
Hybr id Neural Network and Video Texture Techniques to

Synthesize Realistic Fish Animation

Tong-Yee Lee*

tonylee@mail.ncku.edu.tw
Hon-I Chen

chichi@csie.ncku.edu.tw
Ping-Hsien Lin

hsien@vision.csie.ncku.edu.tw

Department of Computer Science and Information Engineering
National Cheng-Kung University, ROC.

* Corresponding author

Abstract

Computer Graphics technology has
advanced dramatically in recent years. However,
all these techniques do not obviously improve
the reality of rendering in computer animation.
Recently, a new type of medium called video
textures is proposed. That is a new method to
synthesize video-based animation and also
raising many new methodologies to verify
animation. We present several algorithms that
not only enrich the original methods but also
utilize sufficiently the information obtained from
video.

In this paper, a novel method to implement a
realistic fish animation is proposed. First, we
capture a video clip and get the fish information
by using several image-processing techniques.
Then, in order to find the relation of the
extracted properties, some specific parameters of
all video frames are trained through neural
network. Because of the lack of locomotion
images in all orientation, we synthesize new fish
images by rotating the images. So far, a simply,
robust, and real-time animation playing system
is available. On the other hand, we analyze the
similarity of every frame and take video loops to
generate synthetic animation. Moreover, we use
a position map for video loops so as to select the
proper video segment. With this map, we can
create another type computer animation.
Eventually, for eliminating some unavoidable
constraints while playing fish animation, both
two rendering method are combined.

Keywords: video texture, video-based animation,
neural network.

1. Introduction

In early days computer animation appeared
as successive 2D images such as cartoon.
Presently, researchers in computer graphics and

computer vision have proposed efficient
methods to generate novel views by analyzing
captured images. These techniques, called
image-based rendering, demand somewhat user
interaction [3] and permit photo-realistic
synthesis of static scenes.

And yet, 3D animation industries have
occupied the commercial entertainment market
in recently years and offer more variation in
visualization. However, no matter the computer
animation is improved by researchers, it’s still
hard to reach an absolutely realistic object in all
cases. In spite of texture mapping could fairly
increase the reality in modeling or rendering, the
object is still unnatural in most situation. Our
vision is to create an interesting and natural
animation.

We propose an alternate methodology to
realize natural and realistic fish animation.
Nevertheless, what on earth does nature mean?
Most people will agree that the fish pictures
show the immediate and most primitive
appearance. If we display fish animation on 2D
screen, the fish’s texture in every moment is
expected smoothly in visual. In fact, for general
cameras, it is quite difficult to capture every
detailed motion of fish. Intuitively, we can easily
solve the problem through video camera. And
further, video clips can be put down more
information than static pictures, so instead of
pictures we choose the video frames as our data
source.

In detail, our main goal is to take advantage
of video sufficiently and as much as possible
grasping more information of specific objects
within each frame. In our experiment, we put our
video camera on the upper side of fish tank and
capture a carp which will change its body
obviously whilst turning. It’s an interesting topic
to study what video conveys through those
consecutive video images. Because of images
recorded in video successively, the varying

motion of fish shows distinctly within every
frame. All these images have closely relationship
with each other, such as object positions, color
similarity. So, when we observe a fish, it is easy
to discover the fish almost swims in some
similar trajectory, regular behavior, and
resembling reflection. By exploiting these
properties of video frames, we study the
idiosyncrasies of a fish from video. After
abstracting these video frames, it is easy to
obtain many parameters about fish movement
such as displacement, turn degree, head
orientation etc. Further, in order to understand
the variation of fish locomotion, all the
parameters can be trained through the
back-propagation neural network [4]. From
extracted parameters we successfully explore a
relation in mathematics that could be used in fish
control system. That is, by giving reasonable
control parameters, the control system will
return the proper reaction of fish. On the other
hand, because of the lack of locomotion images
for all orientation, we synthesize new fish
images by rotating the images. So far, a simply,
robust, and real-time animation playing system
is available. And more significant, the control
system is derived by every frame of the video. In
other words, this control system represents truly
the fish behaviors that recorded in video.

In [1], Schödl et al. proposes a new type of
medium named video textures, which provide a
continuous, infinitely varying stream of video
images. The basic concept of a video texture can
be extended in several different ways to further
increase its applicability. Among the techniques
they proposed, the most important concept is
video loops that can be extracted from video and
played continuously without any visible
discontinuities. However, this technique is not
suitable anymore when the specific object moves
arbitrarily on 2D screen. We solve this problem
by introducing a table, which is called video
loop position map. This table is recorded the
orientation of each video loop and wherever the
fish swimming, by this table, we can easily
determine proper video loops which have
identical orientation with fish. Eventually, in
case the video is too short to be extracted enough
video loops for rendering or the selected video
loops exist some unavoidable limitation, we
jump into another playing system that simulated
by neural network to figure out the problem.

