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Abstract

Computer Graphics technology has 
advanced dramatically in recent years. However, 
all these techniques do not obviously improve 
the reality of rendering in computer animation. 
Recently, a new type of medium called video 
textures is proposed. That is a new method to 
synthesize video-based animation and also 
raising many new methodologies to verify
animation. We present several algorithms that 
not only enrich the original methods but also 
utilize sufficiently the information obtained from 
video.

In this paper, a novel method to implement a 
realistic fish animation is proposed. First, we 
capture a video clip and get the fish information 
by using several image-processing techniques. 
Then, in order to find the relation of the 
extracted properties, some specific parameters of 
all video frames are trained through neural 
network. Because of the lack of locomotion 
images in all orientation, we synthesize new fish 
images by rotating the images. So far, a simply, 
robust, and real-time animation playing system 
is available. On the other hand, we analyze the 
similarity of every frame and take video loops to 
generate synthetic animation. Moreover, we use 
a position map for video loops so as to select the 
proper video segment. With this map, we can 
create another type computer animation. 
Eventually, for eliminating some unavoidable
constraints while playing fish animation, both 
two rendering method are combined.

Keywords: video texture, video-based animation, 
neural network.

1. Introduction

In early days computer animation appeared 
as successive 2D images such as cartoon. 
Presently, researchers in computer graphics and 

computer vision have proposed efficient 
methods to generate novel views by analyzing 
captured images. These techniques, called 
image-based rendering, demand somewhat user 
interaction [3] and permit photo-realistic 
synthesis of static scenes.

And yet, 3D animation industries have 
occupied the commercial entertainment market 
in recently years and offer more variation in 
visualization. However, no matter the computer 
animation is improved by researchers, it’s still 
hard to reach an absolutely realistic object in all 
cases. In spite of texture mapping could fairly
increase the reality in modeling or rendering, the 
object is still unnatural in most situation. Our 
vision is to create an interesting and natural 
animation.

We propose an alternate methodology to 
realize natural and realistic fish animation. 
Nevertheless, what on earth does nature mean? 
Most people will agree that the fish pictures 
show the immediate and most primitive 
appearance. If we display fish animation on 2D 
screen, the fish’s texture in every moment is 
expected smoothly in visual. In fact, for general 
cameras, it is quite difficult to capture every 
detailed motion of fish. Intuitively, we can easily 
solve the problem through video camera. And 
further, video clips can be put down more 
information than static pictures, so instead of 
pictures we choose the video frames as our data 
source.

In detail, our main goal is to take advantage 
of video sufficiently and as much as possible 
grasping more information of specific objects 
within each frame. In our experiment, we put our 
video camera on the upper side of fish tank and 
capture a carp which will change its body 
obviously whilst turning. It’s an interesting topic 
to study what video conveys through those 
consecutive video images. Because of images 
recorded in video successively, the varying 



motion of fish shows distinctly within every 
frame. All these images have closely relationship 
with each other, such as object positions, color 
similarity. So, when we observe a fish, it is easy 
to discover the fish almost swims in some 
similar trajectory, regular behavior, and 
resembling reflection. By exploiting these 
properties of video frames, we study the 
idiosyncrasies of a fish from video. After 
abstracting these video frames, it is easy to 
obtain many parameters about fish movement 
such as displacement, turn degree, head 
orientation etc. Further, in order to understand 
the variation of fish locomotion, all the 
parameters can be trained through the 
back-propagation neural network [4]. From 
extracted parameters we successfully explore a 
relation in mathematics that could be used in fish 
control system. That is, by giving reasonable 
control parameters, the control system will 
return the proper reaction of fish. On the other 
hand, because of the lack of locomotion images 
for all orientation, we synthesize new fish 
images by rotating the images. So far, a simply, 
robust, and real-time animation playing system 
is available. And more significant, the control 
system is derived by every frame of the video. In 
other words, this control system represents truly 
the fish behaviors that recorded in video.

In [1], Schödl et al. proposes a new type of 
medium named video textures, which provide a 
continuous, infinitely varying stream of video 
images. The basic concept of a video texture can 
be extended in several different ways to further 
increase its applicability. Among the techniques 
they proposed, the most important concept is 
video loops that can be extracted from video and 
played continuously without any visible 
discontinuities. However, this technique is not 
suitable anymore when the specific object moves 
arbitrarily on 2D screen. We solve this problem 
by introducing a table, which is called video 
loop position map. This table is recorded the 
orientation of each video loop and wherever the 
fish swimming, by this table, we can easily 
determine proper video loops which have 
identical orientation with fish. Eventually, in 
case the video is too short to be extracted enough 
video loops for rendering or the selected video 
loops exist some unavoidable limitation, we 
jump into another playing system that simulated 
by neural network to figure out the problem.

