適合光纖到府交通模型的乙太被動光纖網路動態頻寬分配方法

黃培壝 大葉大學資訊工程研究所 moses@mail.dyu.edu.tw 賴柏志 大葉大學資訊工程研究所 r9206019@mail.dyu.edu.tw

摘要

近年來由於網路的急速發展,使得接取網路 (Access network)出現瓶頸。為了滿足頻寬需求,乙 太被動光纖網路(Ethernet passive optical network; EPON)是個很有潛力的解決方式,因為 EPON 有著 高頻寬和低廉的網路硬體架構。其傳輸特性在下傳 頻道是一個點(Optical Line Terminal; OLT)對多點 (Optical Network Unit; ONU)的廣播網路,而上傳頻 道則是一個多點(ONUs)對點(OLT)的接取網路。因 為上傳頻道是多點對單點的特性,所以需要有個多 工存取方式來防止上傳頻道發生碰撞問題,也就是 由 OLT 來仲裁每個 ONU 上傳頻道的分配,而 IPACT (Interleaved Polling with Adaptive Cycle Time)[6]是目前最有效率的多工存取方式之一,可 是此種輪詢(polling)方式尚存著一個問題,當一個 ONU 無資料要求時, OLT 還是會授予一個時槽給 予送出要求,此問題對於目前急速成長光纖到府 (Fiber to the Home; FTTH)網路更為顯著。

在本論文中,我們將討論光纖到府使用 IPACT 多工存取方式所引發頻寬浪費問題,並且將針對此問題提出競爭時框(contention window)演算法來解決此問題。本論文中我們模擬 FTTH traffic 的傳輸模式來做效能評估,從模擬結果來看我們的方法在總產出量 (Throughput) 和系統的傳輸延遲(Delay)表現優於其他方法。

關鍵詞 : 乙太被動光纖網路、Interleaved Polling with Adaptive Cycle Time (IPACT)、Time Division Multiple Access (TDMA)、Multi-Point Control Protocol (MPCP)

一、緒論

圖 1.1 為一個典型的被動式光纖網,是由局端 光線路終端裝置(Optical Line Terminal; OLT)、用戶 端光網終端裝置(Optical Network Unit; ONU)和被 動式分光器(Passive Optical Splitter)所組成,其中採 用了被動式的光纖元件,相對有故障率低、維護容 易和低維修費用等優點。因為 EPON 有著點對多 點的特性,對於佈線上比點對點光纖網路,可節省 很多線路的建置,進而降低成本。

EPON 的網路拓撲結構是扇型結構,資料流的特性在下行方向和上行方向不同,下行由 OLT 到ONU,而上行由從 ONU 到 OLT。如圖 1.1,OLT 以不同長度的封包廣播出去,而經由 1:N 被動式分光器到每個 ONU,其封包長度要符合 IEEE 802.3(64~1,518byte),每個封包都標有欲傳達的 ONU MAC 層位址,而 ONU 會檢查其 MAC 層位址是否為自己所有,如果是就接收下來反之則丟棄,因此可順利的傳送到每個 ONU 上。另外,有一些封包可傳送給所有的 ONU,或者可以傳送給一特定群組的 ONU,就如廣播(broadcast)和群播 (multicast)。

如圖 1.2 所示,上行是以TDMA[7]的技術來分配固定的時槽(time-slot)給每個ONU,且每個ONU之間必需達到同步,以避免碰撞發生。在第一個時槽是由ONU₁傳送封包 1,接著由ONU₂在第二個時槽傳送封包 2,最後再由ONU₃在第三個時槽傳送封包 3。但是這樣的時槽分配個會造成嚴重的頻寬浪費,因此對於流量變化極劇的網路,此方法顯然不適用。所以需要使用動態頻寬分配方法來為每個

ONU分配頻寬,以解決頻寬浪費問題。

接下來將介紹一種動態頻寬分配方法 (IPACT),並討論此方法所引發頻寬浪費問題。在 第三章,我們將針對此問題提出競爭時框 (contention window)演算法來解決問題。

