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Abstract 

This paper is to analyze the Internet topology. 
The goal is to collect statistical data of the Internet 
structure and to compare the results with related 
theories, such as small-world networks and scale-free 
networks. In this paper, we sampled from network 
management, political, and economic aspects. In the 
three sets of samples, there are 191 web sites of 
Network Information Centers (NIC), 227 government 
portal sites, and 2004 Fortune Global 500 
corporations’ web sites. To make sure the validities of 
the three sample set, an extra set of 10 thousand 
randomly sampled IP addresses were traced. The IP 
routing information from Chang Gung University to 
the sampled IP addresses was collected by 
traceroute-based utility: tracert and was stored 
into the database: eLinkage. Through statistical 
analysis of topological properties, small-world 
property and scale-free property were verified. 
Furthermore, we implemented our filtering algorithm, 
Kf, to figure out the rough backbone of the Internet. 
Finally, we designed two algorithms, 
Longest-path-first (LPF) and Random-link-added 
(RLA) methods to suggest improving the performance 
of the Internet. 

Keywords: topology analysis, scale-free networks, 
small-world networks, Internet 

1. Introduction 

Internet, connecting all the computers around 
the world, has been indispensable in our daily lives 
and will influence our future societies enormously. 
The current Internet has been distributed growth so 
rapidly without controlled by a central authority. As a 
result, understanding the connected relationships 
between the core components of the Internet becomes 
more and more important. A lot of ongoing 
researches about improving the qualities of Internet 
service have been developing continuously.  

From the perspective of graph theory, we can 
abstract Internet as a graph with a set of nodes and a 

set of links. Passing messages between any two nodes 
needs to route through a series of nodes and links. As 
the quantities of nodes and links increase, the routing 
cost would increase relatively. For the efficiency of 
network routing, the path length between any 
node-pairs should be as short as the network 
constructor can. 

On the other hand, a social network also can be 
represented by nodes and links which correspond to 
individuals and friendships. A social network is 
always tremendously large; however, the degrees of 
separation between any two people in social networks 
are amazingly small, around 6, as discovery by 
Milgram [18] and further modeling by Watts and 
Strogatz [24]. They called this phenomenon 
small-world effect which says that although there 
may be millions of individuals in the social network, 
yet everyone can reach any other person within a 
very short distance of connections. If the Internet has 
also the small-world effect, then any two computers 
can communicate with each other in shorter distance 
and higher bandwidth.  

Based on the research of W-S model [24], 
Albert et al. [2] found the web links exhibit in 
skewed degree distribution. They noticed that nodes 
had a non-uniform probability of being connected to 
others, with some nodes having extremely large 
numbers of neighbors (the so-called 

�

hub
�

 nodes). 
They called it rich-get-richer phenomenon. Such high 
variability of node degrees follows power law. 
Besides, there has been much research devoted to 
Internet topology [9, 12, 16, 21, 26].  

In this paper, we proposed a standard process to 
help researchers to observe the Internet topology. 
According to the process, we investigated the 
properties of small-world networks and scale-free 
networks of the Internet and design the backbone 
filtering algorithm to figure out the core component 
of the Internet. Finally, we conducted simulations 
with our algorithms to suggest the improving ways 
for the Internet. 

2. Related Work 

2.1 Internet Structure 
Internet can be decomposed into several 
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thousand administrative subnetworks, as shown in 
Figure 1 [12]. These subnetworks are so-called 
domains. All hosts, routers, and links in a domain 
are administered by a single authority, and are 
addressed by IP addresses. 
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Figure 1 Internet structure [12] 

 
The Internet itself is a network of heterogeneous 

inter-connected networks, so network topology is a 
representation of the interconnection between 
directly connected peers in a network. Peers are 
ports on devices connected by a physical 
transmission link in a physical network topology 
and network layer processes need to consider the 
current network topology to be able to route packets 
to their final destination reliably and efficiently [19, 
21]. In this paper, we consider the Internet topology 
as the logical IP topology, ignoring hubs and 
bridges and link-level details.  

2.2 Graph Terminology and Notation 
The Internet topology we considered can be 

represented by a graph. All graphs considered in 
this research are finite, undirected and simple (i.e., 
without loops and multiple edges). A graph is a 
collection of vertices, pairs of which joined by 
edges [20]. Formally, a graph G = (V, E) is an 
ordered pair of finite sets V and E. The elements of 
V are called vertices (also known as nodes) and the 
elements of E are called edges (also known as links). 
Here, we abstract Internet as a graph with a set of 
nodes and a set of links and refer to above 
definitions. The nodes set contains computers or 
networking devices, including hubs, switches, 
routers, and so on. The links set is composed of 
connection exists between any two nodes. 