We successfully keep the characteristics of 
fish captured by video camera, and furthermore 
by embedding the original video loops the fish 
animation also would display realistically. 
However, creating the fish animation from video 
must overcome a lot of problems. The first 
difficulty is to decide the size of fish. If the fish 

is small, then the movement would be unclear 
and the fish body of most frames would become 
ambiguity. On the other hands, since the fish 
changes its body in a limit range, the extraction 
would be easy to observe and implement. If we 
employ other kind animal as our target, such as 
snake or eel, which has a complex body and 
change exceedingly while moves, it’s not easy to 
evaluate the variation from video. For the sake 
of convenience, we select fish to prove our 
methodology can work in some case. That is, our 
method is not suitable in generalization. Second, 
although carp swims close to the bottom of fish 
tank, it will tilt when swimming toward top. To 
capture an image, which contains a leaning fish, 
however, is hard to analyze motion parameters 
since it gives rise to ambiguity in motion 
characteristic. Third, object tracking is a tough 
problem in computer vision field. There is a 
great store of techniques for extracting moving 
objects from imagery. In order to simplify this 
problem, we adopt background subtraction
method to extract the fish.

Our main contributions are listed as follows:

1 Through our method, the object within the 
video can be automatically analyzed and 
parameterized. Further, we can utilize 
neural network to learn the fish motion 
model.

2 Through video images, we can measure the 
fish motion by several parameters, such as 
displacement, change of body orientation,
swimming state, etc.

3 The training of neural network could be 
done off-line. Animation from trained 
motion model, however, can generate 
real-time.

4 We can utilize the position map for video 
loops to select suitable video loop to 
synthesize new animation.

5 Combining neural network mode and video 
textures mode to generate a complete 
animation playing system.

1.1 Related Work

As Schödl et al. mention in [1], there has 
been little previous work on automatically 
generating motion by reusing captured video. 
Fortunately, they propose video sprites [2], 
which is another type of video textures, to make 
this field richer. In [1], they generalize 
image-based rendering to the temporal domain. 
Therefore, the core algorithms proposed in video 
textures are not suitable on specific moving 
objects. In order to overcome this problem, the 
video sprites that can be rendered anywhere on 
the screen to create a novel animation is 
presented in [2]. However, they labeled training 
data manually so as to train the classifier. In 



most cases, manual classification is difficult to 
evaluate. Evaluating a method, which is required 
manual operation, is not an easy work. For this 
reason, we devote to develop an automatically 
learning method that could objectively represent 
the characteristic of fish motion

Frankly, in addition to [1, 2], there is really 
a little work that has highly relation to our 
research. In this paragraph, we discuss some 
research that somewhat inspire our study. First, 
Tu et al. [5] propose a framework for animation 
with minimal input from the animator. They 
presented a method to make an artificial creature 
move by defining principal motion patterns of 
fishes and giving parameters of mental status, 
which are factors to cause the motion. They 
define a physics-based, virtual marine world, in 
which artificial fishes inhabit. These motion 
patterns are decided by using a few mental state 
variables. Each of which, however, remains 
some problems in ease to use and generality. In 
addition, a method to learn a fish’s motion 
automatically is proposed [6]. Because these 
methods use complicated algorithm, however, it 
is difficult to generate motions in real time. 
Terzopoulos et al. [7] proposed a new method 
called NeuralAnimator that utilizes a neural 
network to simulate a physics-based model and 
they replaced the conventional animation 
simulators, which are made with numerical 
simulation.

Both Ziv Bar-Joseph [8] and X. Wen et al. 
[9] introduced wavelet techniques in analyzing 
and synthesizing video. Bar-Joseph retrieved the 
video by the decomposed parameters of video. 
Wen made a new synthetic video by wavelet 
coefficients. Finkelstein et al. [10] presented a 
new approach called multiresolution that 
provides a means of capturing time-varying 
image data produced at multiple scales, both 
spatially and temporally. The above studies of 
video are successfully analyzing the information 
of video and really encourage us to exploit the 
video information.

We also inspired by Takahashi et al. [11] 
and Lipton [12] that they both focus on the 
object of video and study the behavior and 
feature. Takahashi et al. proposed an estimation 
method of fish position and posture from video 
using object matching technique. Lipton
presented a paradigm for data interaction called 
virtual video that can be interactively augmented 
in real-time.