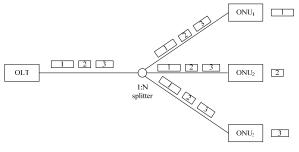


圖 1.1、EPON下行頻道

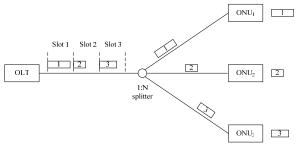


圖1.2、EPON上行頻道

二、背景

為了解決 TDMA 固定頻寬分配而導致低頻寬利用率問題,因此有文獻提出如 IPACT 之類的動態頻寬配置方法[6]來解法此問題,可是此方式仍然存在著頻寬浪費問題。如果 ONU 要求為 0 bytes,IPACT 演算法還是會授予一個時槽給予ONU 送出要求,對此如果授予太多此種要求,勢必造成嚴重的頻寬浪費。雖然有些文獻在加強IPACT 的效能[1][3][12][14][15],可是焦點只是著重於優先權、SLA (service level agreements)和 Qos (quality of service)效能討論,而非改善頻寬利用率。另外有些文獻提出方法來增加頻寬利用率,可是需額外加入一些硬體設備[4][5]。其他一些機制[2][8]是以預測的方式來減少平均封包延遲和頻寬利用率,在[13]有提到以 grant/report 機制存在著一個最小封包延遲時間問題並針對此問題作討論,但

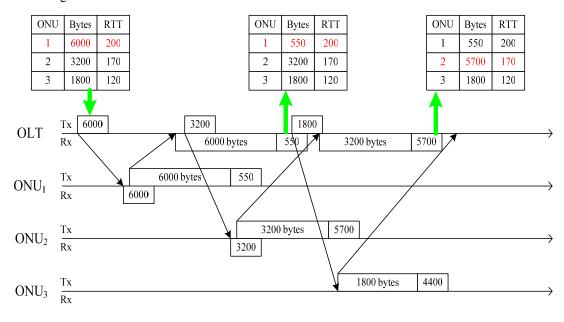
也只有在某些特定的情形下才有好的表現,而且預測方式不可能完整無誤的符合 ONU 緩衝區的frame 大小,又因為 EPON 有著frame 不可分割的特性,因此反而會降低頻寬的利用率。

本論文各章提要如下:第二章介紹 EPON 相關文獻和動態頻寬分配所需的協定;第三章將提出 我們的方法 CW+LBA;第四章介紹網路交通模型 和對模擬結果作相關的討論;第五章將為本論文作 個總結。

2.1 Interleaved Polling with Adaptive Cycle Time (IPACT)

開始說明 IPACT 之前,先假設 EPON 為 1 個 OLT 對 3 個 ONU 的網路,且 OLT 已收到所有 ONU 的輪詢(Polling)和能精準授予(grant)給每個 ONU 所需的 RTT[11] (round-trip time),依據 RTT 可抵補 每個 ONU 訊號到達 OLT 的時間差,因此使每個 ONU 達到同步。

- 如圖 2.1.1,一開始依據輪詢表(Polling table) 來授予(grant)給ONU₁,其中包含目標ONU₁的 ID和之前要求(request)的大小 6000 bytes。
- 2. 當ONU₁接收到OLT的授予而開始傳送資料, 一直傳送到授予的最大值 6000 bytes,接著送 出一個要求,其中要求的大小是此刻在ONU₁ 的緩衝區(buffer)剩餘大小,在此假設為 550 bytes。
- 3. 在OLT開始接收從ONU₁傳送過來的資料,OLT 可根據授予ONU₁的大小來計算出ONU₁何時 傳送結束。根據ONU₂的RTT可準確算出下一 個授予時機,以至於OLT接收到ONU₂第一個 位元可接續在ONU₁最後一個位元結束加上一 個防護時區(guard interval)之後到達。
- 4. 經過一段時間之後,從ONU₁的要求可得知有 多少資料還在其緩衝區,如此OLT可藉由此新 的要求以更新輪詢表(polling table)。經過對 ONU₁授予到開始接收ONU₁傳送的資料,OLT 可以不斷更新每個ONU的RTT。


5. 相同於上面幾個步驟,OLT會先計算ONU2最後一個位元到達的時間,如此可得知何時可授予ONU3傳送時槽,當OLT開始接收到ONU3傳送資料的時機,是接續ONU2傳送完畢加上一個防護時區之後。當接收到ONU2傳送的要求

之後,OLT可再一次更新輪詢表。

如果 OLT 接收到的要求,表示其 ONU 要求為 0 bytes(緩衝區為空),到下一個 cycle 時 OLT 會授 予 0 bytes 給其 ONU,其中只給予送出要求而無資料傳送。

0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0-39

Polling table

3200 - Grant / request messages 1200 bytes - User's data

圖 2.1.1 輪詢演算法

Destination Address	6	Destination Address
Source Address	6	Source Address
Length/Type = 88-08	2	Length/Type = 88-08
Opcode = 00-02	2	Opcode = 00-03
Timestamp	4	Timestamp
Number of grants/Flags	1	Number of queue sets
Grant #1 Start time	0/4	Report bitmap
Grant #1 Length	0/2	Queue #0 Report
Grant #2 Start time	0/4	Queue #1 Report
Grant #2 Length	0/2	Queue #2 Report
Grant #3 Start time	0/4	Queue #3 Report
Grant #3 Length	0/2	Queue #4 Report
Grant #4 Start time	0/4	Queue #5 Report
Grant #4 Length	0/2	Queue #6 Report
Sync Time	0/2	Queue #7 Report
Pad/Reserved	13-39	Pad/Reserved
FCS	4	FCS