We successfully keep the characteristics of
fish captured by video camera, and furthermore
by embedding the original video loops the fish
animation also would display realistically.
However, creating the fish animation from video
must overcome a lot of problems. The first
difficulty is to decide the size of fish. If the fish

is small, then the movement would be unclear
and the fish body of most frames would become
ambiguity. On the other hands, since the fish
changes its body in a limit range, the extraction
would be easy to observe and implement. If we
employ other kind animal as our target, such as
snake or eel, which has a complex body and
change exceedingly while moves, it’s not easy to
evaluate the variation from video. For the sake
of convenience, we select fish to prove our
methodology can work in some case. That is, our
method is not suitable in generalization. Second,
although carp swims close to the bottom of fish
tank, it will tilt when swimming toward top. To
capture an image, which contains a leaning fish,
however, is hard to analyze motion parameters
since it gives rise to ambiguity in motion
characteristic. Third, object tracking is a tough
problem in computer vision field. There is a
great store of techniques for extracting moving
objects from imagery. In order to simplify this
problem, we adopt background subtraction
method to extract the fish.

Our main contributions are listed as follows:

1 Through our method, the object within the
video can be automatically analyzed and
parameterized. Further, we can utilize
neural network to learn the fish motion
model.

2 Through video images, we can measure the
fish motion by several parameters, such as
displacement, change of body orientation,
swimming state, etc.

3 The training of neural network could be
done off-line. Animation from trained
motion model, however, can generate
real-time.

4 We can utilize the position map for video
loops to select suitable video loop to
synthesize new animation.

5 Combining neural network mode and video
textures mode to generate a complete
animation playing system.

1.1 Related Work

As Schödl et al. mention in [1], there has
been little previous work on automatically
generating motion by reusing captured video.
Fortunately, they propose video sprites [2],
which is another type of video textures, to make
this field richer. In [1], they generalize
image-based rendering to the temporal domain.
Therefore, the core algorithms proposed in video
textures are not suitable on specific moving
objects. In order to overcome this problem, the
video sprites that can be rendered anywhere on
the screen to create a novel animation is
presented in [2]. However, they labeled training
data manually so as to train the classifier. In

most cases, manual classification is difficult to
evaluate. Evaluating a method, which is required
manual operation, is not an easy work. For this
reason, we devote to develop an automatically
learning method that could objectively represent
the characteristic of fish motion

Frankly, in addition to [1, 2], there is really
a little work that has highly relation to our
research. In this paragraph, we discuss some
research that somewhat inspire our study. First,
Tu et al. [5] propose a framework for animation
with minimal input from the animator. They
presented a method to make an artificial creature
move by defining principal motion patterns of
fishes and giving parameters of mental status,
which are factors to cause the motion. They
define a physics-based, virtual marine world, in
which artificial fishes inhabit. These motion
patterns are decided by using a few mental state
variables. Each of which, however, remains
some problems in ease to use and generality. In
addition, a method to learn a fish’s motion
automatically is proposed [6]. Because these
methods use complicated algorithm, however, it
is difficult to generate motions in real time.
Terzopoulos et al. [7] proposed a new method
called NeuralAnimator that utilizes a neural
network to simulate a physics-based model and
they replaced the conventional animation
simulators, which are made with numerical
simulation.

Both Ziv Bar-Joseph [8] and X. Wen et al.
[9] introduced wavelet techniques in analyzing
and synthesizing video. Bar-Joseph retrieved the
video by the decomposed parameters of video.
Wen made a new synthetic video by wavelet
coefficients. Finkelstein et al. [10] presented a
new approach called multiresolution that
provides a means of capturing time-varying
image data produced at multiple scales, both
spatially and temporally. The above studies of
video are successfully analyzing the information
of video and really encourage us to exploit the
video information.

We also inspired by Takahashi et al. [11]
and Lipton [12] that they both focus on the
object of video and study the behavior and
feature. Takahashi et al. proposed an estimation
method of fish position and posture from video
using object matching technique. Lipton
presented a paradigm for data interaction called
virtual video that can be interactively augmented
in real-time.

1.2 System Overview

Our purpose is to generate a realistic fish
animation by understanding and taking
advantage of video clip. In our system, we
separate our work into two major parts, one is

neural network playing mode, the other is video
loop playing mode (Figure 1).

The remainder of this paper describes, in
Section 2, the representation used to obtain the
parameters of a video image (frame). In Section
3, after observing the fish motion, we define
several evident characteristics as motion
parameters and train a motion model by neural
network. In section 4, the method to detect video
loops is proposed. And we discuss the some
limitations when using video loops about
moving 2D object. On the other hand, we also
depict the solution of these limitations, that is,
by switching into neural network playing mode.
Our results are illustrated in Section 5 and
conclusion or further extensions is put in Section
7.