1.2 System Overview

Our purpose is to generate a realistic fish 
animation by understanding and taking 
advantage of video clip. In our system, we 
separate our work into two major parts, one is 

neural network playing mode, the other is video 
loop playing mode (Figure 1).

The remainder of this paper describes, in 
Section 2, the representation used to obtain the 
parameters of a video image (frame). In Section 
3, after observing the fish motion, we define 
several evident characteristics as motion 
parameters and train a motion model by neural 
network. In section 4, the method to detect video 
loops is proposed. And we discuss the some 
limitations when using video loops about 
moving 2D object. On the other hand, we also 
depict the solution of these limitations, that is, 
by switching into neural network playing mode. 
Our results are illustrated in Section 5 and 
conclusion or further extensions is put in Section 
7.

Source Video clip

Image ProcessingMotion Parameters

Learning Through 
Neural Network

Fish Images of 
Every Frame

Video Loops 
Analyzing

Synthesizing Fish 
Images for All 

Orientation
Video Loops 

Synthetic
Images

Finding the Gateways of 
Synthetic Images and 

Video Loops

Animation Generation

Trained Fish 
Motion Model

Figure 1. System overview diagram. An input source 
video clip is decomposed into every single frame. We 
abstract fish information from these images and also, 
motion parameters could be obtained after image 
processing. Then, we utilize neural network to learn 
motion parameters in order to find a model for fish
motion. On the other hand, through these frames, we 
not only synthesize fish images for all orientation but 
also analyze their similarity to find out video loops. 
Eventually, the gateways of synthetic images and 
source video clip, which are obtained by examining
the resemblance, are used for the switching between 
the two kinds of playing modes.

2. Motion Parameters Extraction

The first step of our research is to examine
the source video. After segmenting every fish 
image of video frames, we begin to analyze the 
motion information of fish so as to train through 
neural network. In this section, the method of 
segmentation and motion measurement will be 
discussed.

2.1 Displacement

As regards the image segmentation, there 
are a lot of methods for object extracting [13]. In 



our case, a fish in a simply fish tank, we just 
choose background subtraction to extract the fish 
image because it works well in general cases 
except when fish swims near to the walls of fish 
tank. Accordingly, we locate the fish global 
coordinate by computing the mass center of fish. 
Further, the displacement of fish could be 
derived by fish coordinate. That is an important 
characteristic of fish since it varies only when 
the fish changes its motion. In addition to above 
parameters, we can also locate head and tail of a 
fish by image-processing techniques. All these 
properties are very practical in learning by 
neural network while we can analyze them and 
take out their influence upon fish motion.

2.2 Motion Area

A carp is employed as our target fish for the 
reason of its body size and habit. The swimming 
fashion of carp belongs to the horse mackerel 
type. In this swimming fashion, the fish deforms 
extremely when it turns around. Therefore, we 
define a measurement to quantify the variation 
of fish motion. This measurement is called 
motion area.

First of all, we use image-thinning method 
[13] on the original fish images. After thinning 
processing, the fish images leave a thin line, 
which is like the backbone of fish. Second, we 
put four points on 1/6、1/3、1/2、5/6 of this thin 
line, one on the fish head and one on the fish tail 
respectively. (See Figure 2) Then, we produce a 
B-spline that is made up by these points, which 
are taken as control points. Eventually, the area 
circled by the B-spline is the motion area.

Why not put these points into six equal 
positions? In our observation, fish head is 
composed of bone and head its length is almost 
one-third of itself. Moreover, it has a backbone 
composed of a number of spines. Thus, thee 
head cannot deform, but the rear part of the body 
deforms smoothly. For this reason, it is sensible
that the measurement of the points, which are 
distributed close to the fish head, could receive 
higher accuracy than that of the points are 
locating in the tail. Although we do not distinctly 
prove this hypothesis in mathematical form, the 
results determined by our method indeed 
represent the variation objectively.

Figure 2. Motion Area. There are six points setting 
purposely into different place along the skeleton. 
Also, these points are the control points of a B-spline 
circle, which is the motion area and shows the 
magnitude of the deformation of fish objectively.

2.2.1 Branch Pruning

Any object of image will only leave the 
medial axes of itself after dealing with 
image-thinning procedure [13]. In our 
experiment, however, if the fish unfolds its 
pectoral fin, the final image will show several 
branches (Figure 3). This consequence will 
increase the difficulty while distinguish the 
backbone.