GATE MPCPDU

REPORT MPCPDU

圖 2.2.1 MPCPDU

2.2 Multi-Point Control Protocol (MPCP)

MPCP[9]是由 IEEE 802.3ah Task Force 所制定,能使 EPON 擁有統計多工能力, OLT 能對每個 ONU 上行通道能有效的利用頻寬。MPCP 為 64位元組的 MAC control message,分別有 Discovery Processing、Report Processing、Gate Processing。 OLT 可藉 Discovery Processing 週期性的發送 Discovery window,給予新連結或斷線的 ONU 行使重新註冊的動作。

經由 Report Processing 和 Gate Processing 可使網路有效的利用上行頻寬,但 MPCP 未具體說明特定的頻寬分配演算法。如圖 2.2.1 為標準的 GATE 和 REPORT MPCPDU,ONU 可藉由送出此類的REPORT MPCPDU給 OLT,來取得頻寬分配;OLT

則藉由送出 GATE MPCPDU 分配頻寬給予特定的 ONU,其中包含 timestamp、grant start time 和 grant length,而接收到此訊息的 ONU 可由 timestamp 更新 local clock 以達到同步,而經由 grant start time和 grant length 決定起始傳送和結束傳送時間。

三、 CW+LBA (Contention Window and Limited Bandwidth Allocation)

雖說 IPACT 的作者提到要求所需的時槽只有 4 bytes (1 bytes ESC、1 bytes ID、2 bytes window size),但是實際上如果使用 IEEE 802.3 ah 所規範之 MPCP,其授予和要求所需共 64 bytes,其傳送時間在 Gigabits 速率下約需 512 ns 且每個 ONU 傳送的資料之間都需要一個防護時區,時間約為 5 μs 遠比要求所占的頻寬大上許多。

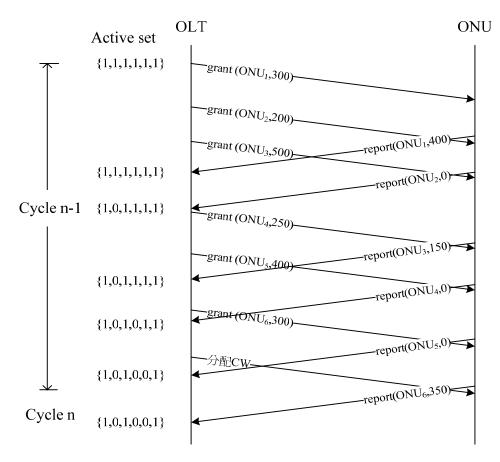


圖 3.1 active變成non-active過程

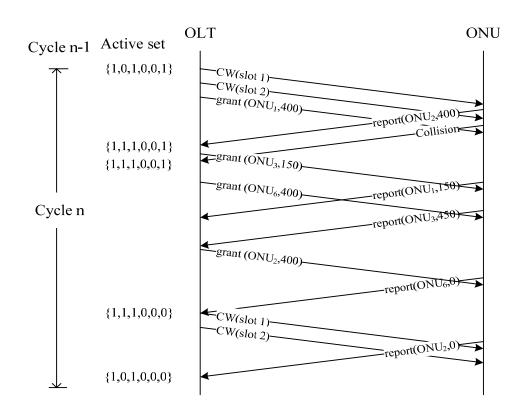


圖 3.2 CW分配及使用情形

我們區分 ONU 成兩種型態活動頻繁的 ONU 稱為 active, 不活動的 ONU 稱為 no-active, active set 則是 active ONU 所成的集合, 其格式為 active set = {1,0,1,1,0,1},1 代表對應的 ONU 為 active、0 代表對應的 ONU 為 non-active。傳送要求 (transmission request) 大於零的 ONU 屬於 active set,OLT 會對於屬於此型態的那一些 ONU 以 IPACT 的演算法行使 GATE message 和 REPORT message 方式互相溝通;傳送要求等於零的 ONU 則屬於 non-active set,競爭時框(contention window) 可以給屬於 non-active set 且欲送 REPORT message 的 ONU (緩衝區非空的 ONU)來競爭,如此可減少 不必要的 GATE 及 REPORT message。