Source Video clip

Image ProcessingMotion Parameters

Learning Through
Neural Network

Fish Images of
Every Frame

Video Loops
Analyzing

Synthesizing Fish
Images for All

Orientation
Video Loops

Synthetic
Images

Finding the Gateways of
Synthetic Images and

Video Loops

Animation Generation

Trained Fish
Motion Model

Figure 1. System overview diagram. An input source
video clip is decomposed into every single frame. We
abstract fish information from these images and also,
motion parameters could be obtained after image
processing. Then, we utilize neural network to learn
motion parameters in order to find a model for fish
motion. On the other hand, through these frames, we
not only synthesize fish images for all orientation but
also analyze their similarity to find out video loops.
Eventually, the gateways of synthetic images and
source video clip, which are obtained by examining
the resemblance, are used for the switching between
the two kinds of playing modes.

2. Motion Parameters Extraction

The first step of our research is to examine
the source video. After segmenting every fish
image of video frames, we begin to analyze the
motion information of fish so as to train through
neural network. In this section, the method of
segmentation and motion measurement will be
discussed.

2.1 Displacement

As regards the image segmentation, there
are a lot of methods for object extracting [13]. In

our case, a fish in a simply fish tank, we just
choose background subtraction to extract the fish
image because it works well in general cases
except when fish swims near to the walls of fish
tank. Accordingly, we locate the fish global
coordinate by computing the mass center of fish.
Further, the displacement of fish could be
derived by fish coordinate. That is an important
characteristic of fish since it varies only when
the fish changes its motion. In addition to above
parameters, we can also locate head and tail of a
fish by image-processing techniques. All these
properties are very practical in learning by
neural network while we can analyze them and
take out their influence upon fish motion.

2.2 Motion Area

A carp is employed as our target fish for the
reason of its body size and habit. The swimming
fashion of carp belongs to the horse mackerel
type. In this swimming fashion, the fish deforms
extremely when it turns around. Therefore, we
define a measurement to quantify the variation
of fish motion. This measurement is called
motion area.

First of all, we use image-thinning method
[13] on the original fish images. After thinning
processing, the fish images leave a thin line,
which is like the backbone of fish. Second, we
put four points on 1/6、1/3、1/2、5/6 of this thin
line, one on the fish head and one on the fish tail
respectively. (See Figure 2) Then, we produce a
B-spline that is made up by these points, which
are taken as control points. Eventually, the area
circled by the B-spline is the motion area.

Why not put these points into six equal
positions? In our observation, fish head is
composed of bone and head its length is almost
one-third of itself. Moreover, it has a backbone
composed of a number of spines. Thus, thee
head cannot deform, but the rear part of the body
deforms smoothly. For this reason, it is sensible
that the measurement of the points, which are
distributed close to the fish head, could receive
higher accuracy than that of the points are
locating in the tail. Although we do not distinctly
prove this hypothesis in mathematical form, the
results determined by our method indeed
represent the variation objectively.

Figure 2. Motion Area. There are six points setting
purposely into different place along the skeleton.
Also, these points are the control points of a B-spline
circle, which is the motion area and shows the
magnitude of the deformation of fish objectively.

2.2.1 Branch Pruning

Any object of image will only leave the
medial axes of itself after dealing with
image-thinning procedure [13]. In our
experiment, however, if the fish unfolds its
pectoral fin, the final image will show several
branches (Figure 3). This consequence will
increase the difficulty while distinguish the
backbone.

(a) (b)
Figure 3. (a) is the original fish image with stretching
pectoral fin. After image-thinning process, some
branches appears near the pectoral fin, which is
showing in (b).

01

50

51

51

52

52

66

72

52

53

54

114

B

C

D

A

Figure 4. Among these branches, only the greatest
number will be selected as backbone of fish. It is to
say, in this figure, the line from A to D is the
backbone.

As far as branch problem is concerned, we
solve it by a simple method. First, we take down
a number as the initial in the beginning of
backbone and give another increasing number
along this backbone. Once this process
encounters the branch while going along the
backbone, each branch of this joint would be put
an increasing and identical number. The process
will keep executing in respective branch until the
end. Eventually, each branch will receive a
number. Among these numbers, the greatest
number will be picked out and the fish backbone
is defined from beginning of branch till the end
of this branch. For example, in Figure 4, the
process starts at point A and give an initial
number 0 and it is increasing along the backbone.
When the number is 50, the process meets a
branch and put 51 into each joint branch. Then,
the process will execute respectively until the

end of branch. Finally, the line from A to D will
be taken as the backbone because the largest
number is in D.