(a) (b)
Figure 3. (a) is the original fish image with stretching 
pectoral fin. After image-thinning process, some 
branches appears near the pectoral fin, which is 
showing in (b).
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Figure 4. Among these branches, only the greatest 
number will be selected as backbone of fish. It is to 
say, in this figure, the line from A to D is the 
backbone.

As far as branch problem is concerned, we 
solve it by a simple method. First, we take down 
a number as the initial in the beginning of 
backbone and give another increasing number 
along this backbone. Once this process 
encounters the branch while going along the 
backbone, each branch of this joint would be put 
an increasing and identical number. The process 
will keep executing in respective branch until the 
end. Eventually, each branch will receive a 
number. Among these numbers, the greatest 
number will be picked out and the fish backbone 
is defined from beginning of branch till the end 
of this branch. For example, in Figure 4, the 
process starts at point A and give an initial 
number 0 and it is increasing along the backbone. 
When the number is 50, the process meets a 
branch and put 51 into each joint branch. Then, 
the process will execute respectively until the 



end of branch. Finally, the line from A to D will 
be taken as the backbone because the largest 
number is in D.

2.3 Included Angle of Orientation

In Figure 2, we show that the motion area 
can represent the deformation of fish body. 
Furthermore, if the fish is turning, that is, its 
shape will change from almost straight into twist, 
not only the posture but also the orientation of 
fish will vary gradually. In Figure 5, there are 
three images (5a, 5b, 5c) captured in different 
time. Through their motion area images (5a’, 5b’, 
5c’), it is easy to find the variation of fish motion 
while the motion area and head orientation keeps 
changing. The included angle between current 
head orientation and previous one could also 
somewhat represent the magnitude of twist while 
fish is turning. In our case, we take 5 frames as 
one time interval and this measurement is 
desirable while the larger or less time interval 
will obtain unclear result. The relation of this 
angle and fish motion will be discussed in the 
next Section.

(a) (b) (c)

(a’) (b’) (c’)
Figure 5. Here are 6 pictures. The above 3 pictures (a), 
(b), (c) are taken at different time t0, t0+k, t0+2k and 
the below 3 (a’), (b’), (c’) ones show the measurement 
of motion area, which is circled bye the red line, 
respectively. Obviously, if the fish is turning, then the 
corresponding motion area is larger then it is 
swimming straight. 

3. Neural Network Playing Mode

So far, we have exploited several parameters 
about fish motion from the captured video. One 
of our major missions is to find out the motion 
model by employing the relation of these 
parameters. For this reason, we adopt neural 
network to analyze these parameters. In this 
section, the learning method and the method to 
apply the trained motion model to generate 
animation will be presented. Eventually, we 
regard the trained model as an “artificial fish”. 
This trained model will return the proper fish 
state for given control parameters. Then, there 

are some unavoidable problems while rendering. 
We solve this problem by synthesizing the fish 
images. At last, the kind of animation generated 
by this trained model is called playing in neural 
network mode.

3.1 Learning through Neural Network

Originally, we suppose given the fish states 
and control value, then the feasible reaction 
could be obtained. Hence, the input parameters 
are separated as two classes: state inputs and 
control inputs. State inputs are made up by the 
current swimming type and motion area. As 
regard to control input, however, physically 
there is no any control force on the fish because 
it is almost impossible to control the fish swim 
fashion. Therefore, we use an alternate way to 
decide the control inputs. At first, the value, 
which is the difference of current state and 
previous state, is counted as the control vector. 
In Equation (1), for example, u and s stands for 
control vector and state vector respectively. As 
described above, δ  is the time interval of 
sampling period.

ttt ssu −= +δ (1)

In Figure 6, the architecture of neural 
network is illustrated in detail. We choose the 
back-propagation algorithm in our experiment. 
And there are three layers in our network. 
Back-propagation refers to the practical, 
recursive method to calculate the component 
error derivatives of the gradient term. Applying 
the chain rule of differentiation, the 
back-propagation algorithm first computes the 
derivatives with respect to weights in the output 
layer and chains its way back to the input layer, 
computing the derivatives with respect to 
weights in each hidden layer as it proceeds. In 
this paper, the more detail mathematical 
principle of neural network, such as general 
delta rule or some other optimization methods 
etc., will not be mentioned. The more 
information of that can be obtained in [4].