圖 3.1,描述ONU 如何由active變成non-active 的過程,一開始OLT根據輪詢表依序授予給每個ONU,且active set = $\{1,1,1,1,1,1,1\}$ 。當ONU₁被授予300bytes時,會比照於IPACT的方式,當資料傳送結束之後,緊接著送出REPORT message (要求400bytes)。在ONU₁傳送期間OLT會根據ONU₂的RTT

决定在何時授予ONU2時槽,因此OLT接收完ONU1 傳送的資料緊接著會接收到ONU2傳送的資料,但 是此時ONU2在傳送出最後一個位元後所送出的 REPORT message為要求 0 bytes。當OLT接收到 ONU2所傳送過來的REPORT message,發現要求大 小是零,此時OLT會將ONU2從active變為 non-active。以此類推,依序接收到ONU3、ONU4、 ONU5、ONU6的 REPORT message之後,因為 ONU2、ONU4、ONU5要求大小為零,所以active set $=\{1,0,1,0,0,1\}$ 。緊接於所有屬於active set ONU傳 送需求之後,OLT會針對屬於non-active set的ONU 行使CW分配,如果此時沒有任何屬於non-active 的ONU,則無需分配CW,直接進入下一cycle。

如圖 3.2,描述CW的分配及使用情形。OLT 會選擇適當大小來分配CW,當ONU接收到CW, 且得知其分配情形後,屬於non-active的ONU會選 擇其中一個slot送出REPORT message,如果沒有發 生碰撞,此report就可成功送到OLT。此例沒有對 碰撞作任何處理,在下一節將會對此情形作說明。 當OLT接收到ONU $_2$ 送來的要求,會使ONU $_2$ 從 non-active變為active且加入輪詢表,使ONU $_2$ 可在 cycle n獲得OLT授予之前要求的時槽空間。當OLT 在cycle n對所有屬於active set的ONU都行使一次 授予之後,緊接著又會再一次分配CW。

有關 CW 競爭方式我們提出兩種方法,一種 為 SCW+LBA,另一種為 DCW+LBA,接下來兩 小節將對於兩種方法分別作詳細的介紹。

3.1 SCW+LBA (Static Contention Window and Limited Bandwidth Allocation)

為避免分配過大的CW,此演算法必須先決定 ONU的分組門檻值 N_{th} 作為CW最大時槽分配數量, OLT根據 N_{th} 對CW作劃分,其中 N_{th} 是常數。假設有 16 個ONU, N_{th} =3,則CW劃分成group₁ {1,2,...,5}、 group₂ {6,7,...,10}、group₃ {11,12,...,16}三組時槽, 將時槽平均劃分給所有的ONU,如果某一組中全 部的ONU都屬於active set,則此一時槽在當次cycle 就不予分配。假設第二組中ONU都為active時,則 OLT此cycle只會分配出group₁和group₃兩個時槽。

當發生碰撞時,OLT會針對發生碰撞的那一組成員做處理,使所有non-active成員變為active,授與大小為 0 byte。假設有 6 個ONU,active set = $\{1,0,0,0,1,1\}$, $N_{th}=2$,而CW劃分成group $_1$ $\{1,2,3\}$ 、group $_2$ $\{4,5,6\}$ 。當OLT知道group $_1$ 發生碰撞時,會修改active set = $\{1,1,1,0,1,1\}$,也就是使ONU $_2$ 和ONU $_3$ 從non-active變為active,所以ONU $_2$ 和ONU $_3$ 會加入輪詢表,且授與大小為 0 byte,如此發生碰撞的那一組成員有機會發出report。這樣的作法是為了防止形成永無止盡的碰撞發生,當發生碰撞是因為有兩個以上的ONU要發出report,而在下一個cycle還是那幾個ONU要發出report,不會少只會多,所以到下一cycle只會再發生一次碰撞,所以才需上述的處理。

因為CW 分配跟 GATE message 所需的欄位不

同,所以本論文提出的方法需修改 MPCPDU,以配合 CW 使用。如圖 3.1.1,此方法需要送給 ONU的資訊有 CW 的開始時間和 group number,使 ONU得知何時可開始發出 report,且是只有那一組成員可發出。因為每個 group 獨立,所以不同組的 ONU需以獨立的 GATE message 個別告知。

Destination Address	6
Source Address	6
Length/Type = $88-08$	2
Opcode = xx-xx	2
Timestamp	4
CW Start time	4
Group number	1
Pad/Reserved	35
FCS	4

圖 3.1.1 CW MPCPDU (SCW+LBA)