2.3 Included Angle of Orientation

In Figure 2, we show that the motion area
can represent the deformation of fish body.
Furthermore, if the fish is turning, that is, its
shape will change from almost straight into twist,
not only the posture but also the orientation of
fish will vary gradually. In Figure 5, there are
three images (5a, 5b, 5c) captured in different
time. Through their motion area images (5a’, 5b’,
5c’), it is easy to find the variation of fish motion
while the motion area and head orientation keeps
changing. The included angle between current
head orientation and previous one could also
somewhat represent the magnitude of twist while
fish is turning. In our case, we take 5 frames as
one time interval and this measurement is
desirable while the larger or less time interval
will obtain unclear result. The relation of this
angle and fish motion will be discussed in the
next Section.

(a) (b) (c)

(a’) (b’) (c’)
Figure 5. Here are 6 pictures. The above 3 pictures (a),
(b), (c) are taken at different time t0, t0+k, t0+2k and
the below 3 (a’), (b’), (c’) ones show the measurement
of motion area, which is circled bye the red line,
respectively. Obviously, if the fish is turning, then the
corresponding motion area is larger then it is
swimming straight.

3. Neural Network Playing Mode

So far, we have exploited several parameters
about fish motion from the captured video. One
of our major missions is to find out the motion
model by employing the relation of these
parameters. For this reason, we adopt neural
network to analyze these parameters. In this
section, the learning method and the method to
apply the trained motion model to generate
animation will be presented. Eventually, we
regard the trained model as an “artificial fish”.
This trained model will return the proper fish
state for given control parameters. Then, there

are some unavoidable problems while rendering.
We solve this problem by synthesizing the fish
images. At last, the kind of animation generated
by this trained model is called playing in neural
network mode.

3.1 Learning through Neural Network

Originally, we suppose given the fish states
and control value, then the feasible reaction
could be obtained. Hence, the input parameters
are separated as two classes: state inputs and
control inputs. State inputs are made up by the
current swimming type and motion area. As
regard to control input, however, physically
there is no any control force on the fish because
it is almost impossible to control the fish swim
fashion. Therefore, we use an alternate way to
decide the control inputs. At first, the value,
which is the difference of current state and
previous state, is counted as the control vector.
In Equation (1), for example, u and s stands for
control vector and state vector respectively. As
described above, δ is the time interval of
sampling period.

ttt ssu −= +δ (1)

In Figure 6, the architecture of neural
network is illustrated in detail. We choose the
back-propagation algorithm in our experiment.
And there are three layers in our network.
Back-propagation refers to the practical,
recursive method to calculate the component
error derivatives of the gradient term. Applying
the chain rule of differentiation, the
back-propagation algorithm first computes the
derivatives with respect to weights in the output
layer and chains its way back to the input layer,
computing the derivatives with respect to
weights in each hidden layer as it proceeds. In
this paper, the more detail mathematical
principle of neural network, such as general
delta rule or some other optimization methods
etc., will not be mentioned. The more
information of that can be obtained in [4].

Current State

Control Input

Back
Propagation

Network
Model

Output
Result

Next State Σ

Figure 6. Neural Network Architecture. Our network
architecture is a Back-Propagation Network. It is a
3-layer with 4 input units, 20 hidden units, 2 output
units.

3.2 Selecting Parameters of Motion Model

Training the motion model through the input
video clip is one innovative approach in
computer animation. However, how to make it?

In addition to the mentioned current states and
control inputs that both could be obtained from
video clip, the desired output is given from the
next state of fish, which also can be received
from video clip. In this way, the trained model
will truly reflect the characteristic of fish motion
that only appeared in the video.

Parameters selection is quite important for
the training model of neural network. The
training model will converge quickly if the
selected parameters really represent the feature
of all training data. In our experiment, the
parameters we choose are described in Section 2.
The variation of all these parameters can
objectively correspond to the fish motion and we
show that in Figure 7. The total time of our input
clip is about 3 minutes. And there are 4480
frames in source video clip. Figure 7a shows the
motion area of these frames. Figure 7b shows the
swimming type of fish. The remains parameters
also show similarity with motion area.
Furthermore, in the period from 3150 to 3200,
the fish turns right and the corresponding motion
area is much higher than nearby ones that fish is
swimming straight. On the contrary, in the
period from 1600 to 2050, the fish swims
straight and its mean motion area is small.

(a)

(d)
Figure 7. (a) The Motion Area of the input video clip.
The y-axis is the magnitude of motion area and x-axis
is the frame no. (b) The Swimming Type of Fish. The
y-axis, which is the swimming type of fish, means
straight swimming while y is 0; turning left while y is
1; turning right while y is –1.