Furthermore, some important properties of 
graph are described as below: 

� Neighbor node: if the distance of a graph of i 
and j equals to 1, that means nodes i and j are  
the nearest neighbors.  

� Degree: the degree ki of node i is defined as the 
number of links incident on node i of an 

undirected graph. Let n = V  and e = E  

exist  
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� Path length: the number of links of the shortest 
path between any two nodes. The distance 
between two nodes i and j is defined as the 
number of nodes traversed by the shortest path 
connecting i and j. The minimum connected 
path between any two nodes of a graph is 
defined as d(i, j). The average shortest path 

length, l , that is the average value of shortest 
path length over all pairs of nodes can be 
denoted as 
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� Clustering coefficient: the value, ci, is the 

measure of the interconnectivity in the node’s 
neighborhood. “Clustering” refers to the 
tendency of forming cliques in the 
neighborhood of any given node in a network. 
In other words, if a node a is connected to b 
and at the same time, b is connected to c, then 
the probability of a connected to c is very high. 
Hence, we use ci to measure the average 
probability that two neighbors of the node i are 
also connected between them. Let us consider a 
node i with ki neighbors and denote ei, that is 
the number of the links between ki neighbors 
that actually exist. So that the average value of 
over all nodes with degree larger than one is 
defined as 
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2.3 Classical Graph Models 
In graph theory, there are two classical graph 

models: regular graph and random graph [10, 11]. A 
regular graph is a graph with n nodes, and each one 
connects with k closely neighbor nodes (See Figure 
2(a)). Random graph, introduced by Erdös and 
Rényi [11], the so-called “Erdös-Rényi (ER) random 
graph model”, is on the opposite end of the graph 
spectrum. The connections between any two nodes 
are determined in a random way as shown in Figure 
2(c). The regular graph with n nodes has n(n − 1)/2 
links, while most large-scale real networks appear 
to be sparse, that is, most real networks are not fully 
connected and their number of links is generally of 
order n rather than n2. 

In contrast, an ER random graph with n nodes 
and about pn(n − 1)/2 links. So that ER random 
graph has a very small number of links. The main 
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goal of the random graph theory is to determine at 
what connection probability p a particular property 
of a graph will most likely arise. There has been a 
lot of researches are based on the Erdös-Rényi 
random graph model, in general, random graph can 
be used to model general networks.  

2.4 Small-world Networks 
Small-world behavior, popularly known as six 

degrees of separation was mathematically 
formalized by Watts and Strogatz [24]. The small 
world concept was formally introduced by Stanley 
Milgram [18], a social psychologist professor at 
Harvard University, USA. He conducted an 
interesting experiment for the question that how 
many acquaintances would it take to connect two 
randomly selected individuals. In his experiment, 
there was 42 letters delivered correctly to the target 
person and the median number of people required to 
get the letters to the target was 5.5. Rounding it up 
to 6, Professor Milgram amazingly discovered the 
"six degrees of separation," under the condition that 
the separation was defined as how many contacts 
needed to connect two unfamiliar persons. Such 
phenomenon is called small-world effect. 

Small-world graphs, as shown in Figure 2 (b), 
exhibit connectivity properties that are between 
random and regular graphs. Like regular graphs, 
they are highly clustered; yet like random graphs, 
they have typically short distances between 
arbitrary pairs of nodes. It has been shown that 
many networks have similar small-world property 
[2, 8, 12, 25]. 

Figure 2 regular, small-world, and random 
graphs 

 

2.5 Scale-free Networks 
Scale-free networks are particularly emphasized 

by the work of Barabási and Albert [1, 2, 5] who 
explored a promising class of models that yield 
strict power-law node degree distributions. In the 
so-called Barabási-Albert (BA) model, three generic 
mechanisms are defined as follows: 

� Incremental growth: it follows from the 
observation that networks develop by adding 
new nodes or new connections. 

� Preferential connectivity: it relies on an 

observation that highly popular nodes are more 
likely to be connected again in the process of 
incremental growth, the so-called 
“rich-get-richer” phenomenon [4, 10, 26]. 

� Re-wiring: Remove some links randomly and 
rewire them according to the preferential 
connectivity mechanism.  

