time interval, the client keeps track of
the estimated transmit rate S and then
compares it with the client’s measurement of the
actual receiving rate O to dictate the future

transmission rate . is sent to the
server as the data output rate in the next time
interval [9].

k
ˆ

k

1+
ˆ

kS 1
ˆ

+kS

If there is no congestion in the network, the
server gradually increases the transmission rate
until the packet loss ratio exceeds the threshold.
When congestion occurs, the client goes into the
congestion mode and sends feedback to the
server to decrease the transmission rate. The
mechanism is described as follows:

)(ˆˆ

1 kSS kk µε+=+

βαε)ˆ()(
k

k

S
Ok ×= if packet loss is under the

threshold
kSk ˆ)(×−= γε if packet loss exceeds the

threshold ,

where k denotes a time step index, µ is the
adaptation factor and ε(k) is the error determined
based on the transmission rate, the receiving rate
and packet loss.

In case the packet loss is under the threshold,
α and β determine the increasing rate. When β is
larger, the server recovers the transmission rate
faster after decreasing the transmission rate due
to congestion. Additionally, the proposed
mechanism minimizes the number of packet loss
because it smoothly decreases the increment of
transmission rate to near the link bandwidth. An
example of source rate behavior is illustrated in
Fig. 14.

Fig. 14 Source rate behavior under the proposed
rate control mechanism

In case the packet loss exceeds the threshold, γ
determines the decrement of server’s output rate.
We use γ = 0.5 because it is matched with TCP
mechanism. It decreases the transmission rate at

one half as soon as it detects congestion so that it
behaves TCP friendly manner. That is, it shares
the available bandwidth fairly with TCP
mechanism. All three factors are related to each
other, especially α and γ are strongly related to
determine the TCP friendly manner.

4. EXPERIMENTS AND RESULTS

4.1 Simulation Environment
4.1.1 Data Source

The source data we use is the standard raw
video sequence “Bream” in CIF format for the
MPEG-4 video encoder. The encoder performs
MPEG-4 coding described in Section 2.2. The
encoded bit-stream is packetized with the
packetization algorithm described in Section 3.2
as well as RTP/UDP/IP protocol before being
sent to the network. Packets may be dropped due
to congestion in the network. For arriving
packets, the client extracts the packet content to
form the bit-stream for the MPEG-4 decoder.
For a lost packet, the VOP associated with the
lost packet will be discarded and a previous
VOP will be copied over. The source encoder
encodes an Intra-VOP every 15 frames. The
source data is divided into two video objects,
and these two objects are encoded into two
MPEG-4 bit-streams. VO1 is a foreground
object which is a bream swimming, and VO2 is
a background object that pans from right to left
slowly. Table 1 shows the Information of source
data.

Table 1 Information of source data
 VO1 VO2

Resolution 352×288 pixels 352×288 pixels
Frame rate 30 frames/s 30 frames/s
I-VOP Every 15 frames Every 15 frames
P-VOP 4 between 2

I-frames
4 between 2
I-frames

B-VOP 2 between 2
P-frames

2 between 2
P-frames

Size of
I-frame

Max: 6511 bytes
Min: 2482 bytes
Avg.: 5633 bytes

Max: 2527 bytes
Min: 1963 bytes
Avg.: 2213 bytes

Size of
P-frame

Max: 3082 bytes
Min: 1169 bytes
Avg.: 1698 bytes

Max: 447 bytes
Min: 265 bytes
Avg.: 337 bytes

Size of
B-frame

Max: 2575 bytes
Min: 791 bytes
Avg.: 1290 bytes

Max: 1149 bytes
Min: 315 bytes
Avg.: 530 bytes

4.1.2 Network Topology
We employ the standard peer-to-peer

benchmark network configuration as shown in
Fig. 15. Such a simple network configuration
captures the fundamental property of a transport
path within the Internet cloud since there is only
one bottleneck link between the server and the
client. In the configuration of routers, buffer size
is 10 Kbytes and buffer management is tail
dropping. In this experiment, we set the
maximum available bandwidth of the bottleneck
link (link 12) to 60 Kbytes/s.