Through these parameters, which are highly
relevant to fish motion, it is sensible to get an

accurate trained motion model. We choose the
swimming type of fish and the motion area as
the state parameters (See Equation (2)); the
included angle of head orientation and the
displacement as the control parameters (See
Equation (3)). The training model is designed as
Equation (4) with State Inputs and Control
Inputs. In fact, the convergence of training
process, which will be illustrated at Section 5,
shows that not only this framework is practicable
but also it can work well.









=

t

t
t Type

Area
State (2)








 −
=








=

+

+

)Dir,Dir(AngleIncluded
PositionPosition

Angle
ntDisplaceme

Control
tt

tt

t

t
t

δ

δ
(3)

)Control,State(Model_BPNState ttt =+δ (4)

3.3 Synthesizing Fish Images

We expect to obtain a proper state output by
giving reasonable control parameters. And, since
all the parameters are observable features in
visual, this can make simpler on control function.
Up to now, a simple motor system can be made
by these definitely motion parameters.
Afterwards, we have to choose a feasible fish
images for rendering. Here comes a question:
where are these feasible fish images?

In 2D plane, we define 24 orientations to
coordinate fish images. By our observation,
however, usually there are just a little fish
images on some orientations although there are
many fish images on the other orientations. It is
to say, if we choose fish images from all the
video images, then the fish images must be
insufficient on some orientations because the
fish indeed does not appear frequently on every
orientation. In addition, the fish only swim
straight or never turn right/left on some specific
orientation. For these reason, if we would like to
select fish images from the original video images
for rendering, then it must be difficult to draw
smoothly because of the lack of motion on every
orientation (See Table 1). Of course, if we keep
capturing the fish for more long time, the motion
information of fish will be more enough on
every orientation. However, this hypothesis is
not practical, because expecting the fish showing
various motions on every orientation does not
make sense at all and more significant, the total
time for capturing enough information of fish is
unpredictable.

In order to solve this problem, we figure out
an alternate way. First, we manually pick up
successive fish images, which recorded the
straight swim or it appears the most deformation
on turning left/right. Then, we synthesize more
images on every orientation by rotating these

selected images so as to fulfill the fish motion.
Until now, a new realistic fish animation can be
generated since all the motion can be displayed
by utilizing these synthetic fish images.
Although we select successive fish images
manually, it is quite efficient and worth to do
because the amount of synthetic images is only
1.33% of the total video frames.

Table 1

Orient. Straight
(%)

Right
(%)

Max Area
of Right

Left
(%)

Max Area
of Left

Amount
(%)

1 46.25 18.75 0.556 35 0.709 1.78
2 79.47 3.17 0.761 17.36 0.703 4.24
3 70.06 4.81 0.708 25.15 0.502 3.72
4 79.41 8.87 0.357 11.76 0.539 3.79
5 72.03 22.38 0.343 5.68 0.346 4.7
6 88 12.03 0.407 0 0 7.25
7 94.93 5.07 0.336 0 0 6.6
8 94.94 5.06 0.701 0 0 12.81
9 94.88 4.7 0.961 0.42 0.357 10.46

10 89.94 7.98 1 2.08 0.375 11.76
11 82.1 12.69 0.907 5.26 0.391 4.24
12 94.6 3.21 0.614 2.74 0.608 4.88
13 94.46 3.84 0.829 1.7 0.677 5.24
14 74.64 20 0.917 5.63 0.707 1.58
15 76.81 19.11 0.866 4.34 0.964 1.54
16 84.82 13.51 0.562 1.78 1 2.49
17 82.05 12.98 0.274 5.12 0.95 1.74
18 79.07 17.64 0.429 3.48 0.482 1.91
19 84.54 13.76 0.54 1.81 0.307 2.45
20 71.25 13.92 0.545 15 0.403 1.78
21 28 24.49 0.636 48 0.468 1.11
22 25 28.81 0.501 46.66 0.519 1.33
23 3.57 40.74 0.611 57.14 0.625 0.62
24 44.57 10.97 0.641 44.57 0.551 1.85

The first column is the orientation number. The Second,
third, fifth column is the rate of swimming type, which is
straight swimming, turning right, turning left respectively
in that orientation. The fourth is the rate of the max
turning-right motion area in that orientation
corresponding to the max turning-right motion area of the
video clip. The sixth column is similar to the fourth
column except it records the turning-left information.
And the last column is the rate of the fish image amount
in that orientation relative to the total video clip.

Figure 8. Video Loop. The fish image at A is quietly
like that at B. That is, we can put a fish image, which
is the fish image at A, after B and it will be seamlessly
in visual.