In such networks, nodes have a non-uniform 
probability of being connected to others, with some 
nodes having extremely large numbers of neighbors. 
This property presents in paper citation databases 
[23], actor collaboration networks [24], web links 
[2]. The nodes of a scale-free network are not 
randomly connected. Scale-free networks include 
many connected nodes, hubs of connectivity that 
shape and dominate the way the network operates. 
The ratio of heavy connected nodes to the number 
of nodes in the rest of the network remains constant 
as the network changes in size.  

Based on the pervious researches, we proposed 
a process to observe the topological properties: 
small-world properties and scale-free properties 
discussed above by analyzing of the shortest path 
length, the clustering coefficient, and the node 
degree distribution. Finally, we also suggested the 
plausible Internet performance improvement from 
the viewpoint of the topological properties.  

3. Methodology 

Figure 3 is our research flow for Internet 
topology analysis and the major steps are detailed in 
the following, respectively. 

Figure 3 Research flow 

3.1 Selecting Experimental Samples 
We sampled from network management, 

political and economic aspects, which are 191 web 
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sites of NIC (Network Information Center) [29] 
around the world, 208 government portal sites, and 
2004 Fortune Global 500 corporations [27].  To 
make sure the validities of samples, we use extra 10 
thousand randomly sampled IP addresses. 

3.2 Probing the Internet 
In this research, we used tracert1 utility to 

record all the networking devices where packets 
passing through from source node to the destination 
node [6]. With tracert to collect and record the 
routing path information between the sample 
websites or IP addresses, the kernel of this program 
is a for loop. The loop calls the DOS command 
shell to execute tracert for n iteration, where n is the 
number of all the sample websites or IP addresses. 

3.3 Building “eLinkage” Database 
After completion of routing data collection, we 

built a database called “eLinkage” for 
post-processing and further analyzing. The major 
purposes of the database include storage, 
calculation, integration, and analysis of routing data. 
The database will be helpful for the follow-up 
research.  

3.4 Making Statistical Analysis 
In order to verify the reliability of our data, we 

compared the samples with the population [28] on 
the same date2 by nonparametric statistical method: 
chi-square goodness-of-fit test (See Table 1). Then, 
we obtained the estimator to support this research 
by some metrics, the node degree, the degree 
distribution, the shortest path length, and the 
clustering coefficient. The average degree in this 
research is defined as the average value of ki over 
all the nodes in the network, since each link 
contributes to the degree of a node. These metrics 
provide a basic and robust characterization of 
Internet topology [10, 13, 19, 20]. The equations are 
listed as shown in Table 2. 

 
 
 
 
 
 
 

                                                 
1 A traceroute utility on Microsoft Windows 

operation system. 
2 The data we collected all on the same time period 

of March, 2005. 

Table 1 Definition of the chi-square 
goodness-of-fit test statistic 

Hypothesis: 

Ho: The data follow the specified 
distribution 

H1: The data do not follow the 
specified distribution 

Test statistic: �
=

−
=

k

i

ii
o Ei

EO

1

2
2 )(χ  

Oi : observed counts for bin i 
Ei : corresponding expected counts for bin i 
k : the number of classes 

Significant level: � 

Critical region: 2
),1( ck−−αχ  

if 2
),1(

2
cko −−> αχχ , reject Ho; otherwise, accept Ho. 

 
Table 2 Graphical metrics 
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n: the number of nodes. 
Aij: Aij = 1 if node i and j is connected;  

otherwise, Aij = 0. 
ki: the number of links incident on node i. 
dij: the minimum value of connected path length 

between any two nodes. 
ei: the number of links among the neighbors of i 

which be computed in the adjacency matrix. 
* Since ci is undefined when ki = 1, this averaging 
used to calculate excludes nodes with only one 
neighbor. If a graph has many nodes with degree one, 
then all of them are ignored. For 1≤ik  we define ci 

= 0 [19].  
 

3.5 Mapping Internet Topology 
We simplified layout of the Internet topology by 

the visualization tool and showed the map of the 
Internet. 

3.6 Doing Simulations 
Based on the statistical results, we tried to 

suggest improving performance of the Internet. 
Upon sampling the Internet topology, we conducted 
simulations with network models. In this paper, we 
conduct two simulation methods which can reduce 
the path lengths in Section 5. The essence of 
simulation is that using randomly links and 
decreased the longest path to create the key 
connections or downsize the number of large path 
length. Our experiment will suggest the 
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performance improvement for the Internet. 