Current State

Control Input

Back 
Propagation 

Network 
Model

Output 
Result

Next State Σ

Figure 6. Neural Network Architecture. Our network 
architecture is a Back-Propagation Network. It is a 
3-layer with 4 input units, 20 hidden units, 2 output 
units.

3.2 Selecting Parameters of Motion Model

Training the motion model through the input 
video clip is one innovative approach in 
computer animation. However, how to make it? 



In addition to the mentioned current states and 
control inputs that both could be obtained from 
video clip, the desired output is given from the 
next state of fish, which also can be received 
from video clip. In this way, the trained model 
will truly reflect the characteristic of fish motion 
that only appeared in the video.

Parameters selection is quite important for 
the training model of neural network. The 
training model will converge quickly if the 
selected parameters really represent the feature 
of all training data. In our experiment, the 
parameters we choose are described in Section 2. 
The variation of all these parameters can 
objectively correspond to the fish motion and we 
show that in Figure 7. The total time of our input 
clip is about 3 minutes. And there are 4480 
frames in source video clip. Figure 7a shows the 
motion area of these frames. Figure 7b shows the 
swimming type of fish. The remains parameters 
also show similarity with motion area. 
Furthermore, in the period from 3150 to 3200, 
the fish turns right and the corresponding motion 
area is much higher than nearby ones that fish is 
swimming straight. On the contrary, in the 
period from 1600 to 2050, the fish swims 
straight and its mean motion area is small.

(a)

(d)
Figure 7. (a) The Motion Area of the input video clip. 
The y-axis is the magnitude of motion area and x-axis 
is the frame no. (b) The Swimming Type of Fish. The 
y-axis, which is the swimming type of fish, means 
straight swimming while y is 0; turning left while y is 
1; turning right while y is –1.

Through these parameters, which are highly 
relevant to fish motion, it is sensible to get an 

accurate trained motion model. We choose the 
swimming type of fish and the motion area as 
the state parameters (See Equation (2)); the 
included angle of head orientation and the 
displacement as the control parameters (See 
Equation (3)). The training model is designed as 
Equation (4) with State Inputs and Control 
Inputs. In fact, the convergence of training 
process, which will be illustrated at Section 5, 
shows that not only this framework is practicable
but also it can work well.
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3.3 Synthesizing Fish Images

We expect to obtain a proper state output by 
giving reasonable control parameters. And, since 
all the parameters are observable features in 
visual, this can make simpler on control function. 
Up to now, a simple motor system can be made 
by these definitely motion parameters. 
Afterwards, we have to choose a feasible fish 
images for rendering. Here comes a question: 
where are these feasible fish images?

In 2D plane, we define 24 orientations to 
coordinate fish images. By our observation, 
however, usually there are just a little fish 
images on some orientations although there are 
many fish images on the other orientations. It is 
to say, if we choose fish images from all the 
video images, then the fish images must be 
insufficient on some orientations because the 
fish indeed does not appear frequently on every 
orientation. In addition, the fish only swim 
straight or never turn right/left on some specific 
orientation. For these reason, if we would like to 
select fish images from the original video images 
for rendering, then it must be difficult to draw 
smoothly because of the lack of motion on every 
orientation (See Table 1). Of course, if we keep 
capturing the fish for more long time, the motion 
information of fish will be more enough on 
every orientation. However, this hypothesis is 
not practical, because expecting the fish showing 
various motions on every orientation does not 
make sense at all and more significant, the total 
time for capturing enough information of fish is 
unpredictable.

In order to solve this problem, we figure out 
an alternate way. First, we manually pick up 
successive fish images, which recorded the 
straight swim or it appears the most deformation 
on turning left/right. Then, we synthesize more 
images on every orientation by rotating these 



selected images so as to fulfill the fish motion. 
Until now, a new realistic fish animation can be 
generated since all the motion can be displayed 
by utilizing these synthetic fish images. 
Although we select successive fish images 
manually, it is quite efficient and worth to do 
because the amount of synthetic images is only 
1.33% of the total video frames.