SCW+LBA 流程圖,如圖 3.1.3 和 3.1.4,圖中 OLT 和 ONU 都有各自的接收和傳送程序,其中我們進一步的把一個 cycle 再分成 LBA period 和 CW period 如圖 3.1.2 所示。

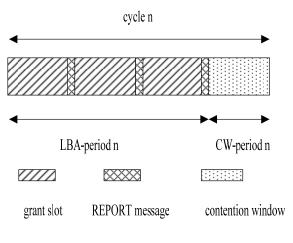


圖 3.1.2 LBA和CW period

OLT sender 是那一種 LBA period-CW period period ŁBA period⊵ 變成CW €W period是 變成LBA period 否結束 否結束 period 否 取得時槽編號 從polling table取 並送出CW 得length,並送出 GATE message 結束 OLT received 開始 是否屬於 是否發生 collision active set 是 使此組的non-此ONU從 1報大 active set轉爲 active變成 等於0 active set,且每 non-active --個non-active 否 的ONU都要入 此ONU從nonpolling table active變成 active,且將 且size爲0 report資訊加入 將report資訊加 polling table 入polling table (size = (size = min(queue size. W MAX)) min(queue size, W_MAX) 結束

圖 3.1.3 SCW-LBA OLT接收及傳送流程圖

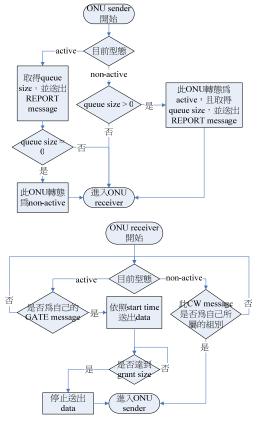


圖 3.1.4 SCW+LBA ONU接收及傳送流程圖

3.2 DCW+LBA (Dynamic Contention Window and Limited Bandwidth Allocation)

此方式不需個別分組,OLT 只要依據當時 non-active 個數決定時槽的分配數量,CW 的時槽 數量可由(1)式求得,N 為所有 ONU 的個數,n 代 表期望一個時槽中平均競爭個數。當 ONU 收到 CW 分配時,會以亂數決定從那個時槽發出 REPORT message,但因為此方法 OLT 無法得知每 個時槽的競爭情形,因此當發生碰撞時,只能使所 有 non-active 變為 active,且加入輪詢表。

但是如果其他時槽有成功送出 REPORT message,還是可以從零更改成要求的大小。此方式只需在開始 CW 分配時告知全部 ONU 其分配情形,而不像 SCW+LBA 一樣需逐一告知,其MPCPDU 格式圖 3.2.1,其中包含 CW 開始時間和此次 CW 分配的時槽個數。此方法流程圖如圖 3.2.2 及 3.2.3。

Destination Address	6
Source Address	6
Length/Type = 88-08	2
Opcode = xx-xx	2
Timestamp	4
CW Start time	4
Number of slot	1
Pad/Reserved	35
FCS	4

圖 3.2.1 CW MPCPDU (DCW+LBA)

時槽數量=
$$\begin{bmatrix} non-active 個數/\\ n \end{bmatrix}$$
, $n=1,3,5,...,N$ (1)

OLT sender 開始 是那一種 LBA periodperiod ŁBA period €W period≥ 變成LBA period 是否結束 從polling table取 取得時槽數 得length,並送 結束 量,並送出CW #GATE message OLT received 開始 是否發生 collision, 此ONU從non active變成 active,且將 是此cycle中第 此ONU從 report資訊加入 回報大小 Collision active變成 polling table 於0 non-active min(queue size, 是 W MAX)) 將report資訊 polling table 使所有的non-加入polling 中還未有此 table (size active set轉爲 W的記錄 min(queue active set , | 每一個non 是 W_MAX) active的ONU 修改此ONU記錄 都要入polling 在polling table table , Esize 的size欄位 爲0 結束

圖 3.2.2 DCW+LBA OLT接收及傳送流程圖

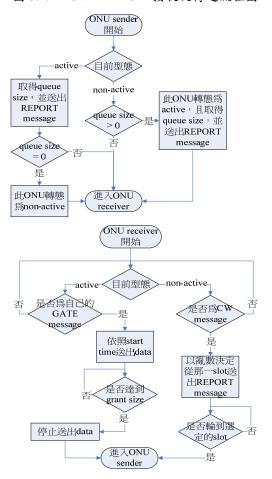


圖 3.2.3 DCW+LBA ONU接收及傳送流程圖

四、模擬模型與結果分析

4.1 模擬模型

本章中討論DCW+LBA和SCW+LBA模擬模型及結果,且將模擬結果表示成DCW+LBA(x)和SCW+LBA(x)和SCW+LBA(x),DCW+LBA中的x表示期望一個時槽中平均競爭個數、在SCW+LBA中x表示分組門檻值Nth,而主要比較的對象為Limited service [6],所謂Limited service為IPACT的作者為了防止被某一ONU獨占頻寬,所以限制每個ONU最大能授予的時槽只能小於等於maximum transmissionwindow。我們的模型是使用C++語言和離散事件驅動模擬方法(discrete-event simulation)[10]撰寫,EPON拓撲如圖 4.1.1,主要的模擬參數如表 4.1.1,4.2 節和 4.3 節分別對均勻負載和FTTH負載的網路流量樣本分別做討論。