3.7 Making Discussion and Conclusion 
Finally, we discussed the plausible proposal to 

improve the performance of the Internet based on 
our simulation results. 

4. Analytical Results 

4.1 Samples Testing 
In this research, we collected several routing 

data of the Internet by our method. To ensure the 
reliability of our sampled IP addresses, we 
compared the samples with the population. The data 
we collected all on the same time period of March, 
2005. The hypothesis is if our samples came from a 
population with the hypothesized distribution. With 
the sampled random data, the number of k was 152. 
To make the chi-square approximation valid, the 
expected count should be at least 5. So we 
combined some bins in the tails of those counts are 
less than 5, and thus we got 90 bins. The Pearson's 

chi-square statistic were computed: 1148.1072 =oχ  

is smaller than 022.1122
),1( =−− ckαχ , so we don’t 

reject the Ho hypothesis. The testing result shows 
that our sampled data are not different with the 
population of the applied IP addresses under 95% 
significant level. That is the distribution of sampled 
data is consistent with the population. The 
percentage of 90 bins (regions) is shown in Figure 
4.3 Figure 4(a), is the comparison of the population 
and sampled data. Figures 4(b), 4(c) are the 
population and simple data presented individually 
by pie chart (labels are shown for the top 10 ranks 
only by space limitation). 
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3 The ranking of Taiwan is 13th and percentage is 

0.8%. 
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Figure 4 Percentages of IP addresses 

applied to each region 

 

4.2 Results of Metrics 
We quantified the size of each sample by 

counting the total number of nodes n and links e. 
Then the degree, the shortest path length, and the 
clustering coefficient could be computed. Notice 
that all of our defined metrics focus on the local 
view of Internet. In order to obtain the global view 
of Internet, counting the global behavior of these 
statistical measures is important. Thus, the 
statistical average value of each metric over all 
nodes is calculated. Table 3 reports the average 
values and gives some indications of the Internet 
topology.  

� Degree, k 

The degree of a node in Internet has an 
immediate interpretation, explaining how well a 
node is connected. The average degree is small 
because hosts (nodes) in general support a limited 
number of connections (interfaces). The average 
degree of our sampled data is from 2.24 to 2.67 as 
Table 3 shows, the value is quite quiet small if 
compared with network size and number of links. 

Table 3 Average metrics of data 

Data n e k c l 

Random 8,795 9,916 2.67 0.0269 15.21 

NIC 1,096 1,089 2.24 0.0449 13.75 

Government 1,189 1,187 2.28 0.0332 14.21 

Global 500 1,935 2,009 2.40 0.0294 14.07 

All 11,527 12,691 2.66 0.0282 15.13 

 

Figure 5 reports the probability P(k) that any 
given node in our data has degree k. Figure 5(a) is 
the normal axis and it obviously follows the 
so-called power-law distribution; the most nodes 
have the same number of links (top left), only 1 or 2 
links, and a few major hubs hold many times links 
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(bottom right).  The curves of different samples all 
fit power law well. Both Figures 5(b) and 5(c) are 
degree distributions in the double logarithmic scale 
of P(k). Figure 5(b) is probability density functions 
(PDF) and complementary cumulative distribution 
functions (CCDF) is in Figure 5(c). The solid line 
are the power law decay k-� with � = 2.34. 

The degree distribution P(k) clearly show a high 
variability and the degree vary over a range close to 
two orders of magnitude. Many nodes in the graph 
have just a few connections, while a few hubs 
connect 10-fold or more links. More specific, the 
probability of only connected one or two links 
reaches to 86.05%. On the contrary, the maximum 
value of all data is 62 and the probability of those 
bigger than 50 is less than 0.01%. In prior study of 
Faloutsos et. Al [12] has pointed out that the 
connectivity properties of Internet are characterized 
by heavy tailed probability distributions that can be 
reasonably approximated by power-law forms. Our 
results also confirm their findings.  
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(c) 

Figure 5 Degree distribution P(k) for four 
sampled data: random, NIC, government, 

global 500 

The degree distribution on the double 
logarithmic scale appears approximately the linear 
behavior (See Figure 5(b)). This is a strong 
evidence to indicate it is very different from the 
bell-shaped of Poisson distribution. The distribution 
can be fitted by the power-law form 

γ−≅ ckkP )(             (4) 

where c is an opportune normalization constant. 
Table 4 reports the related outcomes of c and �. And 
the cumulative degree distribution (CDF) and are 
defined as follow 

�
∞

=
k

dkkPkF ')'()(
         (5) 

thus 
γ−1~)( kkF when P(k) follows the power-law 

form and CCDF can be expressed by )(1 kF− . 
Figure 5(c) shows the log-log scale plot with degree 
distribution in CCDF. 