Table 1

Orient. Straight 
(%)

Right
(%)

Max Area 
of Right

Left
(%)

Max Area 
of Left

Amount
(%)

1 46.25 18.75 0.556 35 0.709 1.78
2 79.47 3.17 0.761 17.36 0.703 4.24
3 70.06 4.81 0.708 25.15 0.502 3.72
4 79.41 8.87 0.357 11.76 0.539 3.79
5 72.03 22.38 0.343 5.68 0.346 4.7
6 88 12.03 0.407 0 0 7.25
7 94.93 5.07 0.336 0 0 6.6
8 94.94 5.06 0.701 0 0 12.81
9 94.88 4.7 0.961 0.42 0.357 10.46

10 89.94 7.98 1 2.08 0.375 11.76
11 82.1 12.69 0.907 5.26 0.391 4.24
12 94.6 3.21 0.614 2.74 0.608 4.88
13 94.46 3.84 0.829 1.7 0.677 5.24
14 74.64 20 0.917 5.63 0.707 1.58
15 76.81 19.11 0.866 4.34 0.964 1.54
16 84.82 13.51 0.562 1.78 1 2.49
17 82.05 12.98 0.274 5.12 0.95 1.74
18 79.07 17.64 0.429 3.48 0.482 1.91
19 84.54 13.76 0.54 1.81 0.307 2.45
20 71.25 13.92 0.545 15 0.403 1.78
21 28 24.49 0.636 48 0.468 1.11
22 25 28.81 0.501 46.66 0.519 1.33
23 3.57 40.74 0.611 57.14 0.625 0.62
24 44.57 10.97 0.641 44.57 0.551 1.85

The first column is the orientation number. The Second, 
third, fifth column is the rate of swimming type, which is 
straight swimming, turning right, turning left respectively 
in that orientation. The fourth is the rate of the max 
turning-right motion area in that orientation 
corresponding to the max turning-right motion area of the 
video clip. The sixth column is similar to the fourth 
column except it records the turning-left information. 
And the last column is the rate of the fish image amount 
in that orientation relative to the total video clip.

Figure 8. Video Loop. The fish image at A is quietly
like that at B. That is, we can put a fish image, which 
is the fish image at A, after B and it will be seamlessly 
in visual. 

4. Video Loop Playing Mode

Considering a loop with a single transition i
→j, from source frame i to destination frame j, 

which we call a video loop if frame i is so 
similar to frame j that the fish motion in frame j 
can jump to the motion in frame i. And the more 
important, this progress will be look like 
seamlessly. Because the fish swims in a regular 
pattern, there is great possibility of extracting 
many video loops from video clip. In this section, 
the analysis method to video loops and how to 
make use of these video loops to synthesize a 
novel animation will be proposed. However, 
there still exist several problems while using 
these video loops, and also, we will describe the 
solutions.

4.1 Finding Video Loops

The first step to find video loops is to detect 
two fish images that are the most similar to each 
other and nonconsecutive in time domain. 
Basically, in order to select the video loops 
easily, we make a distance map (or difference 
map) of every two images of video clip can be 
mathematically defined as follows:

2jiij FFD −= (5)

where Fi, Fj is the frame number and Dij is the 
magnitude of L2 distance. (Schödl [1])

Because there are several special properties 
of fish, one can improve Equation (5) in order to 
accelerate the computing time through these 
properties, such as head orientation, swimming 
type. Actually, we do not calculate the distance 
of frame i and frame j if the fish properties are 
different to each other. We show this trick 
method in Equation (6) and its illustration in 
Equation (6-1) and Equation (6-2), respectively. 
Before counting Equation (6), we first calculate 
the value of Equation (6-1) and Equation (6-2). 
Once the return value is not equal to 1, than we 
abort this pair immediately. Because the 
computing time of Dij is more than computing 
Equation (6-1) and Equation (6-2), building a 
distance map by using Equation (6) can save 
beyond 90% time than only using Equation (5). 
This result is shown in Figure 9.
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In above equations, HD stands for 
“Orientation of Head”, ST stands for 
“Swimming Type”, MA(i) represents the 
motion area of fish in frame i, and MA stands 
for “Motion Area”.



(a) (b)
Figure 9. Distance Map. (a) is drawn by applying 
Equation (5), that is , the distance of every two images 
will be calculated whether the fish properties are 
similar or not. (b) is drawn by only applying Equation 
(6). Both of this two maps, the darker area means 
smaller distance or more similarity of the two fish 
images. On the contrary, the brighter means more 
dissimilar to each other.

4.2 Video Loop Position Table

After selecting feasible video loops, we can 
create a synthetic fish animation by reusing or 
compounding these video loops. Figure 10 
shows three possible ways from G to F.

    

(a)

(b)
Figure 10. The Relation of Video Loops in Time 
Domain. In Figure (a), there are 4 video loops, L1, L2, 
L3, L4. If we are generating a synthetic animation and 
playing a transition from G to F, there are many ways 
to accomplish this operation. We show three possible 
ways to make it in Figure (b). The policy of case 1 is 
GHCDEF, and case 2 is GABCDEF, and case 3 is 
GHCDEBCDEF. The black line means play fish 
images successively and dotted line means jumping to 
other fish images. 