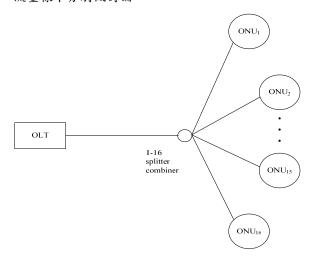


圖 4.1.1 EPON拓撲 表 4.1.1 模擬參數

OLT 到 ONU 的距離	20 km
ONU 個數 (N)	16
上行與下行通路頻寬	1 Gbps
maximum transmission	15000
window	bytes
Guard interval	5µs
buffer size (ONU)	10 Mbytes
propagation delay	65µs

4.2 均匀負載

均勻負載(load)表示每個ONU的負載比重一致,也就是每個ONU有著相同的packet size和 arrival rate。其中packet size我們採用IEEE 802.3 Ethernet frame範圍從 64~1518 bytes遵循均勻分部 (uniform distribution),到達間隔時間(inter-arrival time)遵循指數分佈(exponential distribution)。(2)式表示本論文模擬之負載與arrival rate和packet size 之間的關係,在式子中N表示ONU的個數,mean(packet size)表示封包平衡值其單位為byte。因為inter-arrival time為指數數分佈,故此過程稱為卜松過程(Poisson Process),其中ONUn的arrival rate 為 λ_n ,而arrival rate倒數即為inter-arrival time,整體的service rate(μ)為網路的速率。

$$load = \frac{\lambda}{\mu} = \frac{N \times \lambda_n \times mean(packet \ size) \times 8}{1Gbps}$$
 (2)

圖 4.2.1、4.2.2 顯示,由結果得知我們的方法 總產出量(throughput)跟 IPACT 一樣,只有負載在 50%以下時平均在緩衝區延遲時間高了一點點,那 是因為發生碰撞時,必需使全部 non-active 變成 active,如此意味著此 CW 失效,而造成需要求時 糟的 ONU 會多一個 cycle 的延遲時間,才能回報 所需的時糟大小,而那也只是增加 0.4ms 而以,整 體來看延遲還是在 1ms 以下,如此對於有即時性 要求的使用者來講比較沒感覺。為何負載低時發生 率會比較高,因為此種負載的性質相同,所以時常 同一時間很多 ONU 從 active 變成 non-active, 且同 一時間很多 ONU 要從 CW 中發送 REPORT message,雖然此情形會造成些許的頻寬浪費,但 是因為此情形僅在負載比較低時發生,所以不會影 響到總產出量。而在負載較高時,因為 ONU 很少 會從 active 變成 non-active,因此也無法改善頻寬 利用率。由此得知在此最糟情形下,我們的方法還 是可以得到不錯的結果。

由於 DCW+LBA 和 SCW+LBA 兩者的碰撞解 決方式不同,所以效能表現上有所差異,如表 4.2.1 和 4.2.2 所示,其中以 SCW+LBA 表現比較優異, 因為當發生碰撞時 DCW+LBA 需對所有屬於 non-active set 的 ONU 做回復的動作,而 SCW+LBA 只需對發生碰撞的 group 做回復的動作,所以當碰 撞情形很嚴重時,SCW+LBA 會比 DCW+LBA 表 現優異。

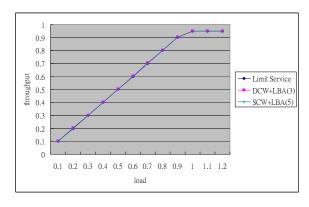


圖 4.2.1 總產出量比較(均勻 負載)

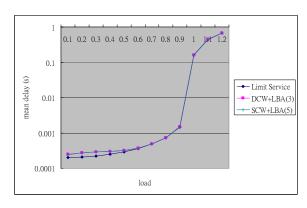


圖 4.2.2 平均延遲時間比較(均勻 負載)