Table 4 Values of parameters in power-law 
of our samples 

Data c � 

Random -0.0394 2.3246 

Nic -0.3705 2.6147 

Government -0.2903 2.72 

Global 500 -0.2428 2.4057 

All -0.0192 2.3398 

 
� Path Lengths, l 

Despite the small node degrees discussed in 
pervious section, the shortest path length of nodes, l, 
is also small relatively. The shortest path length 
represents the minimum distance from a host to the 
other host in Internet, in terms of routing hops. Our 
results confirm the so-called small-world property, 
which is very important characterization in related 
research [1, 12, 25].  

As we know, the shorter distance is the less cost 
used. In order to provide better services to more and 
more customers, shortening the Internet routing 
distances is important and the small-world property 
just provides a concept to achieve this goal. Figure 
6 shows the path length distribution of the all-pairs 
shortest paths. Among them, the most frequent path 
length (the mode number) is 15 and the frequency is 
9.01%. The mean value is 15.1325, at the same time, 
the median is 15. The statistical results are 
summarized in Table 5.  
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Table 5 Statistics of the averaged shortest path length 

Statistics all random NIC government global 500 

Mean 15.1325 15.2091 13.7541 14.2147 14.0665 

Median 15 15 14 14 14 

Mode 15 15 13 14 14 

Std. Dev. 3.0793 3.0251 2.9824 2.7916 2.9958 

Variance 9.4822 9.1512 8.8947 7.7930 8.9748 

Kurtosis -0.1857 -0.3962 -1.2843 -0.8693 -0.8959 

Skewness 1.1498 1.0642 0.5640 0.8361 0.8167 

Minimum 1 1 1 1 1 

Maximum 43 42 32 40 37 

m 118,082,246 36,139,284 476,116 543,851 1,657,418 

n 11,527 8,795 1,096 1,189 1,935 

      

According to the CAIDA report [15], an average 

hop distance is 2.43.15 ±=IPL  between their 
monitors and 313,471 destinations in the IP space at 
January to May of 2001. There is no significant 
difference with our value.  
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Figure 6 Path length distribution P(l) 

 

In Watts and Strogatz works [24], they pointed 
out small-world graphs are highly clustered, like 
regular graphs such as lattices, yet have typically 
short distances between arbitrary pairs of nodes, 
like random graphs. Here, we take regular graph 
and random graph to be the comparative bases. The 
path lengths of regular and random graphs can be 
expressed as follows 

regular graph:  
k

n
lre 2

=           (6) 

random graph: 
k
n

lra
2

2

log
log=          (7) 

where n is the numbers of nodes and k is the 
numbers of links that each node connects. Consider 
an example: n = 4096, k = 8. The path length in 
regular graph is 256; yet in random graph is only 4. 

Obviously, random graphs have shorter path 
lengths than regular graphs do. Besides, random 
graphs have stronger small-world effect than regular 
graph do. The number of nodes is set to be the 
powers of 2, from the exponent value 0 to 16 and 
we take 2.66 in substitution for k in equations 6 and 
7. Comparing with our sample which n = 11527 and 
l = 15.1325, the average path length is in the range 
from 9.56 to 2166.73. Significantly, our l is quite 
close to the value of random graph and far away 
from the regular graph, so this supports that the 
average shortest path length of the Internet is 
“small.” In fact, the small separation among Internet 
is an example of the so-called small-world effect 
[24]. This effect is implicitly enforced in the 
network architecture, incorporating hubs and 
backbones, which connect different regional 
networks, strongly decreasing the value of l. 

� Clustering Coefficient, c 

The small-world effect has two properties: path 
length, l is not much larger than lra and the 
clustering coefficient, c is much larger than cra. The 
clustering coefficient of random graphs can be 
defined as 
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random graph: 
n
k

cra =         (8) 

where k = 2.66 and n = 11527, thus the cra is equals 
to 0.0002308. The experiment result has been 
shown in Table 3, and the average of our sampled c 
values is 0.0282 (the biggest one is 0.0449 of NIC 
data; the smallest one is 0.0269 of random data). 
Comparing these two values, our value is 2 orders 
of magnitude larger than cra, so it’s obviously that 
clustering coefficient matches the small-world 
property. 