However, the fish is moving on a limitary
2D plan instead of an infinite area. In Figure 11a, 
for example, it shows the fish trajectory and the 
beginning, end of each loop. Obviously, each 
case in Figure 10b will lead the fish swim to 
totally different place on 2D plane. If generating 
the animation only by understanding the relation 

of video loops in time domain, we never know 
where the fish will swim. In other words, 
making a relation table about the video loops in 
2D space is necessary for the fish animation.

In order to manage more information of 
video loops, we design a table that is recorded 
the quadrant, which is measured by the later fish 
position of the video images relative to the 
former one. The quadrant is defined in Figure 
11b and the table is Figure 11c. With this table, 
if the current fish image is in F, the end of Loop 
3 (L3), and it should swim toward first quadrant, 
we know that it can keep playing the fish images 
from F to G because the fish position of G is in 
the first quadrant of F.

(a) (b)
A B C D E F G H

A 1 2 2 2 2 1 1
B 2 2 2 2 2 1
C 2 2 2 1 1
D 2 2 1 1
E 2 1 4
F 1 4
G 4
H

NA
(c)

Figure 11. Video Loop Position Table. Figure (a) 
shows the trajectory of fish with these video loops of 
Figure 10a. Figure (b) is the defined 4 quadrants. 
Figure (c) is the Video Loop Position Table where the 
number of the cell represents the quadrant that is 
measured by the later fish position of the video 
images relative to the former one. For example, the 
value of (A, B) is 1, that is, B is at the first quadrant of 
A.

The Video Loop Position Table helps us to 
determine the proper video loops. However, 
there still exist some troublesome problem and 
we cannot solve it by this table. In Figure 11, if 
the current fish should swim toward third 
quadrant, then it can never find a video loop that 
bring the fish toward the goal because none of 
the video loops are at third quadrant to other 
loop.

Furthermore, In Figure 12, for example, 
there are 6 video loops in this video clip.  The 
former 3 loops of this video clip overlap with 
each other and the later 3 loops do, too. From 
this figure, we know that these video loops can 
be separated into two groups that video loops of 
different group do not overlap to each other. This 



situation is highly possible because the 
characteristic of fish swimming fashion is 
regular and unpredictable. In short, once the 
source video clip exists such problem, it will 
result in a monotonous animation if we play 
video loops in the later area because the motion 
may not various in this region.

Figure 12. In time domain, the video loops is divided 
into 2 regions because the fish does not swim
normally or the fish motion does not appear 
uniformly.

Moreover, if the video loop will lead the 
fish to some other orientation that is entirely 
opposite to current orientation (See Figure 13), 
then using this loop to generate the animation 
will be odd.

(a) (b)
Figure 13. Improper Video Loops. If the fish head 
orientation is different from the orientation of the 
video loop, then the fish animation is quite unnatural 
by compounding this kind of video loop continuously.

4.3 Switching to Neural Network Playing Mode

All the problems mentioned at Section 4.2 
could never be improved if we insist on 
generating the animation only by video loops. 
For this reason, we abandon playing in video 
loops mode once these problems occur. Instead, 
we introduce the neural network playing mode, 
which is defined in section 3, to improve this 
problem. We use “improve” instead of “solve”
because it still possible that neural network 
playing model can not work. However, in our 
experiment, it can work well in most of time.

In order to switch the two different playing 
modes smoothly, the first step is to find the 
“gateways” of these two playing modes. When 
playing in neural network mode, it depends on 
the synthetic fish images. And playing in video 
loops requires video loops. That is, it requires 
source video images when playing in video 
loops. Intuitively, the gateways should be the 
fish images that are very similar to both data 
source. Although the synthetic fish image may 
not be identical to the video images, we can 
interpolate the both two images so as to play 
smoothly in visual when changing current 
playing mode to another mode.

Synthetic Fish Images

Frame No.

Orientation 1Orientation 24

Right Left Straight

Figure 14. In order to find the gateway, the synthetic 
fish images of every orientation will be compared 
with the source video images to find the similar 
images.

5. Exper iment Results

In this section, we will show several 
diagrams and discuss some important result of 
each major process.

5.1 Computing Time

As described before, there are 4480 frames 
in the source video clip. In Table 2, we will list 
the computing time of these major steps, which 
are mentioned in Figure 1. All the processed 
listed in Table 2 can be accomplished 
automatically without any user intervention.