4. Video Loop Playing Mode

Considering a loop with a single transition i
→j, from source frame i to destination frame j,

which we call a video loop if frame i is so
similar to frame j that the fish motion in frame j
can jump to the motion in frame i. And the more
important, this progress will be look like
seamlessly. Because the fish swims in a regular
pattern, there is great possibility of extracting
many video loops from video clip. In this section,
the analysis method to video loops and how to
make use of these video loops to synthesize a
novel animation will be proposed. However,
there still exist several problems while using
these video loops, and also, we will describe the
solutions.

4.1 Finding Video Loops

The first step to find video loops is to detect
two fish images that are the most similar to each
other and nonconsecutive in time domain.
Basically, in order to select the video loops
easily, we make a distance map (or difference
map) of every two images of video clip can be
mathematically defined as follows:

2jiij FFD −= (5)

where Fi, Fj is the frame number and Dij is the
magnitude of L2 distance. (Schödl [1])

Because there are several special properties
of fish, one can improve Equation (5) in order to
accelerate the computing time through these
properties, such as head orientation, swimming
type. Actually, we do not calculate the distance
of frame i and frame j if the fish properties are
different to each other. We show this trick
method in Equation (6) and its illustration in
Equation (6-1) and Equation (6-2), respectively.
Before counting Equation (6), we first calculate
the value of Equation (6-1) and Equation (6-2).
Once the return value is not equal to 1, than we
abort this pair immediately. Because the
computing time of Dij is more than computing
Equation (6-1) and Equation (6-2), building a
distance map by using Equation (6) can save
beyond 90% time than only using Equation (5).
This result is shown in Figure 9.

tionmultiplica

)),(),(),((

),(

scalariswhere

DjiMAjiSTjiOH

DjiStateD

ij

ijij

•

••⊗=

•=′
(6)

)j(ST)i(STand)j(OH)i(OHif
)j(ST)i(STor)j(OH)i(OHif

1
MAX

)j,i(ST)j,i(HD
==

≠≠





=⊗
(7)



 >−

=
otherwise1

Threshold)j(MA)i(MAMAX
)j,i(MA (8)

In above equations, HD stands for
“Orientation of Head”, ST stands for
“Swimming Type”, MA(i) represents the
motion area of fish in frame i, and MA stands
for “Motion Area”.

(a) (b)
Figure 9. Distance Map. (a) is drawn by applying
Equation (5), that is , the distance of every two images
will be calculated whether the fish properties are
similar or not. (b) is drawn by only applying Equation
(6). Both of this two maps, the darker area means
smaller distance or more similarity of the two fish
images. On the contrary, the brighter means more
dissimilar to each other.

4.2 Video Loop Position Table

After selecting feasible video loops, we can
create a synthetic fish animation by reusing or
compounding these video loops. Figure 10
shows three possible ways from G to F.

(a)

(b)
Figure 10. The Relation of Video Loops in Time
Domain. In Figure (a), there are 4 video loops, L1, L2,
L3, L4. If we are generating a synthetic animation and
playing a transition from G to F, there are many ways
to accomplish this operation. We show three possible
ways to make it in Figure (b). The policy of case 1 is
GHCDEF, and case 2 is GABCDEF, and case 3 is
GHCDEBCDEF. The black line means play fish
images successively and dotted line means jumping to
other fish images.

However, the fish is moving on a limitary
2D plan instead of an infinite area. In Figure 11a,
for example, it shows the fish trajectory and the
beginning, end of each loop. Obviously, each
case in Figure 10b will lead the fish swim to
totally different place on 2D plane. If generating
the animation only by understanding the relation

of video loops in time domain, we never know
where the fish will swim. In other words,
making a relation table about the video loops in
2D space is necessary for the fish animation.

In order to manage more information of
video loops, we design a table that is recorded
the quadrant, which is measured by the later fish
position of the video images relative to the
former one. The quadrant is defined in Figure
11b and the table is Figure 11c. With this table,
if the current fish image is in F, the end of Loop
3 (L3), and it should swim toward first quadrant,
we know that it can keep playing the fish images
from F to G because the fish position of G is in
the first quadrant of F.

(a) (b)
A B C D E F G H

A 1 2 2 2 2 1 1
B 2 2 2 2 2 1
C 2 2 2 1 1
D 2 2 1 1
E 2 1 4
F 1 4
G 4
H

NA
(c)

Figure 11. Video Loop Position Table. Figure (a)
shows the trajectory of fish with these video loops of
Figure 10a. Figure (b) is the defined 4 quadrants.
Figure (c) is the Video Loop Position Table where the
number of the cell represents the quadrant that is
measured by the later fish position of the video
images relative to the former one. For example, the
value of (A, B) is 1, that is, B is at the first quadrant of
A.

The Video Loop Position Table helps us to
determine the proper video loops. However,
there still exist some troublesome problem and
we cannot solve it by this table. In Figure 11, if
the current fish should swim toward third
quadrant, then it can never find a video loop that
bring the fish toward the goal because none of
the video loops are at third quadrant to other
loop.