4.3 Geographical Visualization 
One of the problems faced in the analysis of 

Internet topology at a large-scale level consists in its 
map’s visualization. In general, the logical layout by 
two-dimensional image based on connectivity is 
frequently used. Figure 7 with 11,528 nodes and 
12,691 links, which was drawn by a shareware, 
aiSee [26]. 

By visualizing the Internet, we can pick out 
points of the things we concern and find a closer 
inspection in some characteristics like clustering 
coefficient. Moreover, the central mesh part catches 
our attentions, and leads to the filtering algorithm, 
Kf, described in the next Subsection. 

 
Figure 7 Two-dimensional image of Internet 
map based on IP addresses, collected by this 

research 

 

4.4 Filtering Algorithm, Kf 
The high variability of node degrees and the 

“tree-like” topology layout both indicate that the 
mesh part, the key feature of Figure 7, is the “core” 
of the Internet, or so-called Internet Backbone 
Networks (IBN). The Internet backbone is the 

central network that linked all the major parts of the 
Internet. The components of backbone contain 
“hub” nodes whose node degrees are very large. So 
we define the backbone as top t nodes and links on 
all of the shortest paths between the top t nodes. We 
name the filtered backbone as shortest-path 
subgraph. Thus, we proposed an algorithm to filter 
the backbones from the whole Internet map. The 
pseudo code is listed in Table 6. 

With varied t values, we can display the filtered 
backbone topologies via shortest-path subgraph. 
Figure 8 shows the shortest-path subgraph and their 
all-pair shortest path length value matrix of the top 
100 routers. 4  There are many cycles in above 
figures, as we know, IBN is not just rough 
hierarchical structure and will be robust under 
attacks or failures. Our Kf algorithm could filter the 
Internet backbone out efficiently.  

Table 6 Algorithm of filtering, Kf 

Input:  

Path length matrix of all-pair shortest path:  

arr [maxNodes][maxNodes]; 

Kay matrix of all-pair shortest path:  

kay [maxNodes][maxNodes]; 

Threshold value: t, smaxVertice1 ≤≤ t ; 

Output:  

Adjacency matrix of Top t nodes: top[t][t]; 

link file: top t.txt  

Method: 

for (int i = 0; i <= t ; i++){ 

for (int j = 0; j <= t; j++){ 

top[i][j] = arr[i][j]; 

} 

} 

for (int i = 0; i < top.length; i++){ 

for (int j = 0;j < top.length; j++){ 

int tt = t; 

exec(int kay[i], int tt);  

// exec method select the whole links of i and 
write them to top t.txt. 

} 

} 

                                                 
4 Of course, the real Internet backbone would be 

more complexity than this. Our results could be 
considered as an epitome of Internet. 
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Figure 8 Shortest-path subgraph of the 

top-100 nodes 

 

4.5 Summary 
This Section reports analytical metrics of 

Internet topology for small-world and scale-free 
properties. With chi-square goodness-of-fit test, the 
hypothesis that the distribution of our sampled data 
is consistent with the population of the applied IP 
addresses. Our main findings are as follows. The 
average node degree is 2.66 and a high variability of 
node degree is well fitted to power-law format 
indicating the scale-free property in Internet. The 
average shortest path length is 15.1325, and the 
clustering coefficient is 0.0282. And these two 
values provide clear evidences of the presence of 
small-world phenomenon in Internet. 

Our analytical results confirm that our process is 
efficient to observe the Internet topology. In order to 
observe the changing of the Internet and obtain 
performance improving suggestions, we will 
conduct associated simulations based on our 
findings. 

5. Performance Simulations 

In order to improve the performance of the 
Internet, we conducted some simulations. Decreasing 
the path length can reduce routing cost in Internet. 
From the viewpoint of graph theory, the Internet is 
obviously in the middle of regular and random graphs. 
Due to the shortest path length, l of our data is from 
13.75 to 15.13, still larger than the value, 9.56 of 
random graphs. Thus, our simulation goal is to reduce 
the path length. Here, we consider the hierarchal 
structure of the Internet with the representation of 
tree. We modified Dijkstra's algorithm, which we 
implemented in this research to find the shortest path, 
to iterate on length of path to construct a 
shortest-path spanning tree. So we can obtain a 

rooted tree from the maximum degree node of our 
sample5 and form all of the shortest paths to all the 
other nodes to composite a tree. Figure 9 is the 
shortest-path spanning tree where h is the height of 
the tree and its height is 23. 