Table 2
Process Computing 

Time

1 Extracting Fish Images from Video 
Clip

Several Hours

2 Build a Motion Model by Learning 
Through Neural Network

About 70 Seconds
(200 epoch)

3 Video Loops Analyzing About 30 minutes

4 Synthesizing Fish Images for All 
Orientation

About 15 minutes

5 Finding the Gateways of Synthetic 
Images and Video Loops

Several Hours

6 Animation Generation (Hybrid 
Playing Mode)

Real-Time

5.1.1 Learning through Neural Network

After extracting the fish motion information 
from video, we train the motion model through 
BPN algorithm. The network architecture is 
3-layer network with 4 inputs, 20 hidden units, 2 
outputs. In addition, we set the momentum value 
as 0.5, learning rate as 0.5. In Figure 15, the 
error rate of each epoch is showed in Figure 15.



Figure 15. X-axis is the epoch number. Y-axis is the 
error amount of motion area prediction. In this 
experiment, (both learning rate and momentum are 
0.5), after about 20 epoch, the convergence is prone to
stationary gradually. We do not pay attention to study 
the criterion of terminating of training process. For 
more advanced knowledge about neural network 
could be obtained in [4].

5.2 Swimming through Specific Goal

We can select the playing mode not only the 
neural network playing mode (See Figure 16) or 
video loops mode but also hybrid this two modes
(See Figure 17). For more experimental results 
and animated sequence, please visit our website 
at http://couger.csie.ncku.edu.tw/vr/fish.html .

Figure 16. In this figure, we show that the fish can 
travel the specific goal ( A, B, C) by only applying 
the trained motion model. As regards to the playing 
method will be illustrated at Appendix Section.

6. Conclusions

In this paper, a novel method to implement a 
realistic fish animation is realized. We propose 
two realistic fish playing modes, one is neural 
network playing mode, the other is video loop 
playing mode. And more significant, in order to 

eliminate some unavoidable constraints whilst 
playing fish animation, both two rendering 
method are combined. The motion model of 
neural network playing mode is trained by the 
fish motion parameters which are extracted from 
video. That is, this motion model is trained by 
itself. To our knowledge, there is no similar 
research on computer animation. On the other 
hands, we proposed video loop position table 
that greatly helps determine the proper video 
loop while playing in video loop mode.

Hopefully, we will pay our attention to find 
a more accurate extraction method of motion 
parameters. Furthermore, we will apply our 
methodologies on another targets such as human 
expression or something that exists regular 
idiosyncrasy.

Figure 17 Hybrid Playing mode. When the fish is 
swimming until A in video loop playing mode, the 
program switch into another playing mode because of 
the lack of proper video loop, which can bring the fish 
to the legal area. In B, the orientation of current fish 
head is entirely different from the video loop and the 
worse is that no more video loop is available. For this 
reason, we have to abort video loop playing mode and 
switch into neural network mode.
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Appendix

In this section, we will illustrate two flow 
charts about the described playing mode. One is 
neural network playing mode (See Figure 18), 
and the other is the hybrid playing mode (See 
Figure 19).

Behaviors

Turn or Swim 
Straight

Artificial intelligent

Updating Current Fish 
Condition

Playing Swim 
Stright 
Motion

Normalizing 
Input

Calculating through 
the trained model

Restoring 
Output

Playing Turn 
Motion

TurnSwim 
Straight

Figure 18. Playing in Neural Network Mode. We use 
different procedures for turning or straight swimming. 
The first step of this playing mode is to decide 
whether the fish will turn or not. If the fish suppose to 
turn, then the degree of turning, that is the ideal 
motion area, would be calculated through the trained 
motion model. If not, then the program will switch 
into another procedure that only plays straight 
swimming. Furthermore, we add several usual fish 
behaviors, such as sliding, accelerating, decelerating, 
so as to increase the variation of fish animation.

Embedding into 
Video Loop Mode

Playing fish images continuously 
until next gateway

Legal 
Position

Switching to Neural 
Network Mode

Proper Head 
Orientation

Is there video loop 
which has identical 
orientation to goal

No

No

No

Yes

Yes

Can Find Gateway

Yes

No

Start

Figure 19. Playing in hybrid mode. At the beginning 
of this playing mode, we generate the animation in 
neural network mode until find a proper gateway for 
current fish condition. Once switching into the video 
loop mode, whenever drawing until any gateway, we 
have to do several decisions or select proper video 
loop to ensure whether the current video is legal.
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