Furthermore, In Figure 12, for example,
there are 6 video loops in this video clip. The
former 3 loops of this video clip overlap with
each other and the later 3 loops do, too. From
this figure, we know that these video loops can
be separated into two groups that video loops of
different group do not overlap to each other. This

situation is highly possible because the
characteristic of fish swimming fashion is
regular and unpredictable. In short, once the
source video clip exists such problem, it will
result in a monotonous animation if we play
video loops in the later area because the motion
may not various in this region.

Figure 12. In time domain, the video loops is divided
into 2 regions because the fish does not swim
normally or the fish motion does not appear
uniformly.

Moreover, if the video loop will lead the
fish to some other orientation that is entirely
opposite to current orientation (See Figure 13),
then using this loop to generate the animation
will be odd.

(a) (b)
Figure 13. Improper Video Loops. If the fish head
orientation is different from the orientation of the
video loop, then the fish animation is quite unnatural
by compounding this kind of video loop continuously.

4.3 Switching to Neural Network Playing Mode

All the problems mentioned at Section 4.2
could never be improved if we insist on
generating the animation only by video loops.
For this reason, we abandon playing in video
loops mode once these problems occur. Instead,
we introduce the neural network playing mode,
which is defined in section 3, to improve this
problem. We use “improve” instead of “solve”
because it still possible that neural network
playing model can not work. However, in our
experiment, it can work well in most of time.

In order to switch the two different playing
modes smoothly, the first step is to find the
“gateways” of these two playing modes. When
playing in neural network mode, it depends on
the synthetic fish images. And playing in video
loops requires video loops. That is, it requires
source video images when playing in video
loops. Intuitively, the gateways should be the
fish images that are very similar to both data
source. Although the synthetic fish image may
not be identical to the video images, we can
interpolate the both two images so as to play
smoothly in visual when changing current
playing mode to another mode.

Synthetic Fish Images

Frame No.

Orientation 1Orientation 24

Right Left Straight

Figure 14. In order to find the gateway, the synthetic
fish images of every orientation will be compared
with the source video images to find the similar
images.

5. Exper iment Results

In this section, we will show several
diagrams and discuss some important result of
each major process.

5.1 Computing Time

As described before, there are 4480 frames
in the source video clip. In Table 2, we will list
the computing time of these major steps, which
are mentioned in Figure 1. All the processed
listed in Table 2 can be accomplished
automatically without any user intervention.

Table 2
Process Computing

Time

1 Extracting Fish Images from Video
Clip

Several Hours

2 Build a Motion Model by Learning
Through Neural Network

About 70 Seconds
(200 epoch)

3 Video Loops Analyzing About 30 minutes

4 Synthesizing Fish Images for All
Orientation

About 15 minutes

5 Finding the Gateways of Synthetic
Images and Video Loops

Several Hours

6 Animation Generation (Hybrid
Playing Mode)

Real-Time

5.1.1 Learning through Neural Network

After extracting the fish motion information
from video, we train the motion model through
BPN algorithm. The network architecture is
3-layer network with 4 inputs, 20 hidden units, 2
outputs. In addition, we set the momentum value
as 0.5, learning rate as 0.5. In Figure 15, the
error rate of each epoch is showed in Figure 15.

Figure 15. X-axis is the epoch number. Y-axis is the
error amount of motion area prediction. In this
experiment, (both learning rate and momentum are
0.5), after about 20 epoch, the convergence is prone to
stationary gradually. We do not pay attention to study
the criterion of terminating of training process. For
more advanced knowledge about neural network
could be obtained in [4].

5.2 Swimming through Specific Goal

We can select the playing mode not only the
neural network playing mode (See Figure 16) or
video loops mode but also hybrid this two modes
(See Figure 17). For more experimental results
and animated sequence, please visit our website
at http://couger.csie.ncku.edu.tw/vr/fish.html .

Figure 16. In this figure, we show that the fish can
travel the specific goal (A, B, C) by only applying
the trained motion model. As regards to the playing
method will be illustrated at Appendix Section.

6. Conclusions

In this paper, a novel method to implement a
realistic fish animation is realized. We propose
two realistic fish playing modes, one is neural
network playing mode, the other is video loop
playing mode. And more significant, in order to

eliminate some unavoidable constraints whilst
playing fish animation, both two rendering
method are combined. The motion model of
neural network playing mode is trained by the
fish motion parameters which are extracted from
video. That is, this motion model is trained by
itself. To our knowledge, there is no similar
research on computer animation. On the other
hands, we proposed video loop position table
that greatly helps determine the proper video
loop while playing in video loop mode.