From the viewpoint of tree structure, we 
consider that the smaller height of tree would 
decrease the whole routing distance. So that we 
propose to add new link to the longest path in the tree 
may take effects to that. Besides, randomly adding 
links is the “re-wiring” way used in the small-world 
network model, we also applied this concept to our 
simulations. 

In a word, we design two simulations based on 
the sampled data, the first one is called the First m 
Longest-Path-First method (LPF)6, and the other one 
is Random-Link-Added method (RLA). Furthermore, 
we combined the Kf algorithm with RLA method to 
see the simulation results with several aspects. Figure 
10 is our simulation flow. The adding probability of 
new links, p ( 10 ≤≤ p ), if p = 0 presents no any 

new link be added into the network; on the contrary, 
when p = 1, the network will become a Kn complete 
graph.7 Thus, the relation between p and the number 
of new links, enew can be defined as 

 

e
n
e

p new

−��
�

�
��
�

�
=

2             

(9) 

where n is the number of nodes and e is the number 
of links in the network. 

 

Figure 9 Shortest-path spanning tree of the 
maximum degree node 

                                                 
5 The IP address is 4.68.114.157 which locates in NJ., 

USA and belongs to Level 3 Communications Inc 
6 We select m pairs of nodes as new links at once 

which their path lengths are the largest ones. 
7 A complete graph with n graph vertices is denoted 

Kn and has a 2
)1(

2
−=��

�

�
��
�

� nnn
 undirected edges. 



 10

 
Figure 10 Our simulation flow 

 

Table 7 Metrics of the original union data 
and 3 groups by LPF 

Data k c l p 

All 2.67 0.0272 15.13 0.000 

LPF (p=0.001) 2.69 0.0115 15.13 0.001 

LPF (p=0.01) 2.71 0.0121 15.09 0.010 

LPF (p=0.1) 2.94 0.0156 14.74 0.100 

 

Only adds a fraction of new links, the node 
degree and clustering coefficient increase and the 
average shortest path length decreases. Figure 11 
illustrates well bell-shaped distribution as our union 
sample. Although the trend of simulation results by 
LPF method appears progression, the advantage 
seems not so large as Table 7 shows. 

 

0.00

0.03

0.05

0.08

0.10

0 10 20 30 40+
l

P (l )

All
LPF (p=0.001)
LPF (p=0.01)
LPF (p=0.1)

 
Figure 11 Distribution of path length, P(l), 

for LPF algorithm 

 
When we use RLA method, only random 

adding probability of 10%, the path length decreases 
to 12 and the clustering coefficient arises to almost 
10 times than the original data. Here, we can observe 
the trend of simulation results by RLA method 
appears large progression. Besides, Table 8 and 
Figure 12 show the path length rapidly decreases, 
which shows the amazing effect of random links. 

Table 8 Metrics of the original union data 
and 3 groups by RLA 

Data k c l p 

All 2.67 0.0272 15.13 0.000 

RLA (p=0.001) 2.67 0.0204 15.05 0.001 

RLA (p=0.01) 2.68 0.0268 14.59 0.010 

RLA (p=0.1) 2.83 0.1877 12.07 0.100 
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Figure 12 Distribution of path length, P(l), 

for RLA algorithm 

 
Finally, we used Kf algorithm to filter out the 

top t subgraph of backbone. Then, combine the RLA 
method to generate several groups of simulations. For 
instance, when random adding new links to the top t 
subgraph with t = 100 and the probability is 10%, the 
path length decreases to 11.38 and the clustering 
coefficient arises to almost 3 times than the original 
data. Here, we can observe the trend of simulation 
results by RLA plus Kf method appears high 
progression. Figure 13 shows that only adding some 
links (with varied probability p) to major Internet 
backbone (the size of t) can decrease the average path 
length greatly. It clearly points out that our RLA plus 
Kf method is quite useful to reduce the path lengths. 