Fig. 15 A peer-to-peer network

In this experiment we employ the AIMD

algorithm described in Section 2.5 as the
comparison. Table 2 shows the simulation
parameters of the two algorithms. Ideally, the
packet size is defined to be the minimum of the
MTUs (maximum transit unit) along all the
traversing links from the source to the
destination. In the case when path MTU
information is not available, the default MTU,
i.e., 576 bytes, will be used [5].

Table 2 Simulation parameters
 AIMD

algorithm
The proposed
algorithm

Max packet
size

576 bytes 576 bytes

Initial rate 20 KBps 20 KBps
Additive
increase rate

0.5 KBps Dynamic

Decreasing
factor

0.5 0.5

Sender
report

Every 75
packets sent

Every 75
packets sent

Receiver
report

Every 25
packets
received

Every 25
packets
received

Max
bandwidth

60 KBps 60 KBps

Threshold of
packet loss

5 % 5 %

Buffer size 256 Kbytes 256 Kbytes

4.1.3 Frame Discarding

During the transmission of MPEG-4
bit-stream over the Internet, if the total available
output size in a time interval is not enough to
accommodate all of the frames, some frames
have to be discarded. The order of frame
discarding is listed as follows:
• B-frame of VO2
• P-frame of VO2

• B-frame of VO1
• P-frame of VO1
In this experiment we do not discard I-frames of
VO1 and VO2 to ensure the minimum limit of
display quality.
4.2 Experimental Results
4.2.1 Data Output Rate

Fig. 16 shows the source rate of the two
algorithms during the 120 seconds simulation
run. The proposed algorithm increases the
server’s rate faster when the current rate is not
close to the link bandwidth, and the rate
increases smoothly when it getting close to the
link bandwidth. The proposed algorithm makes
the server gains more bandwidth utilization due
to these characteristics.

Fig. 16 Source rate of the two algorithms

4.2.2 Frame Rate

Fig. 17 shows the frame rate of VO1 during
the 120 seconds simulation run. When we
employ the proposed algorithm, the percentage
of time that frame rate greater than or equal to
20 frames/sec is 86.67 %, and there is only 48.75
% when we employ the AIMD algorithm.
Because of the proposed algorithm makes the
server gains higher output rate, the perceptual
quality of VO1 is better then that of the AIMD
algorithm.

Fig. 18 shows the frame rate of VO2 during
the 120 seconds simulation run. In this
experiment B-frames and P-frames of VO2 are
the first two chosen to be discarded when the
link bandwidth is no longer enough, and so the
VO2 can only increase its frame rate when the
VO1 reaches the maximum frame rate. Because
the link bandwidth is 60 Kbyte/s and is not
enough for all frames of VO1 and VO2, the
maximum frame rate that VO2 can reach is only
18 frames/s. When we employ the proposed
algorithm, the percentage of time that frame rate
greater than or equal to 10 frames/sec is 34.17 %,
and it is only 10.00 % when we employ the
AIMD algorithm.

Fig. 17 Frame rate of VO1

Fig. 18 Frame rate of VO2

5. CONCLUSIONS AND FUTURE

WORK
5.1 Conclusion

In this paper, we present a rate control
mechanism based on client feedback applied on
transmission of MPEG-4 video over the Internet.
The client monitors the network congestion
status when receiving packets from the server,
and it dictates the future output rate based on
previous network condition, and then sends the
congestion information back to the server by
feedback messages.

The proposed mechanism makes the server
recover the transmission rate faster after
decreasing the transmission rate due to
congestion. Additionally, it minimizes the
number of packet loss because it smoothly
decreases the increment of transmission rate to
near the link bandwidth.

We build a MPEG-4 delivery system to
transmit MPEG-4 bit-stream to the client over
the Internet, and employ the simple AIMD
algorithm as comparison. If the output rate is not
enough for all of the frames, the system discards
some frames until the size of frames is close to
the output rate.