4.3 FTTH 負載

此負載的分配如表 4.3.1 所示,其中 $ONU_{11}\sim ONU_{16}$ 分別是 3 個上網和 3 個VoIP, λ_n 表示一個 ONU_{10} 小人間 ΔV 可以 ΔV 可

UDP、12 RTP)。如圖 4.3.1、4.3.2,當處於滿載時 (Y=10),在 3 個VoIP和 3 個上網中,因為碰撞情形不嚴重,所以有很多次 cycle 中都節省了一些 REPORT浪費,因此我們的方法增加了總產量。且當負載在 30%以上平均的延遲也比IPACT來得低,也就是省去不必要REPORT空間,而縮短每個 cycle時間,因此縮短了平均延遲時間。

如表 4.3.2 和 4.3.3 所示,在此負載下,由於CW的分配DCW+LBA比SCW+LBA較有彈性, 且碰撞情形會比較少,所以在較能表現上DCW+LBA會比SCW+LBA來得優異。

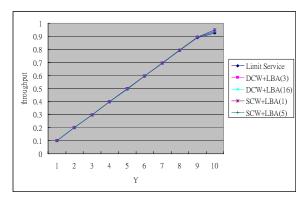


圖 4.3.1 總產出量比較(FTTH 負載)

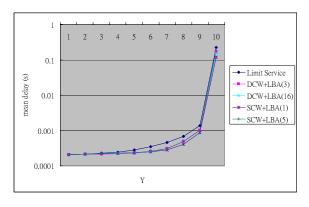


圖 4.3.2 平均延遲時間比較(FTTH 負載)

五、結論

因為網路的急遽發展,使得最後一哩(last mile)問題出現了瓶頸,而 EPON 是個極有潛力的結決方案,可是在 IEEE 802.3ah 並未規範頻寬分配演算法,因此很多文獻在此方面作探討,主要可分成三個方向,第一為提供網路行使優先權、SLA (service level agreements)和 Qos (quality of service)

能力,第二是實現原本乙太網路 CSMA/CD 傳輸機制,第三是以預測的方式以減少封包的傳輸延遲。

在本篇論文,我們針對 IPACT 尚存的頻寬浪費問題,提出了一個解決方法,使 REPORT 訊息集中在一個 CW 中做頻寬要求,以省去不必要的GATE 及 REPORT 訊息。其特色就是不必增加額外的硬體設備,且在不影響 IPACT 特性下,進而增加其效能,而且保有傳統 CSMA/CD 特性,對於網路 burst 特性有著極高的適應性。而經由模擬結果得知,在 FTTH 的負載下我們的方法在滿載時增加整個接取網路(Access network)的總產出量,且如表4.3.3 負載在 30%以上是降低了網路的平均延遲時間,尤其到 50%以上時效果更顯著,而且在中上負載時延遲改善對於使用者來講也比較有感覺。

六、參考文獻

- [1] A. Shami, Xiaofeng Bai, C. M. Assi, N. Ghani, "Jitter performance in ethernet passive optical networks," Lightwave Technology j., Vol 23, pp. 1745 1753, April 2005.
- [2] A. Gumaste, I. Chlamtac, "A protocol to implement Ethernet over PON, "Communications, 2003. ICC '03. IEEE International Conference on Volume 2, 11-15 May 2003 pp. 1345 - 1349 vol.2.
- [3] C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, "Dynamic bandwidth allocation for quality-of-service over Ethernet PONs," IEEE J. Select. Areas Commun., vol. 21, pp. 1467–1477, Nov. 2003.
- [4] C.-J. Chae et al., "Optical CSMA/CD Media Access Scheme for Ethernet over Passive Optical Network," IEEE Phot. Tech. Lett., vol. 14, no. 5, May 2002, pp. 711–13.
- [5] Chuan Heng Foh, Lachlan Andrew, Elaine Wong, Moshe Zukerman, "FULL-RCMA a high utilization EPON" IEEE Journal on