Hopefully, we will pay our attention to find
a more accurate extraction method of motion
parameters. Furthermore, we will apply our
methodologies on another targets such as human
expression or something that exists regular
idiosyncrasy.

Figure 17 Hybrid Playing mode. When the fish is
swimming until A in video loop playing mode, the
program switch into another playing mode because of
the lack of proper video loop, which can bring the fish
to the legal area. In B, the orientation of current fish
head is entirely different from the video loop and the
worse is that no more video loop is available. For this
reason, we have to abort video loop playing mode and
switch into neural network mode.

Acknowledgements

This project is supported by NSC-90-2213-
E-006-086

Reference

[1] Arno Schödl, Richard Szeliski, David H.
Salesin and Irfan Essa. Video Textures. In
Computer Graphics Proceedings, Annual
Conference Series, pages 489 - 498, Proc.
SIGGRAPH'2000 (New Orleans), July ,
2000. ACM SIGGRAPH.

[2] A. Schödl, I. Essa, Machine Learning for
Video-Based Rendering, Georgia Institute
of Technology, GVU Center / College of
Computing, 2000.

[3] P. Debevec et al., editors. Image-Based
Modeling, Rendering, and Lighting,
SIGGRAPH’99 Course 39, August 1999.

[4] S. Haykin, Neural Networks: A
Comprehensive Foundation 2nd Edition,
Prentice Hall, 1999.

[5] Demetri Terzopoulos, X. Tu, R.
Grzeszczuk, Artificial Fishes: Autonomous
Locomotion, Perception, Behavior, and
Learning in a Simulated Physical World,
Dept. of CS, U of Toronoto ,1994 ACM
SIGGRAPH.

[6] Radek Grzeszczuk, Demetri Terzopoulos,
Automated Learning of
Muscle-Actuated Locomotion Through
Control Abstraction, Dept. of CS, U of
Toronto. 1995. ACM SIGGRAPH.

[7] Demetri Terzopoulos, R. Grzeszczuk, G.
Hinton, NeuroAnimator: Fast Neural
Network Emulation and Control of
Physics-Based Models, Phd. Thesis, Dept.
of CS, U of Toronoto ,May 1998.

[8] Ziv Bar-Joseph, Dani Lischinski, Statistical
Learning of Multi-Dimensional Textures,
Master’s Thesis, Institute of Computer
Science, The Hebrew University of
Jurusalem, Israel, 1999.

[9] X. Wen, Theodore D. Huffmire, Helen H.
Hu, and Adam Finkelstein, Wavelet-Based
Video Indexing and Querying for a Smart
VCR, Princepton University, 1997.

[10] Adam Finkelstein, Charles E. Jacobs,
David H. Salesin. Multiresolution Video.
Proceedings of SIGGRAPH 96, in
Computer Graphics Proceedings, Annual
Conference Series, 281-290, August 1996.

[11] H. Takahashi, J. Hatoya, N. Hashimoto, M.
Nakajima, Animation synthesis for virtual
fish from video, 2000.

[12] Lipton, Virtual Postman - Real-Time,
Interactive Virtual Video, IASTED CGIM,
Palm Springs, CA, October 1999.

[13] J. R. Parker, Algorithms for Image
Processing and Computer Vision, Wiley
Computer Publishing, 1997.

Appendix

In this section, we will illustrate two flow
charts about the described playing mode. One is
neural network playing mode (See Figure 18),
and the other is the hybrid playing mode (See
Figure 19).

Behaviors

Turn or Swim
Straight

Artificial intelligent

Updating Current Fish
Condition

Playing Swim
Stright
Motion

Normalizing
Input

Calculating through
the trained model

Restoring
Output

Playing Turn
Motion

TurnSwim
Straight

Figure 18. Playing in Neural Network Mode. We use
different procedures for turning or straight swimming.
The first step of this playing mode is to decide
whether the fish will turn or not. If the fish suppose to
turn, then the degree of turning, that is the ideal
motion area, would be calculated through the trained
motion model. If not, then the program will switch
into another procedure that only plays straight
swimming. Furthermore, we add several usual fish
behaviors, such as sliding, accelerating, decelerating,
so as to increase the variation of fish animation.

Embedding into
Video Loop Mode

Playing fish images continuously
until next gateway

Legal
Position

Switching to Neural
Network Mode

Proper Head
Orientation

Is there video loop
which has identical
orientation to goal

No

No

No

Yes

Yes

Can Find Gateway

Yes

No

Start

Figure 19. Playing in hybrid mode. At the beginning
of this playing mode, we generate the animation in
neural network mode until find a proper gateway for
current fish condition. Once switching into the video
loop mode, whenever drawing until any gateway, we
have to do several decisions or select proper video
loop to ensure whether the current video is legal.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11