Frame rate has a great influence on the
perceptual quality of display. We use a video that
has two video objects as the sample data. In our
experiments, the proposed mechanism makes the
server gain higher output rate, and the server can
output more video frames to the client. We

achieve a great progress in the frame rate of the
foreground object, and the frame rate of the
background is satisfying.
5.2 Future Work

In the future, there are still possible
improvement in the implementation and
extension of our system and experiments:
• In the encoding stage, we can employ the

layer enhancement coding, i.e. fine
granularity scalability (FGS) [10], to achieve
better perceptual quality and data reliability.

• Link fairness is a popular topic in recent
years. The parameters of the proposed
mechanism can be adjusted so that the
bandwidth can be shared more fairly with
other TCP links.

6. REFERENCES

[1] Rob Koenen, “MPEG-4 Overview”,
ISO/IEC JTC1/SC29/WG11 N4030, March
2001.

[2] Stefano Battista, Franco Casalino, Claudio
Lande, “MPEG-4: A Multimedia Standard
for the Third Millennium, Part 1”, IEEE
Multimedia, Vol. 6, No. 4, pp. 74-83,
October-December 1999.

[3] R. Schafer, “MPEG-4: a multimedia
compression standard for interactive
applications and services”, IEEE
Electronics & Communication Engineering
Journal, Vol. 10, No. 6, pp. 253-262,
December 1998.

[4] Thomas Sikora, “The MPEG-4 Video
Standard Verification Model”, IEEE
Transactions on Circuits and Systems for
Video Technology, Vol. 7, No. 1, pp. 19-31,
February 1997.

[5] Dapeng Wu, Yiwei Thomas Hou, Wenwu
Zhu, Hung-Ju Lee, Tihao Chiang, Ya-Qin
Zhang, H. Jonathan Chao, “On End-to-End
Architecture for Transporting MPEG-4
Video Over the Internet”, IEEE
Transactions on Circuits and Systems for
Video Technology, Vol. 10, No. 6, pp.
923-941, September 2000.

[6] H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson, “RTP: A Transport Protocol for
Real-Time Applications”, The Internet
Engineering Task Force, RFC 1889,
January 1996.

[7] ISO/IEC JTC 1/SC 29/WG 11,
“Information technology – Coding of
audio-visual objects, Part 1: Systems, Part 2:
Visual, Part 3: Audio”, FCD 14496,
December 1998.

[8] ISO/IEC JTC1/SC29/WG11 W4057,
Singapore, March 2001.

[9] Yon Jun Chung, Young-Gook Kim,
JongWon Kim, C.-C. Jay Kuo,

“Receiver-Based Congestion Control
Mechanism for Internet Video
Transmission”, IEEE International
Symposium on Circuits and Systems, 1999,
ISCAS ‘99, Vol. 4, pp. 239-242, 1999.

[10] Weiping Li, “Overview of Fine Granularity
Scalability in MPEG-4 Video Standard”,
IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 11, No. 3, pp.
301-317, March 2001.

[11] Dapeng Wu, Yiwei Thoms Hou, Ya-Qin
Zhang, “Transporting Real-Time Video
over the Internet: Challenges and
Approaches”, Proceedings of the IEEE, Vol.
88, No. 12, pp. 1855-1877, December 2000.

[12] Thierry Turletti, Christian Huitema,
“Videoconferencing on the Internet”,
IEEE/ACM Transactions on Networking,
Vol. 4, No. 3, pp. 340-351, June 1996.

[13] Kang-Won Lee, Rohit Puri, Tae-eun Kim,
Kannan Ramchandran, Vaduvur
Bharghavan, “An Internet Source Coding
and Congestion Control Framework for
Video Streaming in the Internet”, IEEE
INFOCOM 2000, Vol. 2, pp. 747-756,
2000.

[14] Dapeng Wu, Yiwei Thomas Hou, Wenwu
Zhu, Ya-Qin Zhang, H. Jonathan Chao,
“MPEG4 Compressed Video over the
Internet”, IEEE International Symposium
on Circuits and Systems, 1999, ISCAS ‘99,
Vol. 4, pp. 327-331, 1999.