- Selected Areas in Communications, vol. 22, NO.8, OCTOBER 2004 pp. 1514 1524
- [6] G. Kramer, B. Mukherjee, and G. Pesavento, "IPACT: A Dynamic Protocol for an Ethernet PON (EPON), "IEEE Commun. Mag., vol. 40, no. 2, Feb. 2003, pp. 74-80
- [7] G. Kramer, B. Mukherjee, and G.Pesavento, "Ethernet PON (ePON): Design and Analysis of an Optical Access Network," Phot. Net. Commun., vol. 3, no. 3, July 2001, pp. 307–19.
- [8] H.-J. Byun, J.-M. Nho, and J.-T. Lim, "Dynamic bandwidth allocation algorithm in Ethernet passive optical networks," IEEE Electron. Lett., vol. 39, pp. 1001–1002, June 2003.
- [9] IEEE std 802.3ah
- [10] Jerry Banks, John S. Carson, II, Barry L. Nelson and David M. Nicol, "Discrete-Event System Simulation 3rd Edition," Pretice Hall, 2001.
- [11] "MPCP: Timing Model," PDF Presentation (2002, March). [Online]. Available: http://www.ieee802.org/3/efm/public/mar02/har an_1_0302.pdf
- [12] M. Ma, Y. Zhu, and T. H. Cheng, "A bandwidth guaranteed polling MAC protocol for Ethernet passive optical networks," in Proc. IEEE INFOCOM, vol. 1, Mar. 2003, pp. 2–31.
- [13] Tang Shan, Ji Yang, Cheng Sheng, "EPON upstream multiple access scheme," Info-tech and Info-net, 2001. Proceedings. ICII 2001 Beijing. 2001 International Conferences on Volume 2, 29 Oct.-1 Nov. 2001 pp. 273 278 vol.2
- [14] Xue Chen, Meihong Yu, Yang Zhang, Yu Deng,
 "A novel upstream dynamic bandwidth
 assignment scheme for Ethernet
 PONs,"Communication Technology

- Proceedings, 2003. ICCT 2003. International Conference on Volume 1, 9-11 April 2003 pp. 748 750 vol.1
- [15] Yuanqiu Luo, N. Ansari, "Bandwidth allocation for multiservice access on EPONs,"IEEE Commun. Mag., pp. 16-21, Feb. 2005.

表 4.2.1 均勻負載總產出量比較

load \ 種類	Limited Service	SCW+LBA(5)	DCW+LBA(3)
0.1	0.099911	0.100273	0.099926
0.2	0.200242	0.20042	0.200759
0.3	0.300282	0.30092	0.300399
0.4	0.399477	0.401043	0.400419
0.5	0.501349	0.501366	0.501668
0.6	0.599946	0.600331	0.601718
0.7	0.700597	0.701782	0.702485
0.8	0.800135	0.801307	0.8016
0.9	0.901106	0.902963	0.903307
1.0	0.950537	0.95036	0.950358
1.1	0.95067	0.950444	0.950417
1.2	0.95071	0.950455	0.950451

表 4.2.2 均勻負載平均延遲時間比較

load \ 種類	Limited Service	SCW+LBA(5)	DCW+LBA(3)
0.1	0.000201	0.000244	0.000249
0.2	0.000209	0.000271	0.000276
0.3	0.000223	0.000287	0.000287
0.4	0.000247	0.000299	0.000298
0.5	0.000291	0.000317	0.000319
0.6	0.000362	0.000368	0.00037
0.7	0.000484	0.000491	0.000492
0.8	0.000725	0.000735	0.000735
0.9	0.001471	0.001511	0.001512
1.0	0.159621	0.166041	0.162297
1.1	0.440206	0.438109	0.449603
1.2	0.673769	0.67104	0.673325

表 4.3.1 負載分配表

ONU ₁ ~ONU _Y	上載(100 Mbits/s, $\lambda_n = 16255$, exponential distribution)
ONU _{Y+1} ~ONU ₁₀ , Y<10	待機 (λ _n = 0)
Φ , $Y = 10$	
ONU _{11~13}	上網 ($\lambda_n = 1$, exponential distribution)
ONU _{14~16}	VoIP (G.711)

表 4.3.2 FTTH負載總產出量比較

load \ 種類	Limited Service	SCW+LBA(5)	DCW+LBA(3)
0.1	0.100464	0.100416	0.100569
0.2	0.199253	0.199561	0.199548
0.3	0.298349	0.298159	0.298861
0.4	0.397415	0.396607	0.39658
0.5	0.495858	0.495482	0.496444
0.6	0.595017	0.594282	0.595743
0.7	0.694048	0.69475	0.693242
0.8	0.791386	0.794229	0.79289
0.9	0.889935	0.891943	0.893111
1.0	0.923545	0.935294	0.939677

表 4.3.3 FTTH負載平均延遲時間比較

load \ 種類	Limited Service	SCW+LBA(5)	DCW+LBA(3)
0.1	0.00021	0.000211	0.000211
0.2	0.000215	0.000214	0.000213
0.3	0.000225	0.000218	0.000217
0.4	0.000244	0.000227	0.000222
0.5	0.000282	0.000235	0.000231
0.6	0.00035	0.000256	0.000254
0.7	0.000464	0.000307	0.000305
0.8	0.000683	0.000486	0.000483
0.9	0.001364	0.001028	0.001026
1.0	0.221648	0.187044	0.166082