 

Table 9 Metrics of the top t groups by RLA  

plus Kf algorithm 

Data k c l p t 

Top 10 2.35 0.034 13.44 1.0 10 

Top 100 p=0.01 2.70 0.035 13.12 0.01 100 

Top 100 p=0.1 2.77 0.063 11.38 0.1 100 

Top 100 p=0.5 2.86 0.070 10.94 0.5 100 

Top 100 p=1 3.14 0.120 10.53 1.0 100 

Top 1000 p=0.001 2.67 0.034 11.16 0.001 1,000 
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Data k c l p t 

Top 1000 p=0.01 3.17 0.040 7.92 0.01 1,000 

Top 1000 p=0.1 10.88 0.097 7.01 0.1 1,000 

Top 1000 p=0.5 43.79 0.224 6.67 0.5 1,000 

Top 1000 p=1 90.30 0.498 6.14 1.0 1,000 

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40+
l

P (l )

All
Top 10 (p=1)
Top 100 (p=1)
Top 100 (p=0.5)
Top 100 (p=0.1)
Top 100 (p=0.01)
Top 1000 (p=1)
Top 1000 (p=0.5)
Top 1000 (p=0.01)
Top 1000 (p=0.001)
Top 1000 (p=0.0001)

 
Figure 13 Distribution of path length, P(l), 

of all groups generated by RLA plus Kf 
algorithm 

 
Our simulation results show that it is efficient 

to augment the Internet efficiency with randomly 
connected links. On the situation of cost constraint, 
we suggest just add new links randomly in the 
Internet. Only a very small percentage can reduce the 
path length. The result of RLA plus Kf simulation 
shows the small number of new links can reduce the 
path length from 15.1325 to 11.38 (See Table 9). If 
path length is shorter, the transportation of routing 
packets is less. Unfortunately, resource is often 
limited in real Internet world. In our experiment, we 
considered the subgraph of top t nodes represented to 
the Internet backbone, “top-100” might be a 
technological “sweet spot” in balancing cost and 
performance. If we compared 100 and the tens of 
millions IP addresses, 100 is small enough to be 
managed and coordinated. Besides, the cost is not 
quite heavy, when the probability of new adding links, 
p, is only 10%. Adding new links between such small 
groups is more plausibly implementable than adding 
between the whole Internet around the world. 

6. Conclusions 

In this paper, we proposed a process to observe 
the Internet topology. The process offers the 
statistical analysis of basic metrics in topological 
description based on many complex network models. 
We sampled the Internet by several aspects, including 
network management, political, economic, and 
random sample. 191 web sites of NICs, 227 
government portal sites, 500 corporations’ portal sites 
of 2004 Fortune Global 500, and 10 thousand IP 

addresses generated randomly are our sampled data. 
With chi-square goodness-of-fit test, the hypothesis 
that the distribution of our sampled data is consistent 
with the population of the applied IP addresses.  

Our main analytical results are as follows. The 
average node degree is 2.66 and we find the high 
variability of node degree distributions which follow 
power-law and match scale-free property. The 
distributions of average shortest path lengths fit well 
to the bell-shaped of the Poisson distribution and the 
mean value is 15.1325. The results confirm the 
small-world property of a “small” path length. We 
also got the clustering coefficient, 0.0282, which is 2 
orders of magnitude “larger” than a random graph, 
that also matches the small-world property. Our 
observations provide clear evidence of the presence 
of small-world and scale-free properties in Internet 
topology. The analytical results provide evidences 
that our process is efficient to observe the Internet 
topology.  

According to our simulations, we found that 
creating links between the longest path pair of nodes 
is not a useful way to improve performance; 
otherwise, only few percentages of random-added 
links can obtain a better improvement of Internet. In 
further thinking, the natural dynamics of the Internet 
should be considered and the probability of selecting 
new links might calculate by more parameters like 
the hierarchical levels, the node degrees, the latencies, 
and so on. 

Furthermore, we identified the major Internet 
backbone by the filtering algorithm, Kf. To further 
take advantage of small-world property, we suggest 
using random additions of extra links in Internet 
backbone to improve the Internet performance. By 
RLA plus Kf algorithm, the simulation results show 
that only adding 10% randomly links, 236 new links, 
to the backbone containing top 100 routers will 
decrease path length to 11.38 and increase the 
clustering coefficient to 0.097 as shown in Table 9. 
This is a technological sweet spot in balancing cost 
and performance. The research results can be a 
reference to planner and administrators of the 
Internet.  

As new technological improvements on the 
computer hardware, computer software, and network 
protocols, there are constantly changing in the 
Internet working. For example, the IP addresses we 
focused on this research are undergoing a 
transformation to accommodate more addresses by 
implementing the new IPv6 protocol. By some 
revising, our process still can be used to observe the 
new generations of Internet.  
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